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Abstract: In this study, we obtain a formula for the regularized trace formula for ”weighted” Sturm–Liouville equation
with point δ - interaction. At the begining, for the correct determination of solutions of analyzed equation at the point
of discontinuty, the matching conditions are required. As a result, an equation is derived for the eigenvalues of the
differential operator given in this study.
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1. Introduction
The theory of regularized trace of ordinary differential operators has a long history. Gelfand and Levitan
[6] first obtained the trace formula for the Sturm–Liouville differential equation. After this study, several
mathematicians were interested in developing trace formulas for different differential operators. The current
situation of this subject and studies related to it are presented in the comprehensive survey paper [13]. The
regularized trace for differential equations are found in [4, 5, 7–9]. However, there is a small number of words on
the regularized trace for Sturm–Liouville operators with singular potentials (see [14–16]). Note that, the trace
formulas have applications in the approximate calculation of the eigenvalues of the related operator [4, 13].

We consider the boundary value problem (BVP) for the differential equation

ly := −y′′ + q (x) y = λy, x ∈
(
0,
π

2

)
∪
(π
2
, π
)
, (1.1)

with the boundary conditions
U (y) := y′ (0) = 0, V (y) := y (π) = 0, (1.2)

and conditions at the point x = π
2 ,

I (y) :=

{
y
(
π
2 + 0

)
= y

(
π
2 − 0

)
≡ y

(
π
2

)
,

y′
(
π
2 + 0

)
− y′

(
π
2 − 0

)
= −αλy

(
π
2

)
,

(1.3)

where q (x) is real-valued function in W 1
2 (0, π) and α > 0 ; λ is spectral parameter.
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Notice that, we can understand problem (1.1),(1.3) as studying the equation

−y′′ + q (x) y = λρ (x) y, x ∈ (0, π) , (1.4)

when ρ (x) = 1+αδ
(
x− π

2

)
, where δ (x) is the Dirac function (see [1]). In this aspect, various inverse spectral

problems for the equation (1.4) have been investigated in [12].
In the present paper, after construction of the Hilbert space related to (1.4), we obtain the formula of

the first order regularized trace for ”weighted” Sturm–Liouville equation with point δ - interaction.

2. Construction of the Hilbert space related to the problem and some properties of its spectral
characteristics

In the Hilbert space ℵ := L2 [0, π]⊕ C of two component vectors, we define an inner product by

⟨f, g⟩ℵ :=

π∫
0

f1 (x) g1 (x) dx+
1

α
f2g2 (2.1)

for

f =

(
f1 (x)

f2

)
, g =

(
g1 (x)

g2

)
,

where f1 (x) , g1 (x) ∈ L2 (0, π) , f2, g2 ∈ C . In the Hilbert space ℵ we define the operator L

L : ℵ → ℵ

with domain

D (L) :

{
f ∈ ℵ

∣∣∣∣ f1, f ′1 ∈ AC
((
0, π2

)
∪
(
π
2 , π

))
, lf1 ∈ L2

[
(0, π) \

{
π
2

}]
,

f2 = αf1
(
π
2

)
, U (f1) = V (f1) = 0

}
and operator rule

L (f) :=

(
lf1

f ′1
(
π
2 − 0

)
− f ′1

(
π
2 + 0

)).
Here AC (.) denotes the set of all absolutely continuous functions on related interval. In particular, those
functions will have limits at the point π

2 .
It is clear that the eigenvalues of the operator L and the BVP (1.1)-(1.3) are same and eigenfunctions

of (1.1)-(1.3) coincide with the first component of corresponding eigenelements of the operator L .

Theorem 2.1 The operator L is symmetric.

Proof Let f, g ∈ D (L) . From the inner product defined in (2.1), we obtain

⟨Lf, g⟩ℵ − ⟨f, Lg⟩ℵ =
[
W
(
f, g;

π

2
− 0
)
−W (f, g; 0)

]
+
[
W (f, g;π)−W

(
f, g;

π

2
+ 0
)]

+
1

α

[
αW

(
f, g;

π

2
+ 0
)
− αW

(
f, g;

π

2
− 0
)]
,

1768



MANAFOV/Turk J Math

where W (f, g;x) = f (x) g′ (x)− f ′ (x) g (x) is the wronskian of the functions f and g . Since f and g satisfy
the same boundary conditions (1.2) and from the conditions at the point x = π

2 , we obtain ⟨Lf, g⟩ℵ = ⟨f, Lg⟩ℵ
for f, g ∈ D (L) . So L is symmetric. 2

Corollary 2.2 The function W (f, g;x) is continuous on (0, π) .

Corollary 2.3 All eigenvalues of the problem (1.1)-(1.3) are real and if λ1 and λ2 are two different eigenvalues
of the problem (1.1)-(1.3), the corresponding eigenfunctions y1 (x) and y2 (x) are orthogonal in the sense of

π∫
0

y1 (x) y2 (x) dx+
1

α
y1

(π
2

)
y2

(π
2

)
= 0.

Let φ (x, λ) , ψ (x, λ) , C (x, λ) , S (x, λ) be solutions of (1.1) under the initial conditions

C (0, λ) = S′ (0, λ) = φ (0, λ) = ψ′ (0, λ) = 1,

C ′ (0, λ) = S (0, λ) = φ′ (0, λ) = ψ (π, λ) = 0,

and under the conditions (1.3).
For each fixed x , the functions φ (x, λ) , ψ (x, λ) , C (x, λ) , S (x, λ) are entire in λ . Clearly,

U (φ) = φ′ (0, λ) = 0, V (ψ) = ψ (π, λ) = 0.

Denote
∆(λ) =W (φ,ψ;x) . (2.2)

By virtue of Corollary 2.2 and the Ostrogradskii–Liouville theorem (see [3], ∆(λ) does not depend on x . The
function ∆(λ) is called characteristic function of L . Substituting x = 0 and x = π into (2.2), we get

∆(λ) = V (φ) = U (ψ) . (2.3)

The function ∆(λ) is entire in λ , and it has an at most countable set of zeros {λn}n=1,2,3,... .

Now, consider the solution φ (x, λ) . Let C0 (x, λ) and S0 (x, λ) be smooth solutions of (1.1) on the
interval (0, π) under the initial conditions C0 (0, λ) = S′

0 (0, λ) = 1, C ′
0 (0, λ) = S0 (0, λ) = 0 . Then,

C (x, λ) = C0 (x, λ) , S (x, λ) = S0 (x, λ) , x <
π

2
, (2.4)

C (x, λ) = A1C0 (x, λ) +B1S0 (x, λ) ,
S (x, λ) = A2C0 (x, λ) +B2S0 (x, λ) ,

x >
π

2
, (2.5)

where
A1 = 1 + αλC0

(
π
2 , λ

)
S0

(
π
2 , λ

)
, B1 = −αλ

[
C0

(
π
2 , λ

)]2
,

A2 = αλ
[
S0

(
π
2 , λ

)]2
, B2 = 1− αλC0

(
π
2 , λ

)
S0

(
π
2 , λ

)
.

(2.6)

Let λ = k2 . It is easy to verify that the function C0 (x, λ) satisfies the following integral equation:

C0 (x, λ) = cos kx+

x∫
0

sin k (x− t)

k
q (t)C0 (t, λ) dt. (2.7)
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Solving the equation (2.7) by the method of successive approximations, we obtain

C0 (x, λ) = cos kx+ sin kx
2k

x∫
0

q (t) dt+ cos kx
4k2 {q (x)− q (0)

− 1
2

[
x∫
0

q (t) dt

]2
}+O

(
1
k3 exp (|Imk|x)

)
,

(2.8)

Analogously,

S0 (x, λ) =
sin kx

k − cos kx
2k2

x∫
0

q (t) dt+ sin kx
4k2 {q (x) + q (0)

− 1
2

[
x∫
0

q (t) dt

]2
}+O

(
1
k4 exp (|Imk|x)

)
,

(2.9)

By virtue of (2.6), (2.8) and (2.9),

A1 = α
2 k sin kπ + 1− α

2 cos kπ

π
2∫
0

q (t) dt

+ α
4k sin kπ

q (π2 )−
[

π
2∫
0

q (t) dt

]2+O
(

1
k2

)
,

B1 = −α
2 k

2 (1 + cos kπ)− α
2 k sin kπ

π
2∫
0

q (t) dt− α
4

[
q
(
π
2

)
+ q (0)

]
−α

4 cos kπ

q (π2 )− q (0)−

[
π
2∫
0

q (t) dt

]2+O
(
1
k

)
,

A2 = α
2 (1− cos kπ)− α

2k sin kπ

π
2∫
0

q (t) dt+O
(

1
k2

)
,

B2 = −α
2 k sin kπ + 1 + α

2 cos kπ

π
2∫
0

q (t) dt+O
(
1
k

)
.

Since φ (x, λ) = C (x, λ) , we calculate using (2.4)–(2.9)

φ (x, λ) = cos kx+ sin kx
2k

x∫
0

q (t) dt+ cos kx
4k2 {q (x)− q (0)

− 1
2

[
x∫
0

q (t) dt

]2
}+O

(
1
k3 exp (|Imk|x)

)
, x < π

2 ,

(2.10)

φ (x, λ) = −α
2 k sin kx+ α

2 k sin k (π − x) + cos kx

[
1 + α

4

x∫
0

q (t) dt

]
+α

4 cos k (π − x)

[
x∫
π
2

q (t) dt−
π
2∫
0

q (t) dt

]
− α

8k sin kx{q (x) + 2q
(
π
2

)
−q (0)− 1

2

[
x∫
0

q (t) dt

]2
} − α

8k sin k (π − x) {q (x) + 2q
(
π
2

)
−q (0)− 1

2

[
x∫
π
2

q (t) dt−
π
2∫
0

q (t) dt

]2
}+O

(
1
k2 exp (|τ |x)

)
, x > π

2 .

(2.11)

1770



MANAFOV/Turk J Math

It follows from (2.3) and (2.11) that

∆(λ) = −α
2

(
k sin kπ − w1 cos kπ + w2 − w3

sin kπ

k

)
+O

(
1

|k|2

)
, (2.12)

where

w1 = 2
α + 1

2

π∫
0

q (t) dt, w2 = 1
2

[
π
2∫
0

q (t) dt−
π∫
π
2

q (t) dt

]
,

w3 = − 1
4

{
q (π) + 2q

(
π
2

)
− q (0)− 1

2

[
π∫
0

q (t) dt

]2}
.

(2.13)

Using (2.12) and Rouche’s theorem, by the well-known method (see [2]) for n→ ∞ ,

kn = n+ o (1) .

Analogously, by using Rouche’s theorem, one can prove that, for sufficiently large values of n , every circle
σn (δ) = {k : |k − n| ≤ δ}contains exactly one zero of ∆(λ) . Since δ > 0 is arbitrary, we must have

kn = n+ εn, εn = o (1) , n→ ∞. (2.14)

Since kn are zeros of ∆(λ) , from (2.12), we get

n. sin εnπ −
(
w1 cos εnπ + (−1)

n−1
w2

)
+ υn = 0, (2.15)

where υn = n. sin εnπ + o (exp (|τn|)) , τn = Imkn . Hence, sin εnπ = o
(
1
n

)
, that is εn = o

(
1
n

)
. Using (2.15),

we get more precisely

εn =
1

πn

(
w1 + (−1)

n−1
w2

)
+ o

(
1

n

)
. (2.16)

Substituting (2.16) into (2.14), we get

kn = n+
1

πn

(
w1 + (−1)

n−1
w2

)
+
ξn
n
, (ξn) ∈ l2. (2.17)

3. Trace of the problem
The series

sλ :=

∞∑
n=1

[
λn − n2 − 2

π

(
w1 + (−1)

n−1
w2

)]
(3.1)

converges and is called the regularized trace of first order for the problem (1.1)-(1.3). The goal of this paper is
to find its sum.

Theorem 3.1 Suppose that q (x) ∈W 1
2 (0, π) , then the following first order regularized trace formula holds

sλ = w3 −
2w1

π
− w2

1

2
,

where wi (i = 1, 3) satisfy the relations (2.13).
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Proof Since ∆(λ) is an entire function of order 1
2 , from Hadamard’s theorem (see, [10], Section 4.2), using

(2.12) we obtain:

∆(λ) = A

∞∏
n=1

(
1− λ

λn

)
, (3.2)

where A is a certain constant to be determined below.
Let λ = −µ2 . We calculate the sum sλ of the series (3.1) by comparing the asymptotic expressions from

formulas (2.12) and (3.2) as µ→ ∞ . From the (3.2), we have:

∆
(
−µ2

)
=

(
λ1 + µ2

)
sinhµπ

µπ
CΦ(µ) , (3.3)

where

C =
A

λ1

∞∏
n=2

n2

λn
, Φ(µ) =

∞∏
n=2

(
1− n2 − λn

µ2 + n2

)
.

We study the asymptotic behaviour of the function Φ(µ) for large positive µ . For this, we need the following
formulas (see, [11]):

∞∑
j=2

1

j

∞∑
n=1

∣∣n2 − λn
∣∣j

(µ2 + n2)
j
= O

(
1

µ3

)
, (3.4)

∞∑
n=1

1

µ2 + n2
=
π cothπµ

2µ
− 1

2µ2
=

π

2µ
− 1

2µ2
+O (exp (−2πµ)) , (3.5)

and since sup
n

∣∣∣λn − n2 − 2
π

(
w1 + (−1)

n−1
w2

)∣∣∣n2 <∞ ,

1

µ2

∞∑
n=1

(
λn − n2 − 2

π

(
w1 + (−1)

n−1
w2

)) n2

µ2 + n2
≤ 1

µ2

( ∞∑
n=1

ζ2n

) 1
2
( ∞∑

n=1

1

µ2 + n2

) 1
2

= O

(
1

µ3

)
. (3.6)

From (3.4), (3.5) and (3.6) we calculate:

lnΦ (µ) =
∞∑

n=2
ln
(
1− n2−λn

µ2+n2

)
= −

∞∑
n=2

∞∑
j=1

1
j

(
n2−λn

µ2+n2

)j
= w1

µ + 1
µ2

(
sλ + 2w1

π

)
+O

(
1
µ3

)
.

Therefore, we get

Φ(µ) = 1 +
w1

µ
+

1

µ2

(
sλ +

2w1

π
+
w2

1

2

)
+O

(
1

µ3

)
,

and from (3.3)

∆
(
−µ2

)
=

1

2
ceµπ

{
µ+ w1 +

1

µ

(
sλ +

2w1

π
+
w2

1

2

)}
+O

(
1

µ2

)
. (3.7)
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We now study the asymptotic behaviour of the function ∆
(
−µ2

)
= φ

(
π,−µ2

)
for large negative λ = −µ2 .

Then, according to formula (2.11), we have

∆
(
−µ2

)
=

1

4
αeµπ

{
µ+ w1 +

1

µ
w3

}
+O

(
1

µ2

)
. (3.8)

It follows from the equalitites (3.3), (3.7), (3.8) and comparing the coefficients of µ , we obtain

c =
α

2
, sλ = w3 −

2w1

π
− w2

1

2
,

completing the proof of Theorem 3.1. 2

4. Numerical example
The boundary value problem

−y′′ = λ
(
1 + αδ

(
x− π

2

))
, x ∈ (0, π) , (4.1)

with the boundary conditions
y′ (0) = y (π) = 0, (4.2)

is a special case of and conditions at the point x = π
2 ,

{
y
(
π
2 + 0

)
= y

(
π
2 − 0

)
≡ y

(
π
2

)
,

y′
(
π
2 + 0

)
− y′

(
π
2 − 0

)
= −αλy

(
π
2

)
,

(4.3)

is a special case of problem (1.1)-(1.3) when q (x) = 0 .
The first order regularized trace formula for the problem (4.1), (4.2) may be written by

sλ :=

∞∑
n=1

(
λn − n2 − 4

πα

)
= − 4

πα
− 2

α2
.
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