
1173

http://journals.tubitak.gov.tr/chem/

Turkish Journal of Chemistry Turk J Chem
(2021) 45: 1173-1188
© TÜBİTAK
doi:10.3906/kim-2102-16

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the 
effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER1
, Berdan ULAŞ2,*, Hilal DEMİR KIVRAK3


1Department of Chemical Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey

2Department of Mining Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
3Department of Chemical Engineering, Faculty of Engineering and Architectural Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey

*	Correspondence: berdanulas@yyu.edu.tr

1. Introduction
Energy is a vital and permanent need for human life and welfare [1–7]. Fuels such as formic acid [8–10], glucose (GA) [11], 
ethanol [12, 13], ethylene glycol [14], hydrazine [15], and methanol [16, 17] are principal sources. From these sources, GA 
is given great significance due to its advantages such as abundance in nature, cheapness, non-toxicity, and easy to transport 
[18–20]. As a result of complete oxidation of GA, 24 e- are released [21]. However, the complete electrooxidation of GA has 
not been achieved yet. Complete oxidation of GA consists of a complex reaction sequence [22]. Glucose electrooxidation 
(GAEO) to gluconic acid reactions are given as follows [23, 24]:

Anode: C6H12O6 + 2OH- C6H12O7 +H2O +2e-                       				        (1)
Cathode: 0.5O2 +H2O +2e- 2OH-                              					         (2)
Overall: C6H12O6 + 0.5O2 C6H12O7                   					         (3)
The development of anode catalysts with high GAEO activity is crucial for the commercialization of the direct glucose 

fuel cell. Hence, the anode catalyst performance of Fe15Pt85 [25], Ni-Fe [26], Ni-Co [27], Au [28], Pt [29], G-ITO [30], AgNi 
[31], Pd [32], FeCo2O4 [33], and Pd-Au [34] nanocatalysts have been investigated for direct GA fuel cells (DGFC). For 
instance, Chai et al. reported that Pd3Cu-B/C nanocatalyst synthesized by a simple aqueous phase approach method had 
high GAEO activity and stability for GAEO reaction in fuel cell [35]. Likewise, Yan et al. stated that Pd70Au30 nanocatalyst 
prepared via modified pulse microwave-assisted polyol method had high current density [36]. Another study performed 
by Chai et al. on the synthesis of Pd-SnCoOx/C nanocatalysts and investigation of their GAEO activities revealed that Pd-
SnCoOx/C had enhanced activity and outstanding stability with a great active surface area compared to Pd/C nanocatalyst 
[37]. Related literature was given in Table 1.

Herein, we aim to investigate the effect of Bi addition to Au in terms of GAEO activity. Thus, Au/MWCNT, Bi/
MWCNT, and Au-Bi/MWCNT nanocatalysts were prepared via NaBH4 reduction method, and these nanocatalysts were 
characterized by XRD, BET, and TEM. To investigate the effect of Bi promotion, GAEO activities of these nanocatalysts 
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are measured via cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical 
impedance spectroscopy (EIS). For Au80Bi20/MWCNT nanocatalyst, central composite design (CCD) was utilized for 
determining the optimum conditions of electrode preparation. The volume of nanocatalyst slurry (Vc, A), ultrasonication 
time of the nanocatalyst slurry (tu, B), and the drying time of the electrode (td, C) were determined as independent variables.

2. Materials and method
All chemicals used were purchased from Sigma-Aldrich. Au/MWCNT nanocatalysts and Bi/MWCNT nanocatalysts were 
synthesized by NaBH4 reduction method with AuCl3 and Bi(NO3)3.5H2O metal as a precursor, respectively.  Metal precursors 
were dissolved in deionized water and mixed with 0.1 g MWCNT by adding NaBH4 at ratio of NaBH4:Au (15:1). These 
mixtures were filtered and washed. Likewise, Au-Bi/MWCNT nanocatalysts were prepared by NaBH4 reduction method at 
different Au:Bi ratios as 95:5, 90:10, 80:20, 70:30, 60:40, and 50:50. 

Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT nanocatalysts were characterized via N2 adsorption and desorption 
(Micromeritics 3Flex equipment Tristar II 3020), XRD (PANalytical Empyrean device-ray diffractometer with Cu Kα radiation 
(λ = 1.54056 Å)), and C-TEM (Hitachi HighTech HT7700 high re-transmission electron microscope operating at 120 kV). 

All electrochemical properties of Au/MWCNT, Bi/MWCNT, and Au-Bi/MWCNT nanocatalysts were determined by CV, 
LSV, CA, and EIS in 0.5 M GA.  A nanocatalyst ink was obtained by dispersing 3 mg nanocatalyst in 1 mL of Nafion. Then, 5 
mL of nanocatalyst ink was transferred to glassy carbon electrode and dried. CV measurements were performed at –0.6 V to 
0.8 V potentials at 50 mv s–1 scan rate. Stability measurements were conducted by CA during 1000 s. 

CCD was utilized for optimum conditions of the electrode preparation. The volume of nanocatalyst slurry (Vc, A), 
ultrasonication time of the nanocatalyst slurry (tu, B), and the drying time of the electrode (td, C) are determined as independent 
variables. The maximum current density values obtained for GAEO were identified as the response. The error for the value of 
response was determined by 6 experiments at the middle levels of the parameters, and 20 sets of experiments were performed 
in total. Table 2 depicts the experimental points determined by Design Expert 7.0 and their corresponding response values, 
where, ˗ 1, 0, and + 1 represent the lowest, central, and highest levels of the parameters. Interactions between independent 
parameters were statistically evaluated with analysis of variance (ANOVA), and the suitability of the proposed model was 
tested with the coefficient of determination (R2). 

3. Results and discussion
3.1. Characterization results
Characterizations of Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT nanocatalysts were performed with XRD, BET, and 
TEM. XRD patterns of MWCNT supported Au, Bi, and Au80Bi20 nanocatalysts were given in Figure 1. The diffraction peaks 
of Au and Bi were clearly seen in Figure 1. The diffraction peaks of C (0 0 2) and C (1 0 0) planes were observed at around 
25.5° and 42.8° for all nanocatalysts, respectively. The presence of the C (0 0 2) indicates that the carbon in the structure is 
hexagonal carbon [44]. The (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) facets of Au were obtained at 38.3°, 44.4°, 64.5°, 77.3°, 
and 81.9° 2θ values for Au/MWCNT. These peaks are specific crystallographic planes of the face-centered cubic (fcc) Au [45, 
46] (Figure 1). The average diameter of the nanocatalysts can be achieved by using Scherrer’s Equation [47,48]. The crystal 
size of Au/MWCNT was found as 19.08 nm. For Bi/MWCNT, the (0 0 2), (1 1 0), (1 0 2), (0 2 0), (0 1 4), and (1 2 2) facets of 
Bi were observed at 24°, 30.2°, 32.9°, 46.9°, 51.8° and 56.9° 2θ values, respectively (Figure 1). As clearly seen from Figure 1, all 
diffraction peaks of Au and Bi were observed for Au80Bi20/MWCNT nanocatalyst. These results depict that the face-centered 
cubic (fcc) of Au maintains its structure and increases the GAEO activity of the nanocatalyst by increasing the number of 

Table 1. Maximum current densities for GAEO values reported in literature.

Nanocatalyst Maximum peak mA/cm2 Reference

Pd3Rh/C 1.7 (38)
AuAg/C 3.75 (39)
Pd3Sn2/C 3.64 (40)
PtRu/C 2.74 (41)
PtBi/C 2.25 (42)
Cu@Cu2O-Pd 1.15 (43)
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active sites of Bi. The crystal size of Au80Bi20/MWCNT nanocatalyst was found as 21.96 nm. Moreover, the average inter-
planar distances of Au/CNT, Bi/CNT, and Au80Bi20/MWCNT nanocatalysts were calculated using Bragg’s Law [49,50]. The 
2θ values of Au (111) and Bi (110) peaks, which are the most intense peaks in the XRD patterns, were used. The average 
interplanar distance for Au/CNT, Bi/CNT, and Au80Bi20/MWCNT nanocatalysts was calculated as 2.35, 2.95, and 2.35 nm, 
respectively. 

N2 adsorption-desorption were used to determine pore size, BET surface area, and pore volume of Au/MWCNT, Bi/
MWCNT, and Au80Bi20/MWCNT. BET surface area, pore size, and pore volume of nanocatalysts were given in Figure 2 
and Table 3. In this study, all of the used nanocatalysts were exhibited the V-type adsorption-desorption isotherm with 
H1 type hysteresis loop [51]. This indicates that the catalysts are mesoporous in according to International Union of Pure 
and Applied Chemistry (IUPAC) categorization. BET surface areas of Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT 
were found as 159.0, 225.1, and 221.6 m2/g, respectively. As can be clearly seen from Table 3, the use of Bi and Au together 
increased the BET surface area. Likewise, the increase in pore volume and pore size of the nanocatalyst were observed 
(Table 3).  According to the pore size and pore volume, the nanocatalysts are sorted Au80Bi20/MWCNT > Bi/MWCNT > 
Au/MWCNT. 

The morphological and particle size of the Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT nanocatalysts was 
determined with TEM and were depicted in Figure 3. It is explicit that Au and Bi nanoparticles were agglomerated for 
Au/MWCNT and Bi/MWCNT nano-catalysts. However, it can be clearly seen that such a situation is not observed for 
Au80Bi20/MWCNT nanocatalyst and that there is a homogeneous distribution. This can be explained by the fact that Bi 
nanoparticles on the MWCNT surface have a positive effect by entering between the Au nanoparticles. The increase in 
BET surface area of Au80Bi20/MWCNT compared to Au/CNT could support this positive effect. The average particle size 
for Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT nanocatalysts was found as 26.8, 23.2, and 19.38 nm, respectively. 
The particle size for Au80Bi20/MWCNT was found to be consistent with crystal sizes obtained from the XRD result.

Table 2. Experimental design of CCD and obtained responses.

A B C Response

Run Vc tu td Specific activity

µL min min mA/cm2

1 7.75 (0) 30.50 (0) 30.00 (+1) 0.89
2 0.50 (–1) 30.50 (0) 15.50 (0) 1.41
3 7.75 (0) 60.00 (+1) 15.50 (0) 0.94
4 15.0 (+1) 60.00 (+1) 30.00 (+1) 0.73
5 7.75 (0) 30.50 (0) 15.50 (0) 0.96
6 15.0 (+1) 1.00 (–1) 1.00 (–1) 0.66
7 7.75 (0) 30.50 (0) 15.50 (0) 1.02
8 15.0 (+1) 1.00 (–1) 30.00 (+1) 0.79
9 15.0 (+1) 60.00 (+1) 1.00 (–1) 0.83
10 15.0 (+1) 30.50 (0) 15.50 (0) 1
11 0.50 (–1) 1.00 (–1) 30.00 (+1) 0.6
12 7.75 (0) 30.50 (0) 1.00 (–1) 0.83
13 7.75 (0) 30.50 (0) 15.50 (0) 0.97
14 7.75 (0) 1.00 (–1) 15.50 (0) 0.55
15 0.50 (–1) 1.00 (–1) 1.00 (–1) 0.86
16 7.75 (0) 30.50 (0) 15.50 (0) 1.03
17 7.75 (0) 30.50 (0) 15.50 (0) 0.95
18 0.50 (–1) 60.00 (+1) 1.00 (–1) 1.21
19 0.50 (–1) 60.00 (+1) 30.00 (+1) 1.14
20 7.75 (0) 30.50 (0) 15.50 (0) 1.17
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Figure 1. The XRD patterns of the monometallic Bi/MWCNT, Au/MWCNT, and 
bimetallic Au80Bi20/MWCNT nanocatalysts. 

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

1200

1400

mc( tebrosdA e
muloV

3
)PTS g/

Relative Pressure (p/p 0)

 Au/CNT
 Bi/CNT
 AuBi/CNT

Table 3. Summary of the BET of result of Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT.

Nanocatalyst BET surface area (m2/g) Pore volume (cm3/g) Pore size (nm)

Au/MWCNT 159.0 1.23 24.5
Bi/MWCNT 225.1 1.65 25.6
Au80Bi20/MWCNT 221.6 1.86 28.7

Figure 2. N2 adsorption-desorption isotherms of Au/MWCNT, 
Bi/MWCNT, and Au80Bi20/MWCNT nanocatalysts.
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3.2. Electrochemical assessment
Au/MWCNT, Bi/MWCNT, and Au-Bi/MWCNT nanocatalysts were prepared via the NaBH4 reduction method to 
investigate their GAEO activity. Figure 4 depicts electrooxidation measurement of Au/MWCNT, Bi/MWCNT, and Au-Bi/
MWCNT in 0.5 GA solution. Synthesized nanocatalysts were tested in 1 M KOH and 0.5 M GA, respectively. In this way, 
the best atomic molar ratios were determined and the second stage was passed. 
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Figure 3. TEM images of (a and b) Au80Bi20/MWCNT, (c and d) Au/MWCNT, and (e and f) Bi/MWCNT nano-catalysts (corresponding 
histogram of particle size distribution).
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The hydroxide (OH-) adsorption-desorption peak was observed for Au and Bi between 0.4 V and 0.6 V, while these 
peaks were not visible for Au80Bi20 (Figure 4a). As described in the literature, the Au desorption peak is obtained due to 
the reduction of the oxidative gold layer [52]. Due to the dispersion of Bi nanoparticles in the Au layer formed on the 
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Figure 3. (Continued).
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surface of the AuBi/MWCNT nanocatalyst, it could prevent oxidation at the positive forward direction peak of the Au 
layer. As seen, electrooxidation peaks were obtained for all nanocatalysts prepared. When using Bi together with Au, it is 
observed that the current density is clearly increased. Au80Bi20/MWCNT nanocatalyst exhibited the highest performance 
among prepared nanocatalysts with 1.133 mA/cm2 (320.1 mA/mg Au) for GAEO (Figure 5 and Table 4). These results are 
consistent with CA and EIS measurements.
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Figure 4. Cyclic voltammograms in 1 M KOH for electrodes modified with a) 3% 
Au/MWCNT, 3% Bi/MWCNT, and 3% Au80Bi20/MWCNT nanocatalysts; b) 3% Au/
MWCNT, 3% Bi/MWCNT, and 3% AuBi/MWCNT nano-catalysts (scan rate: 50 mV 
s–1).
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Figure 5. Cyclic voltammograms in 1 M KOH + 0.5 M GA for electrodes modified with a) 3% Au/MWCNT, 3% Bi/MWCNT, and 3% 
Au80Bi20/MWCNT nanocatalysts; b) 3% Au/MWCNT, 3% Bi/MWCNT, and 3% AuBi/MWCNT nanocatalysts; c) onset potentials of all 
nanocatalysts (scan rate: 50 mV s–1).

Table 4. Electrochemical properties of synthesized nanocatalysts for GAEO.

Nanocatalyst Peak potential of forward 
peak, V

Specific activity,
mA/cm2

Mass activity,
mA/mg Pd Onset potential, V

Au/MWCNT 0.103 0.936 256.5 –0.291
Bi/MWCNT 0.036 0.764 202.3 –0.307
AuBi(99:01)/MWCNT 0.016 0.519 142.3 	 –-0.264
AuBi(95:05)/MWCNT 0.026 0.595 159.4 –0.269
AuBi(80:20)/MWCNT –0.039 1.133 320.1 		  –0.345
AuBi(70:30)/MWCNT 0.057 0.510 134.7 –0.307
AuBi(60:40)/MWCNT –0.060 0.840 232.6 –0.309
AuBi(50:50)/MWCNT –0.014 0.302 84.5 –0.258
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The mass activities of Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT catalysts were examined via LSV technique 
at a scan rate of 50 mV s–1. LSV profile of these nanocatalysts in 1 M KOH + 0.5 M GA solution were given in Figure 6. 
As could be seen in Figure 6, Au80Bi20/MWCNT nanocatalyst exhibited a higher mass activity compared to these of Au/
MWCNT and Bi/MWCNT nanocatalysts toward GA electrooxidation. Mass activities over the total potential for Au/
MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT were determined as 1024.60, 200.82, and 1601.64 mA/mg Au, respectively. 
These results were consistent with the results from CV, CA, and EIS.

Electrode preparation parameters for maximum glucose electrooxidation, namely Vc, tu, and td were optimized by 
using RSM. In optimization studies, the working electrode was modified with the AuBi nanocatalyst. Table 2 exhibits the 
experimental design from CCD and corresponding response values. The obtained data depict that the GAEO on AuBi can 
be modeled well with the quadratic regression model at determined conditions. Accordingly, Eqn. 4 and Eqn. 5 depict 
model equations for GAEO consisting of real and coded factors, respectively.

Specific Activity = 1.01–0.12 A+0.14B–0.024 C–0.097AB+0.045AC+0.005BC+0.22A2–0.24B2–0.13AC2	 (4)
Specific Activity = 0.79335–0.073089 Vc + 0.025536 tu + 0.014417 td -0.000455874 Vctu +0.000428062 Vctd – 

0.0000116891 tutd + 0.00410766 Vc
2 – 0.000280484 tu

2–0.000613988 td
2	                                                                                 (5)

The adequacy and significance of the model were validated with analysis of variance (ANOVA). The ANOVA results 
depict that the P-value of the model is less than 0.05, and this indicates that the model is statistically significant (Table 
5). Besides, the determination of coefficient and adequate precision values of the model were found to be 0.89 and 
10.7, respectively. The fact that the lack of fit value was statistically insignificant indicates that the model depicts a good 
agreement with the experimental data. Accordingly, the proposed model can be utilized to navigate the design space [53]. 

Figure 8 depicts the response surface plots for tu, Vc and td parameters. The interaction between tu and Vc for specific 
activity toward GAEO was presented in Figure 8a. Specific activity for GAEO decreases when the Vc value is increased 
from 0.5 to 7.75 µL. An increase in specific activity was observed for nanocatalyst loads higher than 7.75 µL. Figure 8b 
depicts that the specific activity increases up to about 15 min of td and begins to decrease after this maximum point. It was 
observed that the AuBi nanocatalyst could not attach enough to the electrode surface at very low td values, and some of 
the nanocatalysts were removed from the electrode surface. At higher td values, lower specific activities were observed as 
a result of oxidation of metals and vaporizing of Nafion in the nanocatalyst slurry. It was determined from Figure 8c that 
the relation of the specific activity with tu depicts a volcano shape. The specific activity of AuBi for GAEO increased up 
to about 45 min of tu, and a decrease was observed after this value. This may be due to the sonification time affecting the 
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crystal structures of the nanoparticles. Pollet et al. emphasized that during high sonification periods, the crystallinity of 
nanoparticles can be disrupted, and the formation of amorphous structures could be observed [54].  

Design-Expert software was used to determine optimum conditions for GAEO, and related results were summarized 
in Table 6.  The Vc of 0.5 µL, tu of 44.87 min, and td of 11.49 min were obtained as an optimum condition for electrode 
preparation toward GAEO on AuBi/MWCNT. It could be seen in Table 6 that specific activity under optimum conditions 
was predicted by the obtained model as 1.40971 mA/cm2. The experiment was conducted under optimum conditions to 
verify the specific activity value derived from the model, and the specific activity was found to be 1.62 mA/cm2. It was 
determined that the obtained model was close to the experimental value with an error of 13%, indicating that the predicted 
value was in harmony with the observed value. 

Table 5. ANOVA regression model for GAEO.

Source Sum of Squares df Mean Square F-value p-value

Model 0.76 9 0.084 9.27 0.0009 significant
A-Volume of nanocatalyst mixture 0.15 1 0.15 16.11 0.0025
B-Ultrasonification of nanocatalyst mixture 0.19 1 0.19 21.26 0.0010
C-Duration of drying 0.00576 1 0.00576 0.63 0.4444
AB 0.076 1 0.076 8.37 0.0160
AC 0.016 1 0.016 1.78 0.2114
BC 0.0002 1 0.0002 0.022 0.8850
A² 0.13 1 0.13 14.11 0.0037
B² 0.16 1 0.16 18.03 0.0017
C² 0.046 1 0.046 5.04 0.0485
Residual 0.091 10 0.009086
Lack of Fit 0.057 5 0.011 1.71 0.2852 not significant
Pure error 0.034 5 0.006707
Cor total 0.85 19
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Figure 7. Comparison of experimental and predicted values for 
GAEO.
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The stability and GAEO activity of synthesized nanocatalysts were determined via CA. Figure 9a depicts CA results of 
Au/MWCNT, Bi/MWCNT, and Au80Bi20/MWCNT in 0.5 M GA at –0.4 V potential. Figure 9b depicts the currents at the 
end of 1000 s. At the end of 1000 s, Au80Bi20/MWCNT current value is approximately 1.4 and 1.8 times greater than Au/
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Figure 8. Response surface plots of a) tu and Vc, b) td and Vc, and c) td and tu for GAEO.

Table 6. Optimum conditions by the CCD.

Number Vc (µL) tu (min) td (min) Spesific activity (mA/cm2) Desirability

1 0.50 44.87 11.49 1.40971 1.000
2 0.50 42.63 12.83 1.40723 0.997
3 0.50 49.08 13.28 1.4027 0.992
4 0.50 46.53 14.81 1.40211 0.991
5 0.50 42.17 17.43 1.38618 0.972
6 15.00 32.98 16.67 1.10313 0.643
7 15.00 32.85 16.79 1.10311 0.643
8 15.00 33.83 17.28 1.10268 0.643
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MWCNT and Bi/MWCNT, respectively. Moreover, Au80Bi20/MWCNT has the best stability and highest GAEO activity in 
the long term.

Figure 10 depicts the Nyguist plot for Au/MWCNT, Bi/MWCNT, and AuBi/MWCNT in 0.5 M GA. The shape of the 
Nyguist plots is generally semicircle, and the diameter of these semicircles has a significant effect on the charge transfer 
resistance of catalyst. Accordingly, when the diameter of the semicircles decreases, the charge transfer resistance decreases 
and the GAEO activity of the nanocatalyst increases. According to Figure 10, the charge transfer resistance can be listed as 
Au80Bi20/MWCNT <Au/MWCNT <Bi/MWCNT. The fitted EIS profile of Au/MWCNT, Bi/MWCNT, and AuBi/MWCNT 
were given in Figure S1, Figure S2, and Figure S3, respectively. The charge transfer resistance of Au/MWCNT, Bi/MWCNT, 
and AuBi/MWCNT were determined as 2.502, 3.733, and 2.279 Ω, respectively. As a result, it was found that Au80Bi20/
MWCNT nanocatalyst has the highest GAEO activity, and these results are in agreement with CV and CA results.
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Figure 9. Chronoamperomograms of Au/MWCNT, Bi/MWCNT, and Au80Bi20/
MWCNT in 0.5 M GA at -0.4 V.
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4. Conclusion
Au/MWCNT, Bi/MWCNT, and bimetallic Au-Bi/MWCNT were synthesized via NaBH4 reduction method, characterized 
by advanced surface analytical methods. The electrocatalytic performance of prepared catalyst was investigated with EIS, 
CV, CA, and LSV toward GAEO. Following results and insights were obtained: 

Ø	 Au/MWCNT, Bi/MWCNT, and Au-Bi/MWCNT at varying Au:Bi ratios could be easily prepared from 
corresponding Au and Bi precursors via NaBH4 reduction method.

Ø	 According to XRD and TEM results, particle sizes of Au80Bi20/MWCNT  were compatible with each other. It was 
observed that the BET surface area of ​​Au/MWCNT increased with the addition of Bi.

Ø	 Electrochemical measurement was revealed that Bi addition improves the electrochemical activity of Au/
MWCNT. This situation can be explained by electronic effect.

Ø	 According to CV results, Au80Bi20/MWCNT showed the highest GAEO performance. The optimum metal molar 
ratio is the basis for this performance.

Ø	 CCD was utilized for optimum conditions of the electrode preparation. The volume of nanocatalyst slurry (Vc, 
A), ultrasonication time of the nanocatalyst slurry (tu, B), and the drying time of the electrode (td, C) are determined as 
independent variables. The maximum current density values obtained for GAEO were identified as the response. The Vc 
of 0.5 µL, tu of 44.87 min, and td of 11.49 min were obtained as an optimum condition for electrode preparation toward 
GAEO on AuBi/MWCNT. 

Ø	 CA and EIS results revealed that AuBi nanocatalyst has a high stability and fast oxidation kinetics. 
Ø	 The data obtained from this study depicts that Au80Bi20/MWCNT nanocatalyst is a good candidate as anode 

nanocatalyst for DGFC. 
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Figure S1. Fitted EIS profile of Au/CNT.

Figure S2. Fitted EIS profile of Bi/CNT. 

Figure S3. Fitted EIS profile of AuBi/CNT. 


