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Background/aim: Cisplatin (CIS) is an effective antineoplastic agent used in the treatment of several cancer types. Peripheral 
neuropathy is a major dose-limiting side-effect in CIS therapy. Cannabinoids may alleviate this painful side effect. This study 
investigated the analgesic effects of anandamide (AN) on CIS-induced peripheral neuropathy, in vitro effects of AN in CIS neurotoxicity, 
and the contribution of nitric oxide (NO) in this effect. 

Materials and methods: This is an experimental animal study. Primary dorsal root ganglion (DRG) cultures were prepared from one-
day-old rats for in vitro investigations. DRG cells were incubated with CIS (100–300 M), and AN (10, 50, 100, and 500 μM) was 
administered with the submaximal concentration of CIS. Female Sprague Dawley rats were divided into control, CIS, CIS+AN, CIS+AN+ 
L-NG-nitro arginine methyl ester (LNAME). CIS was administered 3 mg/kg i.p once weekly for 5 weeks. AN (1 mg/kg i.p) or in 
combination with 10 mg/kg i.p LNAME was administrated 30 min before CIS injection. Mechanical allodynia, thermal hyperalgesia, 
and tail clip tests were performed. After intracardiac perfusion, sciatic nerves (SN), and DRGs were isolated and semi-thin sections 
were stained with toluidine blue and investigated histologically. SPSS v. 21.0 and Sigma STAT 3.5 were used for statistical analysis. 
One/two way ANOVA, Kruskal–Wallis, and Wilcoxon signed ranks tests were used. A p-value of 0.05 was accepted as significant. 

Results: CIS caused significant mechanical allodynia. AN and AN+LNAME significantly increased hind paw withdrawal latency in 
mechanical allodynia test. The degenerated axons significantly increased in CIS group, while decreased in AN group. The frequency of 
larger neurons seemed to be higher in CIS+AN group. 

Conclusion: AN may be a therapeutic alternative for the treatment of CIS-induced peripheral neuropathy. However, its central adverse 
effects must be considered. 

Key words: Cis-diamminedichloroplatinum(II), n-arachidonoylethanolamide, ng nitroarginine methyl ester, nitric oxide, peripheral 
neuropathy 

 

1. Introduction 
Cisplatin (CIS) is a well-known chemotherapeutic agent 
used to treat a wide variety of tumors. Most of the patients 
under CIS therapy experience peripheral neuropathy 
which might cause dose limitation, discontinuation of 
therapy and decrease patients’ quality of life [1]. Painful 
neuropathy may initiate in several weeks of treatment and 
continue to several months after discontinuation of the 
therapy [2]. There are some underlying mechanisms 
suggested for the development of CIS-induced 
neuropathic pain. These are summarized as follows: 
mitochondrial dysfunction can arise due swollen and 
vacuolated mitochondria in axons and also by the release 
of intracellular calcium [3]; upregulation of some TRP 
channels in dorsal root ganglion (DRG) neurons can lead 
to hyper-responsiveness of nociceptors [4]; mitogen-
activated protein kinase can be affected by the activation 
of p38 and ERK1/2 in DRG neurons along with down 
regulation of JNK/Sapk [5]. CIS can also activate NMDA 

receptors [6] that leads to increase in neuropeptide Y and 
substance P along with the alteration of calcitonin gene 
related peptide and somatostatin in DRG neurons [7]. 
However, the exact mechanism of CIS-induced peripheral 
neuropathy has not been fully elucidated. CIS has been 
found at higher levels in DRG neurons and causes 
detrimental effects which lead to neuronal dysfunction 
and cell death. This may cause irreversible structural and 
functional abnormalities in the peripheral nervous system 
in the long term [8]. Many agents have been proposed to 
manage chemotherapy-induced peripheral neuropathy. 
However, none of these agents has been proven effective.  

The endocannabinoid system is one of the endogenous 
systems that is critical in the control and modulation of 
pain [9]. Cannabinoid (CB) receptors, CB1 and CB2 are 
promising therapeutic targets for the treatment of pain. 
CB receptor agonists have been shown to have 
antinociceptive effects in several neuropathic pain models 
[10]. Anandamide (AN), an endogenous cannabinoid, has 
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been shown to cause antinociception in various 
experimental pain studies including neuropathic, 
inflammatory, and tumor pain and also generate full 
cannabinoid tetrad effects [11,12]. The tetrad model is 
used to detect potential effects of agents on CB1 receptors. 
After the acute systemic administration of CB1 agonist 
molecules, four characteristic effects are observed such as 
hypolocomotion, hypothermia, catalepsy, and analgesia 
[13]. Various mechanisms underlying the analgesic and 
neuroprotective effects of cannabinoids were suggested. 
Cannabinoids were reported to attenuate pain and to 
reduce oxidative stress via CB1 receptors [14]. In addition, 
CBs were shown to have neuroprotective effects [15] by 
antagonizing NMDA receptors [16]. AN was also shown to 
control pain modulation by acting at TRPV1 receptors 
[17]. Most of DRG neurons were shown to express mRNA 
for CB1 and these receptors were shown to co-localize 
with TRPV1 in some of small-diameter DRG neurons [18]. 
AN was identified as an endogenous ligand for TRPV1 
receptors and high concentrations of AN activated them 
[19]. Besides CB1 receptor activation, their 
antiinflammatory NMDA antagonist effects and actions on 
TRPV1 receptors may contribute to the neuroprotective 
effects of AN.  

Nitric oxide (NO) is a widespread signaling molecule 
that has a complex and diverse role in the modulation of 
pain [20]. Studies suggest that the expressions of NO 
synthase isoforms (NOS1 and NOS2) have been up-
regulated in the spinal cord and DRG after nerve injury in 
animal models of neuropathic pain [21,22]. Additionally, 
NO synthase inhibitors, LNAME and 7-nitroindazole have 
been shown to alleviate acute or chronic pain [22]. 
Evidence also suggest that AN interacts with NO [23].  

The aims of this study were to investigate: (i) the 
effects of AN on CIS-induced neurotoxicity of primary DRG 
neurons, (ii) the influences of AN on allodynia and 
hyperalgesia in CIS-induced peripheral neuropathy in rats 
and (iii) possible ability of nonselective NOS inhibitor 

LNAME to potentiate the effect of AN.  

2. Materials and methods 

2.1. DRG isolation and cell culture 
The experimental procedures were approved by the Local 
Ethical Committee of Eskisehir Osmangazi University for 
the care and use of experimental animals (permit number: 
362/2013). The primary cultures of DRG were prepared 
as previously described [24]. Rats were purchased from 
Medical and Surgical Research Center of Eskisehir 
Osmangazi University. Briefly, DRGs were collected from 
1-day-old Sprague Dawley rats and kept in ice-cold, sterile 
calcium- and magnesium-free modified Hank’s balanced 
salt solution (HBSS) (Sigma Aldrich; Lonza, Belgium). 
Then, DRG neurons were incubated with trypsin solution 
(0.25% trypsin–0.02% EDTA) (Gibco, Thermo Fisher 
Scientific, Waltham, MA, USA) at 37 °C for 10 min. Cells 
were dissociated by trituration with a fire-polished 
Pasteur pipette and plated in poly-D-lysine (Sigma 
Aldrich, St. Louis, MO, USA)-coated culture plates. 

Dulbecco’s modified Eagle’s medium (DMEM) was used as 
culture media and changed twice a week. 

DRG neurons became ready to be used in neurotoxicity 
experiments after in vitro incubation period of 8–10 days. 
DRG (approximately 5 × 103 cells/well) were incubated 
overnight and left to adhere onto surface of coated 96-well 
culture plates in drug-free DMEM medium. Then, CIS was 
added to the wells with gradually increasing 
concentrations as applied in our previous study (100, 200, 
300 μM) [25] and the cells were incubated for 24 h with 
the drug. The neurotoxic effects of CIS were evaluated by 
incubating the cells with CIS alone or in combination of 
submaximal concentration of CIS (200 μM) and AN (10, 
50, 100, and 500 μM). The viability of cultured DRG cells 
was detected by using MTT (3-(4,5-dimethylthiazolyl-2)-
2,5-diphenyltetrazolium bromide) assay method [25]. 
Absorbance was measured at 540 nm with a microplate 
reader (Multiscan EX; Franklin, MA, USA).  

2.2. CIS-induced peripheral neuropathy and 
behavioral studies 
The study is an experimental animal study. The 
experiments were performed according to principles of 
the Local Ethical Committee of Eskisehir Osmangazi 
University for the care and use of experimental animals 
(protocol number: 394-2/2016). Twenty-four, female 
adult Sprague Dawley rats (160–220 g, n = 6/group) were 
used and peripheral neuropathy was induced by once a 
week intraperitoneal (ip) injection of 3 mg/kg CIS (50 
mg/100 mL concentrated solution for intravenous 
infusion, Koçak Farma, Tekirdag, Turkey) for 5 weeks as 
indicated in a previous study [26]. Group size of n = 6 
animals for behavioral experiments was determined by 
sample size estimation using G*Power (v3.1) [27] to 
detect size effect in a post hoc test with type 1 and 2 error 
rates of 5 and 20%, respectively. Rats were kept under 
conditions of a light–dark (12/12) cycle and free access to 
food and water ad libitum for 1 week to habituate and 
divided into the following groups: 

• Control (vehicle) group: 2 mL intraperitoneal 
(i.p) saline was injected once a week for 5 weeks. 

• CIS-induced neuropathic pain group: 3 mg/kg 
i.p CIS was injected once a week for 5 weeks. 

• AN- and CIS-administrated group: 1 mg/kg i.p 
AN (Sigma) and 3 mg/kg i.p CIS were injected once a week 
for 5 weeks. 

• AN-, LNAME-, and CIS-administrated group: 1 
mg/kg i.p AN, 10 mg/kg LNAME (Sigma), and 3 mg/kg i.p 
CIS were injected once a week for 5 weeks. 

All treatments were administered at 9:00 a.m., and CIS 
was administered 30 min after injections. AN and LNAME 
were dissolved in saline. LNAME was administered 
immediately after AN injection. Saline (2 mL) was also 
given to prevent CIS-induced nephrotoxicity. Mechanical, 
thermal, and tail withdrawal latencies were assessed on 
day 0 (baseline) and on the 6th day after each drug 
injections. Drug administrations were ended at 35th day. 
After 2 weeks which was needed for the structural 
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changes, animals were euthanized to collect tissues for the 
measurement of pathological parameters [28]. 

2.2.1. Mechanical allodynia test 
The mechanical allodynia was evaluated as previously 
described [24]. Testing was performed once a week 
during 5 weeks between 9.00 a.m. and 12:00 p.m. All 
animals were first tested for baseline measurement 
before the drug administrations. Rats were placed inside 
acrylic cages with a perforated metal platform and were 
left to habituate for approximately 30 min before the 
measurement. Briefly, mechanical allodynia of right hind 
paw was assessed by using dynamic plantar test (Ugo 
Basile S.R.L. 37400-002, Italy). Mechanic stimuli was 
delivered to the plantar surface with an increasing force 
(0–50 g in 20 s) using a 0.5 mm diameter filament until the 
animal twitches its paw. Consecutive 3–5 measurements 
were recorded with at least 5 min intervals for each rat. 
Cut off force was accepted 50 g to avoid tissue damage. 

2.2.2. Thermal hyperalgesia test 
The thermal sensitivity was evaluated as previously 
described [24]. Testing was performed once a week for 5 
weeks between 9.00 a.m. and 12:00 p.m. All animals were 
first tested before the drug administrations. Rats were 
placed inside acrylic cages with a transparent glass floor 
and were left to habituate for approximately 30 min 
before the measurement. Briefly, heat sensitivity of right 
hind paw was assessed by using thermal hyperalgesia test 
apparatus (Ugo Basile S.R.L. 37370-002, Italy). Thermal 
stimuli were delivered to the plantar surface of the hind 
paw with a targeted beam of radiant heat. Consecutive 3–
5 measurements were conducted for each rat at least 5 
min intervals. Cut off time was accepted as 20 s to avoid 
tissue damage. 

2.2.3. Tail clip test 
Central spinal antinociception was assessed as previously 
described on the tail of rats by using artery clip [24]. 
Artery clip was clamped down 1 cm above from the end of 
the tail. The time spent for biting or turning to tail was 
recorded as seconds. Cut-off time was accepted as 20 s. 

2.2.4. Cannabinoid tetrad 
The cannabinoid tetrad was studied in only AN 
administrated neuropathy group. According to 
cannabinoid tetrad model; we evaluated their 
hypothermia, catalepsy, analgesia and locomotion [29]. 
Analgesic effects were assessed using a thermal 
hyperalgesia test as described above. In bar test, a wooden 
bar 9 cm above from the ground was used for catalepsy. 
Forepaws of animals were placed over the bar and the 
time spent on the bar recorded as seconds. Hypothermia 
of animals were measured by digital thermometer which 
was inserted into the animals’ rectum. Locomotor activity 
test was evaluated by using activity meter (MAY Commat, 
Ankara, Turkey). Total movement of each animal was 
recorded for 5 min. All of the cannabinoid tetrad tests 
were applied before drug administrations and 1 h after 
the last AN administration. 
 

2.3. Analysis of DRG and sciatic nerves 
At the 8th week, intra-cardiac perfusion was performed 
using 4% sodium phosphate buffer (pH 7.4) under 
ketamine-xylazine anesthesia (ketamine 80 mg/kg, 
xylazine 12 mg/kg) for morphological evaluations. SN and 
associated DRG were dissected and removed in the same 
fixative solution. DRG were collected and embedded in 
epon-araldite resin. DRG sections of 700 nm thickness 
were cut from 3 depths of the samples by microtome and 
stained with toluidine blue. The sections were observed 
under light microscope (Olympus BX5; Tokyo, Japan). 
Soma areas of DRG were calculated using Image J analysis 
program. 

Sciatic nerves (SN) (1 cm) were cut proximal to the 
trifurcation and fixed with 2.5% glutaraldehyde solution 
in 0.1 M phosphate buffer. After 24 h of fixation at 4 °C, 
samples of the nerve segments were rinsed with 
phosphate buffer and post fixed with 1% osmium 
tetroxide in 0.1 M phosphate buffer for 2 h at room 
temperature. Then samples were dehydrated in graded 
solutions of ethanol and embedded in epon resin. SN 
sections (700 nm thick) were stained with toluidine blue 
and observed with light microscope (Olympus BX5; 
Tokyo, Japan). Degenerated axons were designated 
according to two criteria including myelin debris 
formation and finer degeneration in axons. The number of 
normal and degenerated axonal fibers was counted and 
the ratio of degenerated/normal (deg/nor) was calculated 
[30].  

2.4. Statistical analysis 
SPSS 21.0 (IBM, USA) and Sigma STAT 3.5 (Systat Software 
Inc, USA) were used for the statistical analysis. Data that 
were not normally distributed were represented as mean 
± SEM. Values of p < 0.05 was accepted as significant. One-
way ANOVA and Tukey tests were used for the evaluation 
of CIS neurotoxicity in vitro and Kruskal–Wallis test was 
used for the evaluation of AN effects in vitro. The two-way 
ANOVA for repeated measures and Tukey test for multiple 
comparisons were used in the assessment of statistical 
analysis for behavioral studies (mechanical allodynia, 
thermal hyperalgesia, and tail clip). Wilcoxon signed 
ranks test was for the analysis of cannabinoid tetrad. 
Student–Newman–Keuls method was used in the multiple 
comparisons of size-frequency histogram of DRG neurons. 

3. Results 

3.1. Neurotoxicity experiments 
CIS administration induced a concentration dependent 
neurotoxicity on DRG neurons and CIS 200 μM was 
detected as the concentration which caused minimum 
neurotoxic effect on these cells (Figure 1a, p < 0.001). To 
assess in vitro effects of AN, different concentrations of AN 
(10, 50, and 100 μM) were combined with CIS 200 μM. AN 
10, 50 and 100 μM (Figure 1b, p < 0.001) caused 
neurotoxicity compared to control which were 
significantly higher than CIS 200 μM itself (Figure 1b, p = 
0.013, p = 0.014, p = 0.037 respectively). LNAME did not 
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cause any difference in cisplatin neurotoxicity (Figure 1b, 
p < 0.001).  
 

3.2. Behavioral studies  

3.2.1. Mechanical allodynia 
There was no significant difference in the baseline values 
(day 0) of paw withdrawal latencies among all groups. In 
addition, there was also no significance between all 
measurements of control group. CIS administration 

significantly decreased the paw withdrawal latency of rats 
compared to control (p = 0.003) and also baseline which 
was beginning from the 21nd day (p = 0.003) of 
administration and continued to decrease in 28th and 
35th days (Figure 2a, p = 0.016, p < 0.001 respectively). 
Concurrent administration of AN (p < 0.01) or AN+LNAME 
(p < 0.001) with CIS treatment significantly increased the 
paw withdrawal latencies compared to control after 35 
days of drug injections (Figure 2a).  

 
 
 
Figure 1. Inhibition percentage values were obtained from MTT assay (A) the concentration-dependent inhibitory effects of 
Cisplatin (CIS) (100–300 μM); (B) The effects of CIS (200 μM) alone and combination of CIS (200 μM) and Anandamide (AN) (10, 
50, 100; AN10, AN50, AN100). (xx: p < 0.01, xxx: p < 0.001 vs. Vehicle; &: p < 0.05 vs. CIS 100 μM; *: p < 0.05 vs. CIS 200 μM, n = 10). 
Bars represent mean ± SEM. 

 
 
 
 

Figure 2. Paw withdrawal latencies (A) in mechanical allodynia test. ($: p < 0.05 vs Vehicle (control) group on the day 35; *:p < 0.05; 
**:p < 0.01 Cisplatin (CIS) vs. baseline; #: p < 0.05; Cisplatin+Anandamide+LNAME (CIS+AN+LNAME) vs. baseline; a: p < 0.05 CIS vs. 
Vehicle, b: p < 0.01 CIS+AN vs CIS and c: p < 0.01 CIS+AN+LNAME vs. CIS group on the 35th day). (B) in thermal hyperalgesia test (C) 
Tail withdrawal latencies in tail clip test by days. Basal measurement indicated day 0 (no injection received). Bars represent mean ± 
SEM. 
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3.3. Thermal hyperalgesia 
CIS and concurrent administration of AN or AN+LNAME 
with CIS treatment didn’t cause any significant change in 
the paw withdrawal latencies of rats (Figure 2b).  

3.4. Tail clip 
No significant difference was detected in the tail 
withdrawal latencies of control, CIS, CIS+AN, and 
CIS+AN+LNAME groups (Figure 2c).  

3.5. Cannabinoid tetrad 
AN administration significantly decreased the rectal 
temperature (Figure 3a, p = 0.028), significantly reduced 
the total movement (Figure 3b, p = 0.046) and 
significantly prolonged the catalepsy time (Figure 3c, p = 
0.028) of rats compared to pre-administration. There was 
no significant alteration in the paw withdrawal latencies 
of rats in thermal hyperalgesia test after AN 
administration (Figure 3d). 

3.6. Dorsal root ganglia and sciatic nerves 
Morphological examinations of DRG neurons showed that 
nuclei were centrally located (black arrows) and there 
were satellite cells around ganglion cells (red arrows) in 
control group (Figure 4a). In CIS group, 
microvacuolization was seen in ganglion cells (black 

arrows) and membrane lines of cells were lost (red 
arrow). Some of the ganglion cells were also swelled 
(green arrow), (Figure 4b). In CIS+AN group, there were 
less microvacuolization ganglion cells and membrane 
lines were clear compared to CIS group. Swelling of 
cytoplasm also was not observed in this group (Figure 4c). 
In CIS+AN+LNAME group, vacuolization was observed in 
ganglion cells (black arrow). Membrane lines were also 
lost (red arrow). Injury of DRG cells was clearly observed 
(Figure 4d).  

Cross sectional soma areas of DRG neurons in each 
group were analyzed. Frequency distribution histogram 
of soma areas showed that frequency of DRG neurons with 
small soma areas was higher in CIS than in control. In CIS 
treated rats, the frequency of DRG neurons decreased 
when soma areas increased. Especially the frequency of 
DRG neurons between 801–1000 μm2 significantly 
decreased by CIS treatment and increased by the AN 
treatment (Figure 5, p = 0.028). 

The Deg/Nor axon ratio in SN was significantly 
increased in CIS (p < 0.001) and CIS+AN+LNAME (p = 
0.02) groups but not in CIS+AN group compared to 
control. Concurrent administration of AN with CIS 
treatment significantly reduced the Deg/Nor axon ratio 
compared to CIS group (p = 0.04). The difference is more  

 
 

 
 
 
Figure 3. Acute central effects of systematically administered Anandamide (AN) by testing cannabinoid tetrad. The tests were used 
to investigate the central effects of AN. (A) rectal temperature (for hypothermia); (B) spontaneous locomotor activity (for 
hypolocomotion); (C) bar test (for catalepsy); (D) plantar test (for analgesia). Tests were performed before and 1 h after AN 
administration. (Bars represent mean ± SEM. *: p < 0.05; **: p < 0.01 with respect to value received before AN treatment.). Bars 
represent mean ± SEM. 
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in CIS+AN group than in CIS+AN-LNAME group compared 
to CIS group (Figure 6).   

Morphological examinations of SN showed that 
degeneration in myelinated fibers were more in CIS group 
compared to control group (Figures 7a and b). The 
degeneration in CIS+AN group were lower than in CIS 
group but higher than in control (Figure 7c). Degenerated 
myelinated fibers in CIS+AN+LNAME group were higher 
than control and CIS+AN groups (Figure 7d). 

4. Discussion 
Cannabinoids are targeted molecules for the treatment of 
a series of diseases including neuropathic pain. In our 
study CIS induced peripheral neuropathy in vivo and 
neurotoxicity in vitro. Chronically administrated 

cannabinoid AN was able to counteract the inhibitory 
effects of cisplatin in mechanical allodynia test and the 
same result was obtained if AN plus LNAME were given. In 
addition, higher concentrations of AN ameliorated the 
structural abnormalities induced by CIS. The histological 
alterations induced by CIS in DRG cells and SN were also 
improved by AN but that the additional presence of 
LNAME attenuates this effect. AN was also effective in 
three paradigms of cannabinoid tetrad.  

The basic mechanism of CIS neurotoxicity involves 
DRG damage. For the first time we investigated the 
potential protective effects of AN in primary culture of 
DRG cells. The permeability of vascularization and lacking 
of blood-brain barrier in DRG neurons can lead to free 

 

Figure 4. Semi-thin sections of DRG neurons. (a) Control (vehicle), (b) CIS, (c) AN, (d) CIS+AN+LNAME groups (scale represents 50 
μm.) 
 

 
 
Figure 5. Histogram of cross-sectional areas of dorsal root ganglion (DRG) neurons. Bars represent mean ± SEM. *:p < 0.05, **:p < 
0.01 vs. Vehicle; +: p < 0.05 vs. Cisplatin+Anandamide (CIS+AN). 
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passage, accumulation and toxicity of chemicals in these 
cells [31]. Thus, DRG neurons are defenseless against toxic 
effects of CIS. In our study, CIS induced concentration-
dependent neurotoxicity in DRG cell culture (Figure 1a) as 
shown before [32]. Low concentrations (10, 50, 100 µM) 
of AN significantly increased the toxicity of CIS. However, 
high concentration (500 μM) of AN seemed to dampen the 
neurotoxic effects of CIS which needs further 
investigations (Figure 1b). In the second part of the study, 
the effects of AN were investigated in CIS-induced 
peripheral neuropathy in vivo. CIS produced mechanical 
allodynia that was manifested by 21st day and was 
maintained until the end of the experiment (35th day). 
Hyperalgesia or hypoalgesia to heat was notably absent. 
Besides, no significant alteration was detected in tail clip 
test (Figure 2). Similar result was demonstrated in a 
previous study [33]. On the 35th day of our study in which 
the neuropathy was so significant, AN and 
CIS+AN+LNAME groups increased the paw withdrawal 

latency in mechanical allodynia test. However, the 
combination with LNAME did not induce any significant 
change from the effects of AN alone in neuropathic rats. 
(Figure 2a). 

Tail clip to investigate nociception at the spinal level 
and thermal hyperalgesia test at supraspinal level were 
also used in our study as indicated earlier [34]. According 
to our results any significant change was not observed in 
these tests. In a previous study AN was reported to reduce 
thermal hypersensitivity in partial SN ligation 
neuropathic pain model [35]. Intraplantar injection of AN 
was also demonstrated to inhibit thermal hyperalgesia 
induced by carrageenan [36]. The inconsistent results of 
the study may be due to different thermal hypersensitivity 
of animals in various neuropathic pain models.   

In nociception NO has dual effects and it may induce 
either pro-algesia or analgesia [37]. The underlying 
mechanism of these effects involve NMDA receptors and 
COX enzymes for hyperalgesic action and cGMP-PKG-ATP 

 
 

Figure 6. The ratio of degenerated/normal axon in sciatic nerve (SN) (*: p < 0.05; ***: p < 0.001 vs. Vehicle; +: vs. Cisplatin (CIS). 
Bars represent mean ± SEM. (CIS+AN: Cisplatin+Anandamide, CIS+AN+LNAME: Cisplatin+Anandamide+LNAME) 
 

 

Figure 7. Semi-thin sections of sciatic nerve (SN). (a) Control (Vehicle), (b) CIS, (c) CIS+AN, (d) CIS+AN+LNAME groups. Red arrows 
indicate degenerated myelinated fibers and yellow arrows indicate normal and regenerated myelinated fibers (scale represents 50 
μm). 
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sensitive potassium channels pathway for the analgesic 
effects of NO [37]. The maintenance of neuropathic pain 
behaviors was reported to be modulated by the 
production of NO [38]. NOS inhibitors were reported to 
promote antinociception at various levels of sensory 
system and in different experimental models [39,40]. 
However, in our study NOS inhibition did not alter the 
actions of AN. This may be because of unstable nature of 
this enzyme. Even if NOS was reported to have 
pronociceptive effects in neuropathic pain, different 
experimental models of neuropathic pain (such as 
transaction, crush, hypoxia or ligation) may lead to 
contradictory results. NO pathway also keeps interaction 
with other transmitter pathways. Especially NO-cGMP-
PKG pathway plays a critical role in peripheral 
antinociception induced by cannabinoids [41]. 
Cannabinoids were shown to have potent analgesic effects 
in different experimental models of neuropathic pain 
[42,43]. In presence of peripheral nerve injury, significant 
alterations were reported in CB receptor binding. It was 
reported that receptor binding was upregulated by 
surgery in wild type animals, however there was no 
alteration in NOS knockout animals [44]. Thus under 
pathological conditions such as inflammation or pain, the 
level of cannabinoid binding and interactions between 
NO-cGMP pathway and cannabinoid system were altered 
[44]. These interactions may affect the nociceptive 
behaviors measured in different experimental models of 
neuropathic pain.  

Cannabinoids are newer suggested agents in the 
management of pain. However, their undesirable central 
adverse effects such as dizziness, dysphoria, euphoria, 
‘feeling high’ and sedation seemed to limit their clinical 
use [45]. Especially CB1 agonists crossing blood-brain 
barrier may cause these central effects. To check the 
central effects of AN, cannabinoid tetrad was assessed. AN 
(1 mg/kg) at the end of 35th day significantly induced 
most of the cannabinoid tetrad effects including 
hypothermia, hypomobility, and catalepsy with respect to 
pretreatment results (Figure 3). Low doses of 
cannabinoids were known to promote both of depressant 
and stimulatory effects but higher doses may cause 
central depression like effects [46]. Interestingly in our 
study, chronically applied 1 mg/kg AN induced the signs 
of cannabinoid tetrad. This antiallodynic dose of AN 
unfortunately caused central psychoactive effects. The 
difference could be caused by the differences between 
pathophysiology of animal models of neuropathic pain or 
the experimental protocols used.       

In histological evaluations, structural abnormalities 
observed in CIS group were ameliorated by AN (Figures 
4b and c). Furthermore, a significant decrease in 
frequency of DRG neurons corresponding to CIS treated 
rats was found in our study especially having soma areas 
between 801–1000 μm2 (p = 0.038). In addition, the 
number of DRG neurons having smaller soma areas were 
observed to be high in CIS treated rats. This may be 
because of the fact that CIS caused to atrophy in neuron 

parts including cell body, nucleus and nucleolus [47]. Our 
results were also consistent with the results of other 
studies confirming that the number of DRG neurons was 
also reduced with the CIS treatment [47,48]. Moreover, 
AN caused an increase in the frequency of DRG neurons 
having soma areas between 801–1000 μm2 (p = 0.038) 
with respect to CIS treated group. DRG neurons with 
diameters >35 µm (large neurons) were shown to express 
high levels of GPR55, while those with diameters <35 µm 
(small ones) do not [49]. Therefore, we also noticed that 
CIS reduced the frequency of DRG neurons at 801–1000 
µm2 and AN reversed its activity (Figure 5). AN was 
suggested to increase intracellular calcium by activating 
these receptors. In the histological examination of semi-
thin sections of DRG revealed severe pathology induced by 
CIS. Microvacuolizations inside ganglion cells were 
observed and cell membranes were lost in CIS treated 
rats. This pathology was ameliorated by the addition of AN 
to CIS; however, in CIS+ AN+LNAME group, the similar 
injury was observed in CIS group (Figure 6). This kind of 
effects of AN may be related to its activation of CB1 
receptors and IP3 signaling pathway and stimulating the 
release of Ca2+ from intracellular stores [16].  

SN morphometry was correlated with the 
morphometric analysis of DRG neurons. Both the deg/nor 
axon ratio and degeneration of myelinated fibers were 
significantly lower in AN and CIS+AN+LNAME groups 
than that of CIS group. However, degeneration was more 
in LNAME combination group when compared to AN 
group (Figure 7). It seems that AN might have a potential 
role to restore structural abnormalities induced by CIS. In 
addition, according to our results LNAME was able to 
worsen the structural effects of AN.   

5. Conclusion 
Consequently, based on our results AN and its 
combination with LNAME were able to prevent 
mechanical allodynia induced by CIS. In addition, AN alone 
could also alleviate the toxic effects of CIS and ameliorate 
the structural abnormalities of DRG cells and SN induced 
by CIS treatment. AN could have been an alternative for 
the treatment of peripheral neuropathy in cancer patients 
receiving CIS therapy. However, 1 mg/kg chronically 
applied AN was shown to cause central effects in our 
study. NOS inhibitor LNAME did not change the palliative 
effects of AN in mechanical allodynia, on the other hand it 
worsened the structural pathology of DRG neurons and 
SN. Another mechanism rather than NOS inhibition seems 
to play a role in the obvious effects of AN. LNAME and AN 
may interact in another pathway causing a decrease in the 
effects of AN structurally. Further studies are needed to 
clarify the exact mechanism behind neuroprotective and 
antiallodynic effects of AN.  
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