
384

http://journals.tubitak.gov.tr/zoology/

Turkish Journal of Zoology Turk J Zool
(2021) 45: 384-394
© TÜBİTAK
doi:10.3906/zoo-2102-32

Compatibility of entomopathogenic nematodes with plant extracts and post-exposure 
virulence test under laboratory condition

Adeola Abiola OSO1
, Tshimangadzo RAMAKUWELA2

, Anofi Omotayo Tom ASHAFA1,*
1Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Phuthaditjhaba,

Republic of South Africa
2Insect Pathology Unit, Agricultural Research Council- Small Grain, Bethlehem, South Africa

* Correspondence: ashafaaot@ufs.ac.za

1. Introduction
Alepidea amatymbica and Elephantorrhiza elephantina 
are medicinal plants possessing bioactive compounds 
such as terpenes, diterpenoids, tannins, flavonoids and 
anthocyanidins (Wintola and Afolayan, 2014; Mpofu 
et al., 2014). Despite the presence of these compounds 
in the two plants, their insecticidal potential is scarcely 
explored. The insecticidal potential of A. amatymbica have 
been implicated in the control of aphids and cutworms of 
cabbage (Skenjana and Poswal, 2018) and stalk borers of 
maize (Skenjana, 2018) among the smallholding farming 
communities in the Eastern Cape, South Africa.

Entomopathogenic nematodes are soil-inhabiting 
roundworms with proven biocidal properties against soil 
and above-ground pests (Laznik et al., 2010; Lacey and 
Georgis, 2012; Mahmoud, 2014a&b). The EPNs from 
the families of Steinernematidae and Heterorhabditidae 
are mutually associated with bacteria of the Xenorhabdus 
and Photorhabdus genera, respectively (Akhurst, 1982; 

Forst and Clarke 2002; Boemare et al., 2003; Ryssa et al., 
2011). The steinernematid and heterorhabditid nematodes 
and their symbiont bacteria function as highly virulent 
insect pathogens (Gaugler, 2002). During host infection, 
the infective juvenile (IJ) carrying the symbiont bacteria 
finds and releases the bacterial symbionts into the 
haemocoel, causing septicemia and producing a multitude 
of insecticidal toxins and secondary metabolites killing 
the insect (Abdel-Razek, 2003; Ciche, 2007). The EPNs 
are eco-friendly, relatively inexpensive to culture, can 
be applied with most standard agricultural equipment, 
may persist for many years in the soil depending on the 
prevailing condition, can infect numerous insect species, 
and they are compatible with numerous biological and 
chemical pesticides (Akhurst and Smith, 2002; Askary 
et al., 2012; Shapiro-ilan et al., 2012; Ramakuwela et al., 
2016). 

The combination of two control agents against a given 
pest can result in antagonistic, additive or synergistic effects 
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on speed of kill and mortality of the pest (Koppenhöfer and 
Grewal, 2005). Antagonistic effects of phenolic compounds 
in some plant extract, particularly on the developmental 
stages of Heterorhabditis bacteriophora (Poinar), have been 
reported (Santhi et al., 2017&2019). In order to optimize 
their potential, EPNs have been reported for their additive 
and synergistic interactions with other pest management 
tactics in integrated pest management (IPM) programs 
(Laznic et al., 2012; Shapiro-Illan et al., 2017). Guo et al. 
(2016) also reported a synergistic effect of the combination 
of H. bacteriophora (Poinar) with Chlorantraniliprole and 
Imidacloprid on the second instar larvae of Holotrichia 
oblita Faldermann (Coleoptera: Scarabaeidae). Some 
plant extracts alongside plant essential oils have also been 
compared with EPNs for compatibility and virulence 
against some insect pests. Shamseldean et al. (2013) 
investigated the compatibility of H. indica (Poinar) and 
H. bacteriophora with plant oils or plant extracts against 
grasshopper, Heteracrir littoralis (Orthoptera: Acrididae) 
at different inoculum levels. They reported that the 
grasshopper was susceptible to the tested EPN species, 
either combined with plant oils or plant extracts. In the 
same vein, EPN species, combined with neem pellets, were 
reported with additive effect on western flower thrips, 
Frankliniella occidentalis (Otieno et al., 2015). 

Based on documented information on the interactions 
between EPNs and plant extracts, we investigated 
compatibility between two medicinal plants (Alepidea 
amatymbica and Elephantorrhiza elephantina) and 
EPNs isolated in South Africa. Furthermore, we tested 
virulence of nematode species post-exposure to different 
concentrations of the plant extracts against T. molitor.  

2. Materials and methods
2.1. Plant collection and extraction
The corms and roots of Alepida amatymbica (Larger 
Tinsel Flower) and Elephantorrhiza elephantina (Elephant 
root) respectively were collected at Monontsha around 
Qwaqwa, Free State Province, South Africa. The identities 
of the two plants were confirmed and authenticated at the 
Department of Plant Sciences, University of the Free State, 
Qwaqwa campus. Voucher specimens OsoMed/01/2019/
QwHB and OsoMed/02/2019/QwHB were prepared and 
deposited in Qwaqwa Herbarium. The corms and roots 
were adequately washed and sliced. They were aerated for 
three weeks and later ground to powder using an electric 
powered blender (Nanning Mainline Food Machinery 
Company Ltd, China). Fifty grams (50 g) of each powdered 
plant material was soaked individually in 500 mL of water 
and ethanol (99%) in separate conical flasks. This was then 
placed on a shaker at a speed of 120 rpm and kept for 24 
h at room temperature (Handa et al. 2008). The mixture 
was filtered with Whatman No: 1 filter paper (Sigma-

Aldrich Corp., South Africa). The filtrate from ethanol was 
concentrated at 40 °C using rotary evaporator, while that 
of water was evaporated in a water bath at 45 °C for 2 days. 
The extracts were later kept in the refrigerator at 4 °C until 
when needed for bioassays.
2.2. Source of EPN strains
Three native species of Steinernema [Steinernema khoisanae 
(Nguyen, Malan & Gozel), Steinernema biddulphi n. sp. and 
Steinernema innovation (Çimen, Lee, Hatting and Stock)] 
and two species of Heterorhabditis (H. bacteriophora 
and Heterorhabditis sp. SGI 244) from the EPN culture 
collection at the Agricultural Research Council –Small 
Grain (ARC-SG) used for the study were propagated in 
the larvae of Galleria mellonella (Linnaeus, Lepidoptera: 
Pyralidae) according to Kaya and Stock (1997). Larvae of 
G. mellonella were reared on a diet described by Mohamed 
and Coppel (1983) at ARC-SG (Bethlehem, South Africa).  
Infective juveniles were collected in modified White traps 
and stored (maximum for two weeks) in the cold room at 
10 °C until they were needed for the experiment.
2.3. Source of T. molitor and Maintenance
Tenebrio molitor was reared in a colony at ARC-SG, 
Bethlehem. The insect culture was reared in a clear 
plastic container covered with a lid which allowed for 
air circulation through gauze. The container was filled to 
about 2–3 inches deep with bran and potato halves as a 
source of moisture for the larvae. Only last instars were 
collected and used in bioassays.
2.4. Compatibility of EPNs with plant extracts
The experimental dishes (35 mm Petri dishes) were 
arranged in completely randomized design (CRD) of 
2×5×5 factors. The 2×5×5 factors were solvent (ethanol and 
water), extract concentration (1%, 0.75%, 0.50%, 0.25% 
and 0.125%) and EPN strains (S. khoisanae, S. biddulphi, S. 
innovationi, H. bacteriophora and Heterorhabditis sp. SGI 
244). There were 12 treatments per strain (with two control, 
distilled water and ethanol) adding up to 60 treatment 
samples per replicate. The ethanol control was prepared 
at a concentration of 2% (Katiki et al., 2011). The plant 
extracts were reconstituted in their original solvent, and 
the stock solution was further diluted into five descending 
concentrations (1%, 0.75%, 0.50%, 0.25% and 0.125%) 
based on weight/volume. Nematode concentration of 1000 
IJs/ mL in distilled water was prepared for each strain and 
1mL of the nematode suspension was pipetted into 35 
mm Petri dishes containing 2 mL of the extract. Infective 
juveniles in the distilled water served as control. The 
dishes were incubated in the dark inside a growth chamber 
at 25 ± 1 °C for 72 h. Nematode viability was assessed post 
incubation by examining a sample of 100 IJs loaded in 
a nematode counting slide (Kyron laboratory, Benrose, 
South Africa) (Josende et al., 2019) under a dissection 



OSO et al. / Turk J Zool

386

microscope, counting dead and alive IJs to calculate 
percentage survival (Kaya and Stock, 1997). To ensure that 
no live IJs were missed, non-moving juveniles were probed 
gently with a nylon brush bristle (Shapiro-Ilan et al., 2009). 
The experiment was repeated thrice at different times with 
a fresh batch of EPNs and plant extracts.
2.5. Virulence assay  
The nematode suspension after the 72-h count was 
introduced into Eppendorf tubes and centrifuged at 
3000 rpm for 4 min to allow the IJs to form a pellet. The 
supernatant was pipetted out, and the remaining nematode 
pellet was suspended in 1 mL distilled water. This was 
used to infect 10 T. molitor larvae in 90 mm Petri dishes 
lined with filter paper disc by pipetting the nematode 
suspension followed by introducing the larvae immediately 
(Ramakuwela et al., 2019). Control treatments received 1 
mL distilled water only. The dishes were placed in zip-lock 
bags to conserve moisture and incubated at 25 ± 1 °C. There 
were 12 dishes per treatment and 60 dishes per replicate. 
Mortality against T. molitor was assessed by counting the 
number of dead larvae after 48 h post infection (Shapiro-
Ilan et al., 2015). Potential differences in innate nematode 
virulence among the strains were corrected by applying a 
modified Schneider-Orelli’s formula (Püntener, 1981) to 
larval mortality in the exposed treatments compared with 
the control treatment. The formula used was [(Mortality % 
in treatment – Mortality % in the control) / 100 – Mortality 
% in the control] *100. Cadavers were transferred to white 
traps to allow nematode emergence to confirm nematode 
recycling. The experiment was repeated three times, with 
fresh batches of EPNs and plant extracts. 
2.6. Statistical analysis
Statistical analysis was performed using SAS 9.4 statistical 
software (SAS InstituteInc., Cary, NC, USA). All data 
were subjected to an analysis of variance (ANOVA). The 
standardized residuals showed an acceptable normal 
distribution (Shapiro and Wilk, 1965) with honestly 
significant difference value calculated as Tukey test at p ≤ 
0.05 (SAS 2015).

3. Results
3.1. Effect of extraction method and extracts 
concentrations on survival of the EPN strains 
The percentage survival of the EPN strains in aqueous 
extract of A. amatymbica was observed to be extraction 
method dependent. The percentage survival of the EPNs 
in aqueous extract at higher concentrations (0.5%–1%) 
was lower than the survival in ethanol extract of the 
same concentrations (F0.5 = 1.10a, 1.39e; df0.5 = 4a, 4e; P0.5 
= 0.4090a, 0.3052e) (Figure 1). At lower concentration 
levels of 0.25 and 0.125%, the EPNs in aqueous extract 
compared effectively with those in ethanol extract (P0.25 = 

0.9117a, 0.0565e). However, the percentage survival of the 
EPNs in the ethanol extraction method was not dependent 
on concentration. At a lower concentration of 0.125%, 
percentage survival was 99.3% (Heterorhabditis sp. SGI 
244), 89.7% (H. bacteriophora), 96.3% (S. biddulphi), 92.3% 
(S. khoisanae), and 81.3% (S. innovationi). Similarly, at a 
higher concentration of 1%, percentage survival was 93.5% 
(Heterorhabditis sp. SGI 244), 86% (H. bacteriophora), 
91.3% (S. biddulphi), 90% (S. khoisanae), and 79.3% (S. 
innovationi). 

In E. elephantina, there were no marked differences 
(P0.5 = 0.5885a, 0.6529e) in the percentage survival of the 
EPN strains subjected to either aqueous or ethanol extracts 
regardless of the concentrations (Figure 1). 

The percentage survival of the individual strain at 
different concentrations was concentration-dependent for 
the EPNs subjected to aqueous extracts of A. amatymbica. 
For S. khoisanae, lowest survival of 51% was observed in 
1% concentration with the highest survival of 83.3% in 
0.25% concentration. H. bacteriophora recorded the lowest 
percentage survival of 17.5% at 1% concentration and the 
highest of 88.3% at 0.125% concentration. The lowest 
percentages of 16%, 60% and 28% and highest percentages 
of 95.7% 88% and 80% were recorded for Heterorhabditis 
sp. SGI 244, S. biddulphi, and S. innovationi, at 1% and 
0.125% concentrations, respectively. However, for ethanol 
extracts of A. amatymbica, the percentage survival of the 
EPNs was not concentration dependent. 

In the case of E. elephantina plant, individual EPN 
strain was observed to compare effectively (PS.khoisane = 
0.7040a, 0.5821e; PH.bacteriophora = 0.8274a, 0.8591e; PH.spSGT244 
= 0.1129a, 0.5808e; PS.biddulphi = 0.5575a, 0.7897e; PS.innovationi = 
0.9843a, 0.9986e) at all the extracts doses as follows. For 
aqueous extract, S. khoisanae recorded highest survival 
(96%) at 0.25% with the lowest (88.7%) at 0.75%, H. 
bacteriophora and S. biddulphi had the highest (85.7% and 
94.5%) at 0.125 and 0.50% with lowest (78.3% and 88.3%) 
at 0.25 and 1%, respectively, Heterorhabditis sp. SGI 244 
had the highest (89.3%) at the 0.25% and lowest (84%) at 
0.75%, and S. innovationi had the highest (89.7%) at 1% 
and lowest (83.7%) at the 0.25%.  For ethanol extracts, 
S. khoisanae had highest survival (91.7%) at 0.50% with 
the lowest (88.7%) at 0.125%, H. bacteriophora had 
highest (85.7%) at 0.125% with lowest (76%) at 0.75%, 
Heterorhabditis sp. SGI 244 had highest (94%) at 1% with 
lowest (89.7%) at 0.125%, S. biddulphi had highest (94.7%) 
at 0.25% with lowest (89%) at 1%, and S. innovationi had 
highest (87.3%) at 1% with lowest survival (83.7%) at 0.5% 
concentration (Figure 2).
3.2. Virulence of EPN strains post incubation with plant 
extracts
The virulence of the entomopathogenic nematodes post 48 
h incubation as indicated by corrected T. molitor mortality 
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varied among the EPN strains and extract concentrations. 
It was interesting to note that mortality of T. molitor after 
exposure to IJs post incubation in different concentrations 
of aqueous extract of A. amatymbica showed that the IJs 
have low percentage survival compared effectively with 
those of higher percentage survival in some instances. 
H. bacteriophora at 0.125% plant extract concentration 
with 88% survival had 84% kill of T. molitor. The same 
strain at 1% plant extract concentration had a survival of 
18% but killed 75% of T. molitor larvae. The same trend 
was observed among the inoculum of individual strains 
Heterorhabditis sp. SGI 244 and S. innovationi used to 
infect T. molitor at the same concentration. However, for 
the ethanol extract of the same plant which gave high 
survival rates across different concentrations, mortality 
of T. molitor varied among the strains and the different 
concentrations (Table 1). 

For aqueous extract of E. elephantina, percentage 
survivals at different concentrations were high and 
subsequently their virulence except for S. khoisanae at 
0.125 and 1% concentrations with <50% kill against T. 
molitor (Table 2). Most of the EPN strains had over 50% 
kill against T. molitor at the different concentrations of 
ethanol extract of E. elephantina. However, Heterorhabditis 
sp. SGI 244 (at 0.125%), S. biddulpi (at 0.125 &0.75%) and 
S. khoisanae (at 0.125 & 0.50%) had less than 50% kill 
against T. molitor (Table 2).     

4. Discussion
This study has shown that the corm and root extracts of A. 
amatymbica and E. elephantina are compatible with EPN 
strains and exhibited virulence against T. molitor after 72 h 
post exposure. While they were impacted, some EPN strains 
can be tank-mixed with varying concentrations of these 
extracts as their survival and virulence were not affected. 
The percentage survival of the EPNs in A. amatymbica was 
dependent on extraction method and concentration of the 
extract used. Alepidea amatymbica may be reactive to the 
chemical constituents in aqueous solvent. Some plants are 
reported with ability to respond to physical and chemical 
stimuli, which are capable of triggering changes that could 
lead to a cascade of reactions (Sudha and Ravishankar, 
2002). However, the EPNs survival in E.  elephantina, 
was not dependent on extraction or concentration of 
the extract. The ethanol extraction method supported 
high percentage survival both at smaller and larger 
concentrations. Extraction solvent has been implicated 
with the efficiency of extraction protocol. This is because 
extraction solvents influence the extraction yield and the 
content of bioactive compounds; hence, they significantly 
affect the biological activity of the extract (Das et al., 2010; 
Lalitha and Jayanthi, 2012; Ngo et al., 2017).  

In consistent with our results, Okwute (2012) noted 
that alcoholic extracts were found to be more active than 
aqueous extract as most of the active ingredients are 
lipophilic and are, therefore, more readily extracted into 
an organic medium. Moreover, aqueous extracts have been 
reported to be made up of non-active components such 
as carbohydrates, organic acids, proteins and minerals 
(Wigmore et al. 2016). Even though the survival of the 
EPNs in full dose of the plant extract was negatively affected 
in A. amatymbica aqueous extraction, sub-lethal doses of 
the extract may still be applied with EPNs for effective pest 
control as suggested by Elizabeth et al. (2003). Sub-lethal 
dose may not necessarily kill the pest; however, they are 
capable of weakening the pest such that they stop or feed 
less, translating to reduced plant damage. Furthermore, 
the weakened pest may be more susceptible to the EPN. 
The authors acknowledge the possibility of declined 
IJ survival in plant extracts post 72 h (The maximum 
exposure time that was tested in the current study). For 
example, application of the mixture in soil may result 
in prolonged contact of the extracts and the nematodes 
leading to poor survival and viability. A total of 72 h is long 
enough for nematodes to have infected the host due to the 
fast-killing nature of the EPNs (Shapiro-Ilan et al., 2012). 
Alternatively, application rates of the nematodes may be 
increased to make up for possible loss of IJs.

All tested nematode strains were capable of killing and 
recycling in T. molitor following exposure to plant extracts. 
Heterorhabditis bacteriophora presented low percentage 
survival below 20% at a full dose of A. amatymbica in 
aqueous extraction. However, those surviving IJs were 
virulent to T. molitor with percentage mortalities of over 
60%.  High virulence of this strain could be attributed 
to their ability to infect host by chewing through the 
cuticle with a buccal tooth-like structure (Bedding and 
Molyneux, 1982). Similarly, the survival of S. feltiae in the 
pesticide Gnatrol decreased to 17% after 72 h incubation, 
but infectivity to Galleria mellonella larvae was above 50% 
and 62% (Elizabeth et al. 2003). Contrary to our study 
under a different source of stress, Shapiro-Ilan et al. (2015) 
observed severe impacts on virulence beyond viability 
after exposure of some EPNs to ultraviolet rays. This 
suggests that, in many cases, viability may remain high but 
virulence can be compromised.

The virulence against T. molitor in both the aqueous 
and ethanol extracts of A. amatymbica and E. elephantina 
was observed to be strain-specific and not inoculum 
concentration-dependent with comparable mortalities 
48 h post exposure. It has been established that different 
solvent extracts demonstrate differing inhibitory activities 
depending on the organism under study (Mpofu et al., 
2014; Seleshe and Kang, 2019). Motility and foraging 
strategy of the microorganisms are virulence factors 
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responsible for pathogenicity (Josenhans and Suerbaum, 
2012; Griffin, 2012; Kao et al., 2014). Studies have 
implicated the Heterorhabditis spp. as cruise-foraging 
species best suited for finding immobile hosts, while 
Steinernema spp. (ambush-foragers) are considered suited 
for mobile hosts (Grewal et al.,1994; Gaugler et al., 1997; 
Kruitbos and Wilson, 2010). 

5. Conclusion
In conclusion, the medicinal plant extracts, extraction 
method and concentration impacted survival of EPNs. 
The data are important for selection of plant extraction 
method and compatible strains. Ethanol extraction 
method supported IJ survival and virulence of the 
nematodes.  However, ethanol availability to farmers 

Table 1. Virulence of entomopathogenic nematodes strains against T. molitor post 48 h incubation in A.amatymbica.

[Extract] Strain

Aqueous Ethanol

% Survival post 
incubation

Corrected 
mortality (%) % Survival post

 incubation

Corrected 
mortality (%)

48 h 48 h

0.125

H. bacteriophora 88 84 90  46
H. sp SGI244 96 75 99 46
S. biddulpi 88 55 96 83
S. innovationi 80 38 81 59
S. khoisanae 82 41 92 41

0.25

H. bacteriophora 87 75 87 46
H. sp SGI244 75 63 99 46
S. biddulpi 81 46 96 54
S. innovationi 78 50 85 41
S. khoisanae 83 21 86 38

0.50

H. bacteriophora 61 63 92 78
H. sp SGI244 40 54 97 75
S. biddulpi 70 71 89 75
S. innovationi 46 54 82 46
S. khoisanae 66 46 79 41

0.75

H. bacteriophora 75 59 87 59
H. sp SGI244 20 34 96 41
S. biddulpi 60 66 90 71
S. innovationi 34 50 78 63
S. khoisanae 68 34 75 41

1

H. bacteriophora 18 75 86 63
H. sp SGI244 16 66 91 38
S. biddulpi 60 25 94 75
S. innovationi 28 63 79 55
S. khoisanae 52 46 90 50
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may be an issue as compared to water for plant extracts 
preparation. Moreover, the aqueous extraction was able to 
distinguish the EPN spp. survival in extracts. On that note, 
S. khoisanae and S. biddulphi would be selected for further 
compatibility studies (Efficacy of combined plant extracts 
and selected EPN strains) based on their appreciable 
survival of 50% at high concentration of 1% aqueous 
extractions of both plants. Heterorhabditis bacteriophora 
would also be selected based on its comparable mortalities 
from low versus high inoculum concentrations of the 
aqueous solutions. The combination of EPNs and other 
pest control agents has proved to be compatible and 
generates improved pest control than when either agent 

was applied alone (Shapiro-Ilan et al., 2010; Mahmoud, 
2016). Future research will focus on virulence testing of 
combinations of these extracts and the three selected EPN 
strains for control of key agricultural pests and potential 
incorporation into IPM programs.
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Table 2. Virulence of entomopathogenic nematode strains against Tenebrio molitor post 48 h incubation in E elephantina.

[Extract] Strain Aqueous Ethanol

% Survival post 
incubation

Corrected 
mortality (%) % Survival post 

incubation

Corrected 
mortality (%)

48 h 48 h

0.125

H. bacteriophora 86 71 86 66
H. sp SGI244 83 88 90 38
S. biddulpi 91 66 90 41
S. innovationi 86 54 87 59
S. khoisanae 93 41 89 41

0.25

H. bacteriophora 78 50 82 71
H. sp SGI244 89 84 92 84
S. biddulpi 92 63 95 54
S. innovationi 84 59 84 66
S. khoisanae 96 50 91 66

0.50

H. bacteriophora 83 79 82 66
H. sp SGI244 88 79 91 86
S. biddulpi 95 59 90 59
S. innovationi 88 54 84 66
S. khoisanae 93 59 92 25

0.75

H. bacteriophora 82 91 76 54
H. sp SGI244 84 84 93 84
S. biddulpi 91 66 90 25
S. innovationi 87 59 86 66
S. khoisanae 89 63 89 54

1

H. bacteriophora 80 75 82 71
H. sp SGI244 88 96 94 71
S. biddulpi 88 75 89 50
S. innovationi 90 59 87 88
S. khoisanae 90 41 90 54
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