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Abstract: One of the major security challenges in cloud computing is distributed denial of service (DDoS) attacks. In
these attacks, multiple nodes are used to attack the cloud by sending huge traffic. This results in the unavailability of
cloud services to legitimate users. In this research paper, a hybrid machine learning-based technique has been proposed to
detect these attacks. The proposed technique is implemented by combining the extreme learning machine (ELM) model
and the blackhole optimization algorithm. Various experiments have been performed with the help of four benchmark
datasets namely, NSL KDD, ISCX IDS 2012, CICIDS2017, and CICDDoS2019, to evaluate the performance of our
proposed technique. It achieves an accuracy of 99.23%, 92.19%, 99.50%, 99.80% with NSL KDD, ISCX IDS 2012,
CICIDS2017, and CICDDoS2019, respectively. The performance comparison with other techniques based on ELM,
artificial neural network (ANN) trained with blackhole optimization, backpropagation ANN, and other state-of-the-art
techniques is also performed.

Key words: Cloud computing, black hole optimization, DDoS attacks, artificial neural networks, extreme learning
machine

1. Introduction
Cloud computing has become a globally adopted technology [1]. It offers various services, cost-effectively. One
of the features of this technology is the availability, meaning that the services must be accessible always to all
users. DDoS attacks make cloud services inaccessible to their users [2]. In this attack, multiple machines are
used to launch the attack. In the beginning, the attacker searches for vulnerable hosts on the Internet and
installs a malicious program on those hosts. These hosts, which are called bots or zombies, also search for other
vulnerable hosts and infect those. In this way, a botnet of infected hosts is formed. All the hosts in the botnet
are controlled by either the attacker or malicious program installed on hosts at higher levels. To launch the
attack, all bots send a large number of requests to the victim server. This makes the server busy serving these
fake requests and all the server resources are exhausted. Thus, the server becomes unavailable to legitimate
users.

ELM [3] has become a popular machine learning model nowadays. It has many applications in several
fields as discussed in [4]. It is an artificial neural network with only one hidden layer. In this model, input to
hidden layer weights and hidden layer biases are initialized with random values. For the determination of hidden
to output layer weights, the generalized inverse of the matrix is used [13]. In the present work, a new technique
by combining extreme learning machine (ELM) with blackhole optimization algorithm [5] has been proposed.
∗Correspondence: kushwah.gopalsingh@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
1852

https://orcid.org/0000-0003-2478-245X
https://orcid.org/0000-0002-2046-8642


KUSHWAH and RANGA/Turk J Elec Eng & Comp Sci

In this technique, the weights between the input layer and hidden layer along with biases of the hidden layer
are optimized using black hole optimization. The weights between the hidden layer and the output layer are
calculated using generalized matrix inverse. The blackhole optimization algorithm is based on the black hole
phenomenon of the universe. It has been used to solve many problems as described in [6–8]. The reason behind
selecting this optimization algorithm over others is that it does not use any parameters. Thus, there is no need
for parameter optimization in the proposed technique. The major contributions of this research paper can be
summarized below.

• A new hybrid machine learning technique based on ELM and blackhole optimization has been proposed
for DDoS attack detection in cloud computing.

• Several experiments using four benchmark datasets have been performed to evaluate the performance of
the proposed technique.

The rest of the paper is organized as follows. Some of the recent works proposed in this area are
described in the next section. In Section 3, a brief description of ELM and blackhole optimization is presented.
The proposed hybrid machine learning-based technique and implemented DDoS attack detection system are
discussed in Section 4. In Section 5, experimental results are discussed and the paper is concluded in Section 6.

2. Related work
The DDoS attack detection techniques used in cloud computing can be broadly classified into three groups:
signature-based, anomaly-based, and hybrid. Some recent works related to each technique have been discussed
in this section, a more detailed discussion on proposed works in this area can be found in [9, 10].

2.1. Signature based

These techniques use a signature database of previously known attacks. Signatures are the set of rules which
define certain characteristics of attack. The network traffic is compared with these signatures. A match with
any signature can detect an attack.

In [18], the authors proposed an architecture based on the Intrusion detection message exchange format
(IDMEF) and Snort. In [19], the authors proposed a cooperative intrusion detection framework in their proposed
research work. An IDS is installed in every region of the cloud, which sends alerts to each other. Based on
alerts received from other IDS, new types of attacks are detected. In [20], the authors proposed an approach
that uses IDS installed on the virtual switch. It observes the traffic in both directions, inward and outward. In
[21], the author proposed a system based on Snort. For detecting known attacks, Snort is used. For detecting
attacks derived from known attacks, it uses the signature apriori algorithm.

2.2. Anomaly based

These techniques first create a normal profile of the network, and then the network traffic is continuously
observed. If the current network profile differs from the normal profile above a predefined threshold, then the
attack is detected. These techniques can be further classified as machine learning-based, statistical-based, and
software-defined networking (SDN) based.
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2.2.1. Machine learning based

In [22], the authors proposed an approach based on probabilistic self-organizing maps. For feature selection
and noise removal, principal component analysis and fisher discriminant ratio have been used. In [23], the
authors proposed a bi-objective hyper-heuristic framework for support vector machine (SVM) configuration
optimization. In this configuration, model complexity and accuracy are considered as two different and con-
flicting objectives. This SVM configuration is then used for intrusion detection. In [24], the authors proposed
a semisupervised approach for DDoS detection. It uses a combination of two algorithms. First is a newly
proposed unsupervised algorithm that is based on information gain ratio, entropy estimation, and co-clustering.
The second is a supervised algorithm that is an ensemble of extra tree algorithm. In [25], the authors proposed
a multilevel method for detection. At the first level, rules are used to identify intrusions from normal traffic.
At the second level, the exact categories of attacks are determined by a combination of an SVM and a signal
processing technique (DWT). At last, a visual analytic tool is integrated with the system for interactive visual
analysis.

In [26], the authors proposed a fuzzy-based semi-supervised learning algorithm that improves the clas-
sification performance of the IDS. A single hidden layer feedforward neural network (SLFN) is used as the
classifier. A deep learning-based detection system has been proposed in [27]. A recurrent neural network has
been used in this system. In [28], the authors proposed a hybrid intrusion detection framework that uses both
network-level and host-level activities for detection. It uses a deep neural network for IDS implementation. In
[29], the authors proposed a method by combining deep belief network with modified density peak clustering
(MDPCA) algorithm. MDPCA is used to reduce the size of the training dataset and the imbalance of samples.
A deep belief network is used for classification. In [30], the authors proposed a deep learning-based NIDS, which
uses the self-taught learning (STL) technique. In [31], the author used two models for detecting intrusions. One
is based on the gravitational search algorithm and artificial neural network (ANN). The other is based on the
gravitational search algorithm, particle swarm optimization, and ANN. A DDoS attack detection system based
on ANN has been proposed in [7]. The blackhole optimization algorithm is used to train ANN. In [32], the
authors proposed a detection system using an ELM classifier for binary as well as multiclass classification.
A DDoS attack detection system based on an ensemble of ELMs has been proposed in [51]. In this system,
majority voting is used to combine the results of different classifiers.

2.2.2. Statistical based
In [33], a solution based on correlation characteristics of IP and TCP header fields has been proposed. It
used a new measure called confidence and based on this, a confidence-based filtering score is calculated. This
score is used for attack detection. A modified solution for enhancing the processing speed of the confidence-
based filtering method is proposed in [34]. In [35], a detection system based on the covariance matrix model is
proposed. A covariance matrix is implemented during the normal period using various parameters. The attack
is detected by comparing this covariance matrix with the new covariance matrix.

In [36], the authors proposed a method based on graph-clustering. The criterion for detection is based
on the internal and external weights of clusters. In [37], the authors proposed a solution for HTTP/2 based
slow rate attacks. For the detection of attacks, the chi-square test has been used, which is used to differentiate
between normal packets and attack packets. A dynamic threshold-based detection algorithm is proposed in [38].
Different features of traffic are extracted and, based on these features, four attributes have been calculated. If
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attribute values exceed the threshold, then the attack is detected. Here, the threshold value is dynamic instead
of constant.

2.2.3. SDN based
In [39], the proposed system uses two components: an attack detection module, and an attack mitigation module.
This proposed system also addresses the problem of data shifts. In [40], the authors proposed a system that
distributes the traffic load among various traffic processors for scalability. In [41], a detection and mitigation
architecture is proposed. It is based on SDN and uses OpenFlow and sFlow tools. It also uses flow rate and
flow duration characteristics for evaluation purposes. In [42], a defensive solution for Slowloris and Slow HTTP
POST attack has been proposed, which is based on SDN. It uses an application at the SDN controller. When
a web server suspects malicious activity, it requests the application for processing, which blocks the sources of
malicious activities. In [43], the authors proposed a system that can detect attacks early. It used two levels for
detection in the SDN controller. At the first level, enhanced entropy is used, and at the second level Snort is
used.

2.3. Hybrid techniques

An architecture using both the signature-based and anomaly-based techniques has been proposed in [44]. This
is a peer-to-peer architecture. In [45], the authors used the snort and Bayesian classifier both to propose a
detection system. In [46], the authors proposed a detection system that uses snort for detecting known attacks
and a decision tree for unknown attacks. In [47], the authors proposed a system that is based on snort and three
classifiers decision tree, Bayesian, and associative. A score is generated for confirmation of attacks detected by
classifiers. In [48], for detecting known attacks C4.5 decision tree algorithm is used. After this, for detecting
unknown attacks, several one-class support vector machines are used.

3. Background

3.1. Extreme learning machine

ELM is a network of processing elements called neurons. It has three layers namely, an input layer, a hidden layer
and, an output layer. Each layer is a collection of neurons. The neurons in different layers are interconnected
through links having weights. The input to the network is applied through the input layer and the output
layer is used to take the output from the network. The hidden layer performs the actual computation of the
network. Each neuron uses an activation function for processing. Commonly used activation functions are linear
activation function and sigmoid activation function.

ELM does not require iterative training, it is trained in a single step. In this model, weights between
the input layer and the hidden layer along with biases of the hidden layer are randomly initialized. The
corresponding hidden-output layer weights are analytically determined using Moore-Penrose generalized inverse
of a matrix [13]. Due to this, it can be trained quickly with better generalization than other models. Consider,
n represents number of input layer neurons, l represents number of hidden layer neurons, and m represents
number of output layer neurons. Let U represents weight matrix of input-hidden layers, bj represents jth

hidden neuron bias and, V represents weight matrix of hidden-output layers. The activation function in the
hidden layer is f. The ELM with the above configuration is represented in Figure 1.

Suppose, (xi, ti) represents ith training sample. Here, xi = [xi1, xi2, xi3, ..., xin]
T ∈ Rn is the vector of n
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Figure 1. Extreme learning machine.

features for ith sample and ti = [ti1, ti2, ti3, ..., tim]T ∈ Rm is the target vector representing m classes, to which
the sample i may belong. If there are total N training samples then output of this network can be modeled as

oi =

l∑
j=1

f(uj , bj ,xi)vj , for i = 1, 2, 3, ..., N. (1)

Where, uj ∈ Rn and bj ∈ R are the learning parameters of the jth hidden neuron and vj =

[vj1, vj2, , vjm]T is the vector of weights which connects jth hidden neuron to m output neurons. The out-
put of ith sample is of the form oi = [oi1, oi2, , oim]T ∈ Rm . We can write the above equation for complete
training dataset of N samples as

O = HV (2)

Where,

H =

 f(u1, b1,x1) . . . f(ul, bl,x1)
...

...
...

f(u1, b1,xN ) . . . f(ul, bl,xN )

 , V =

vT
1
...

vT
l

 and O =

oT
1
...

oT
N


For minimizing the error ||O-T||, where T = (t1, t2, , tN ) , we can randomly initialize the parameters uj

and bj independent of the input values. Now, the hidden-output weights can be determined by finding a least
square solution of the following equation.

V = H†T (3)

Where † represents the Moore–Penrose generalized inverse of a matrix. Now, the model is trained as the
value of hidden-output weight matrix V is known. Here important to mention that there has been some debate
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about the originality of ELM [14, 15]. The creator of ELM has given responses to the comments received from
the research community in [16, 17].

3.2. Black hole optimization
It is an optimization algorithm inspired by the blackhole phenomenon of the universe. During initialization,
a fixed number of solutions, called the initial population, are randomly generated. Then objective function
against each solution is calculated. The solution with a minimum (or maximum) value of the objective function
is now designated as black hole position and all remaining solutions are designated as the position of stars. The
position of each star is changed due to its attraction toward the blackhole. Equation (4) is used to calculate
the new position of stars. Here, Posi(new) represents a new position and Posi(old) represents an old position
of ith star. The black hole position is represented by PosBH and r represents a random number in [0,1].

Posi(new) = Posi(old) + r ∗ (PosBH − Posi(old)) (4)

Now, the objective function for new solutions (position of stars) is calculated. If the objective function
value of any star at a new position becomes better than blackhole, then positions of that star and blackhole are
exchanged. Therefore, the position of blackhole at this point is the optimal solution up to the current iteration.
For generating the population of the next generation, the event horizon radius is calculated using equation (5),
where ξ represents the number of solutions in the population, and fobj represents objective function. After
that, the distance of stars from the black hole is calculated. A star is destroyed if it crosses the event horizon
radius and a new star with a random position is created. The group of all stars and blackhole works as the
population for the next generation. Equation (6) represents the distance between a star and blackhole.

Radius =
fobj(PosBH)∑ξ
i=1 fobj(Posi)

(5)

Distancei = fobj(PosBH)− fobj(Posi) (6)

The process of black hole optimization is shown in Figure 2. The number of solutions in initial population
is 4, which are represented as positions of stars x1, x2, x3 and x4 . The position of the black hole is x4 with
the minimum value of the objective function. The position of stars are changed due to attraction and becomes
x′
1, x

′
2 , and x′

3 . Now, the objective function for other stars is recalculated. New blackhole position is x′
3 . The

event horizon radius and distance of each star from the black hole are calculated. The star with position x4 falls
under the radius, it is destroyed and a new star at random position x′

4 is generated. Now all the stars x′
1, x

′
2, x

′
3

and x′
4 become population for the next generation. This process continues until the termination criteria are

met.

4. DDoS attack detection
4.1. Proposed hybrid extreme learning machine
As the training of ELM uses random weights between input and hidden layers, it may be possible that these
random weights are not optimal, instead, there are other weights in the search space, which provide better
training accuracy. To overcome this problem, we have used black hole optimization algorithm so that the
optimal values of input to hidden layer weights and hidden biases can be selected. The proposed technique is
called blackhole ELM (BH-ELM).
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Figure 2. Black hole optimization.

Suppose, UB = [u11, u12, , u1l, u21, u22, , u2l, , un1, un2, ..., unl, b1, b2, , bl] represents the matrix of input-
hidden weights and hidden biases in vector form. This vector represents a solution in our technique. Now,
randomly initialize a population of UB vectors of size IPsize (initial population size). Let, N be the total
number of training samples. For each vector UB in the initial population, the value of corresponding hidden-
output weight matrix V is calculated with the help of generalized matrix inverse using equation (3). After this,
the output of all training samples is calculated using equation (1). Now, the objective function is calculated.
Here, mean squared error (MSE) is used as an objective function that is to be minimized; it is given by equation
(7).

fobj =
1

N

N∑
i=1

(ti − oi)
2 (7)

The vector UB with minimum objective function value represents the position of the black hole, and all
other vectors represent the position of normal stars. Due to attraction toward the blackhole, the positions of
other stars are changed according to Eq (4). After the change of position, if some star achieves an objective
function value less than the blackhole, then the position of that star and blackhole is exchanged. The position of
the blackhole at this point represents the best solution up to the current iteration. This means these are the best
values of input-hidden weights and hidden biases. For generating the population for next generation, the event
horizon radius is calculated using Eq (5). Then, the distance of each star from the blackhole is calculated using
Eq (6). If any star crosses this radius, then it is destroyed and a new star with a random position is generated.
This set of positions of stars along with blackhole position is passed to the next generation. This process is
continued, till the desired value of the objective function is achieved or maximum iterations have reached. When
this process is complete, the best solution available till the last iteration, i.e. position of blackhole, along with
their corresponding matrix V are returned. The training process of the proposed technique is presented in
algorithm 1.
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Algorithm 1 : Blackhole ELM (BH-ELM) training.
Input: Initial population size (IPsize ), number of training samples (N), number of hidden neurons (l), number of

iterations (k)
Output: Trained classifier
1. Randomly generate IPsize number of UB vectors
2. For iter=1 to k do
3. For each individual in population do
4. calculate V=H† T
5. calculate oi =

∑l
j=1 f(uj , bj ,xi)vj , i=1,2,...,N

6. calculate fobj = ( 1
N

∑N
i=1(ti − oi)

2)
7. End for
8. The individual with minimum fobj is designated as position of blackhole, represented as PosBH

9. Represent its objective function value as fobj(PosBH)
10. All other individuals represent position of normal stars
11. Update positions of each star using Posi(new)=Posi(old) +r * (PosBH -Posi(old))
12. Recalculate fobj of stars (Repeat steps 3 to 7)
13. If a star with less fobj than black hole found, interchange their positions
14. Calculate event horizon radius, Radius = fobj(PosBH)∑IPsize

i=1 fobj(Posi)
15. Calculate distance of each star from black hole using Di = fobj(PosBH)− fobj(Posi)
16. If a star crosses event horizon radius then it is destroyed and a star with random position is generated
17. Now, all stars along with black hole work as population for next iteration
18. End For
19. The position of blackhole in last iteration is the optimal value of solution vector UB
20. Return blackhole position (optimal UB) and its corresponding matrix V

4.2. An example of the proposed technique

Here, we are discussing an example for the clarity of readers. Suppose, there are 3 features in the samples. The
number of neurons in the hidden layer and output layer is 2. The initial population size is four. Now the size of
vector UB will be (3+1)*2 = 8 (3 input features and 1 bias input), and size of matrix V will be 2*2 = 4. Table
1 represents the different operations of the technique. Part (a) represents the four UB vectors (represented
as rows), and their corresponding V matrix in vector form are represented in part (b) (represented as rows).
Part (c) represents the values of objective functions for each solution in the population. The individual with
minimum objective function value, i.e. the third vector in part (a) is designated as black hole.

When the blackhole attracts the other stars, then their position changes according to Eq (4). The new
position (updated population) of individuals is presented in part (d). Part (e) represents their corresponding V
vectors, and part (f) represents objective function value. Now from part (f), it is observed that after a position
change, a new individual (fourth) has an objective function value lesser than the black hole, i.e. 0.2649 < 0.2825.
Hence, this individual becomes the black hole, which represents the optimal values of weights till the current
iteration for an ELM. Now the event horizon radius is calculated using Eq. (5), which is 0.2334. After that, the
distance of each individual from blackhole is calculated using Eq. (6), which is represented in part (g).

As observed from part (g), all the individuals have a distance less than the event horizon radius; hence,
all these are swallowed by black hole, and new random individuals are generated. Part (h) represents new
individuals with blackhole. These individuals work as the initial population for the next iteration. All these
steps are repeated until the desired accuracy is achieved.
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Table 1. An example of the proposed technique.

(a). Initial population matrix.
0.24017 0.0339 0.3896 -0.2799 0.4685 0.5684 0.1818 0.6683
0.3907 0.1133 –0.147 -0.0915 –0.1394 0.4111 –0.0812 –0.9687
0.4403 –0.687 0.6725 –0.2272 0.3875 –0.7813 –0.8993 0.7274
–0.3062 0.1241 0.4627 0.5511 0.8904 –0.2201 –0.5426 –0.8438
(b). Matrix V
1.2162 –0.4071 –0.3653 1.0886
–2.9202 4.7438 5.8859 –5.3748
2.6126 –1.5675 –0.7282 1.8105
2.1153 –0.9591 –1.7492 3.2573
(c). Objective function value
0.5081
0.3071
0.2825
0.2885
(d). Updated population matrix.
0.374 –0.4483 0.5789 –0.2446 0.4143 –0.3346 –0.5415 0.7078
0.4155 –0.2869 0.2628 –0.1594 0.1241 –0.1853 –0.4904 –0.1202
0.4403 –0.687 0.6725 –0.2272 0.3875 –0.7813 –0.8993 0.7274
0.1205 –0.3395 0.5826 0.1062 0.6029 –0.5409 –0.7465 0.0543
(e). Updated matrix V.
2.4709 –1.8473 –0.9261 2.0897
4.0221 –3.0046 –2.5582 3.8879
2.6126 –1.5675 –0.7282 1.8105
2.9006 –1.962 –1.4786 2.8377
(f). Updated objective function value
0.3542
0.4981
0.2825
0.2649
(g). Distance from blackhole.
0.0893
0.2332
0.0176
0
(h). Next generation population matrix.
–0.7556 0.3423 0.1991 –0.888 –0.8873 –0.6949 –0.9607 –0.1296
0.6644 0.2347 0.0402 0.7277 –0.8046 0.8161 –0.7839 0.0339
–0.7136 0.1187 –0.9908 0.5333 0.6974 0.8336 0.9739 0.0102
0.1205 –0.3395 0.5826 0.1062 0.6029 –0.5409 –0.7465 0.0543

4.3. DDoS attack detection system

Figure 3 represents the block diagram of the proposed DDoS attack detection system. It has two major
components: preprocessor, and classifier. All the incoming service requests are applied to the preprocessor. It
constructs samples from these requests. The samples are formed in groups. A group of samples is created for
incoming traffic collected during each period t. The important features from a request packet are extracted.
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These features are used to predict a request as a normal request or attack. Some feature values are symbolic
constant and they are replaced with numerical values. Normalization is also performed, which scales feature
values in [0,1]. Suppose a feature a has maximum value amax and minimum value amin in all the samples,
then normalized value of ith sample is calculated by Eq. (8).

ainorm =
ai − amin

amax − amin
(8)

Where, ai is the value of ith sample for feature a. The Classifier classifies samples received from
preprocessor into attack samples or normal samples. We used our proposed technique BH-ELM as a classifier.
In this technique, first, training is performed using training data. The training data contains samples with
known type. Let the training data has samples of the form (xi, ti) . Where, xi = [xi1, xi2, , xin] represents n
features of the samples. And, ti = [1, 0] or ti = [0, 1] represents type of sample. If ti = [1, 0] , sample belongs
to attack class and if ti = [0, 1] , then sample belongs to normal class.

After training, it is used to classify incoming requests as either attack or normal. Suppose, it receives
samples from preprocessor of the form xi = [xi1, xi2, , xin] . Then, it generates output for each sample of the
form oi = [1, 0] or oi = [0, 1] . If the output oi = [1, 0] , it means the sample belongs to attack category. If the
output oi = [0, 1] , then sample belongs to normal category.

Preprocessor Classifier

Training data

Attack sample

Cloud server

Service requests
Yes

No

Drop request
Samples

Figure 3. Proposed DDoS attack detection system.

5. Experimental results and discussions

Several experiments have been performed to evaluate the performance of the proposed technique on a PC with
Windows 10 operating system, Intel Core i5 processor, and 16 GB memory. For implementation, MATLAB
(MathWorks, Inc., Natick, MA, USA) is used.

5.1. Datasets

Four benchmark datasets namely NSL KDD [11], ISCX IDS 2012 [12] , CICIDS2017 [49], and CICDDoS 2019
[50] have been used in experiments. These datasets have 41, 19, 84, and 87 features, respectively. All the features
of these datasets are used for experimental purposes. In all the datasets, only DoS/DDoS attack samples are
considered. Further details about these datasets are given in Table 2.
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Table 2. Datasets information.

Dataset name Number of features
Number of samples
Training Testing
Normal Attack Total Normal Attack Total

NSL KDD 41 10000 10000 20000 2500 2500 5000
ISCX IDS 2012 19 9600 9600 19200 2400 2400 4800
CICIDS2017 84 750 750 1500 500 500 1000
CICDDoS2019 87 875 875 1750 375 375 750

5.2. Performance metrics
For evaluating the performance of our proposed technique, accuracy, sensitivity, and specificity metrics are used.
These are defined and shown by equations (9), (10) and (11), respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (9)

Sensitivity =
TP

TP + FN
× 100 (10)

Specificity =
TN

FP + TN
× 100 (11)

Where, TP=number of true positives, which is defined as the number of samples that belong to the
attack and correctly identified by the classifier. TN=number of true negatives, which is defined as the number
of samples that belong to normal and correctly identified by the classifier. FP=number of false positives, which
is defined as the number of samples that belong to normal but incorrectly identified as an attack by the classifier.
FN=number of false negatives, which is defined as the number of samples that belong to attack but incorrectly
identified as normal by classifier.

5.3. Performance evaluation
To evaluate the performance of the proposed technique (BH-ELM), we used the sigmoid activation function
for the hidden layer. The initial population size (IPsize) is taken as 32. The number of neurons (l) is varied
from 100 to 1000 in the steps of 100 for NSL KDD, and from 10 to 100 in steps of 10 for the remaining
datasets. For each calculated metric, the experiment is repeated 50 times, and the average is taken. The best
accuracy achieved by BH-ELM in the above range of neurons for NSL KDD, ISCX IDS 2012, CICIDS2017, and
CICDDoS2019 is 99.23%, 92.19%, 99.50%, and 99.80%, respectively. The sensitivity and specificity achieved
for these datasets are 99.21%, 86.10%, 100%, 99.80%, and 99.68%, 100%, 99.20%, 99.80%, respectively. Using
the same parameters we perform experiments with ELM and ANN trained with blackhole optimization (BH-
ANN). We also perform experiments with backpropagation ANN (BP-ANN). Then, the results of BH-ELM are
compared with BP-ANN, ELM, and BH-ANN as shown in Table 3. It is observed from the table that BH-ELM
shows the highest detection accuracy with all datasets. It also shows the highest or same sensitivity and the
highest specificity (except for DDoS 2019 dataset).
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Table 3. Performance of the proposed technique.

Dataset Technique Accuracy Sensitivity Specificity
(%) (%) (%)

NSL KDD

ELM 98.90 98.90 98.45
BH-ANN 95.81 94.90 98.09
BP-ANN 97.10 96.20 97.74
BH-ELM(proposed) 99.23 99.21 99.68

ISCX IDS 2012

ELM 90.80 82.54 99.68
BH-ANN 90.38 81.21 99.50
BP-ANN 90.37 80.74 99.79
BH-ELM(proposed) 92.19 86.10 100

CICIDS 2017

ELM 98.90 100 97.70
BH-ANN 92.60 100 86.70
BP-ANN 98.60 100 98.00
BH-ELM(proposed) 99.50 100 99.20

CICDDoS 2019

ELM 99.70 99.70 100
BH-ANN 99.20 99.20 99.00
BP-ANN 99.50 99.70 99.99
BH-ELM(proposed) 99.80 99.80 99.80

5.4. Discussion

The performance of BH-ELM is compared with BP-ANN, ELM, and BH-ANN using all metrics for the entire
range of neurons. The comparison for accuracy, sensitivity, and specificity is shown by Figures 4(a)–4(d), Figures
5(a)–5(d), and Figures 6(a)–6(d), respectively. The following observations about BH-ELM are made from the
figures. Using NSL KDD initially shows a good improvement in accuracy with the number of neurons; however,
later only a small improvement is observed. Using ISCX IDS 2012 dataset, accuracy increases with the number
of neurons, attains a maximum value, and then starts decreasing, so it shows a zigzag. The accuracy shows a
zigzag curve with the number of neurons using CICIDS2017 dataset. For CICDDoS2019 dataset, accuracy starts
with a high value, then decreases. After that, it shows zigzag with the number of neurons. Using NSL-KDD,
sensitivity increases with the number of neurons in the entire range. With ISCX IDS 2012, sensitivity starts
with a high value, then it starts decreasing, and again increases, and then shows zigzag. Using CICIDS 2017,
sensitivity remains almost constant in the entire range. Using CICDDoS2019, sensitivity starts with a high
value, then decreases. After that, it shows zigzag with the number of neurons. With NSL-KDD, specificity
increases with the number of neurons in the entire range. With ISCX IDS 2012, specificity remains almost
constant initially, it shows zigzag later. With CICIDS2017, specificity shows a zigzag. For CICDDoS2019,
specificity remains almost constant for all values of neurons. The conclusion about the number of neurons (l)
can be made as follows: A higher value for NSL KDD, a lower value for CICDDoS2019, and a medium value
for ISCX IDS 2012, CICIDS2017 is favorable for high accuracy.

The training time comparison of BH-ELM with ELM, BH-ANN, and BP-ANN is shown by Figures 7(a)–
8(d). Figure 7(a) shows time comparison for NSL KDD, Fig 7(b) for ISCX IDS 2012, Figure 7(c) for CICIDS
2017, and Figure 7(d) for CICDDoS 2019 datasets, respectively. It is observed from the figures that BH-ELM
requires more training time than all other techniques. The reason behind this is due to the hybrid nature of
BH-ELM technique, which requires more training time than other proposed techniques having a single model.
So, we have achieved higher detection accuracy than other techniques on the cost of training time. BH-ELM is
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more suitable and useful where detection accuracy is more important than training time. At last, the accuracy
of BH-ELM is compared with other state-of-the-art techniques in Table 4. The comparison is based on the
results of NSL KDD dataset. The reason behind this choice is the wide usage of this dataset in the intrusion
detection, and DDoS attack detection research works.

Number of neurons (l)

100 200 300 400 500 600 700 800 900 1000
90

92

94

96

98

100
BP-ANN ELM BH-ANN BH-ELM

Number of neurons (l)

10 20 30 40 50 60 70 80 90 100
89

90

91

92

93
BP-ANN ELM BH-ANN BH-ELM

Number of neurons (l)

10 20 30 40 50 60 70 80 90 100
75

80

85

90

95

100
BP-ANN ELM BH-ANN BH-ELM

Number of neurons (l)

10 20 30 40 50 60 70 80 90 100
97

97.5

98

98.5

99

99.5

100
BP-ANN ELM BH-ANN BH-ELM

Figure 4. Detection accuracy of the proposed technique with different datasets

6. Conclusion and future scope
In this research paper, a solution for DDoS attack detection problem in cloud computing has been proposed.
Firstly, a hybrid machine learning technique has been proposed, which combines the ELM model and blackhole
optimization algorithm. Then, the proposed technique is used to design a system for detecting DDoS attacks
in cloud computing. Various experiments have been performed using four benchmark datasets to evaluate
the performance of the proposed technique. The proposed technique detects the attacks with an accuracy
of 99.23%, 92.19%, 99.50%, and 99.80% using NSL KDD, ISCX IDS 2012, CICIDS2017, and CICDDoS2019
datasets, respectively. Performance comparison of our proposed technique with other techniques such as ELM,
backpropagation ANN, and ANN trained with blackhole optimization shows that the proposed technique detects
attacks with better accuracy than these techniques. In the future, we will work on reducing the training time
of the proposed technique without affecting its detection accuracy.
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Figure 5. Sensitivity of the proposed technique with different datasets.
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Figure 6. Specificity of the proposed technique with different datasets.
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Figure 7. Training time of the proposed technique with different datasets.

Table 4. Detection accuracy comparison with other works (using NSL KDD dataset).

Work Detection
Accuracy (%)

De et al. [22] 93± 0.01
Sabar et al. [23] 85.69
Ji et al. [25] 96.67
Ashfaq et al. [26] 84.12
Yin et al. [27] 83.28
Vinayakumar et al. [28] 80.10
Yang et al. [29] 82.08
Javaid et al. [30] 88.39
Dash et al.[31] 95.26
Kushwah et al. [32] 98.73
Kushwah et al.[51] 99.18
Idhammad et al.[24] 98.23
Present work 99.23
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