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Abstract: Machine learning (ML) on Big Data has gone beyond the capacity of traditional machines and technologies.
ML for large scale datasets is the current focus of researchers. Most of the ML algorithms primarily suffer from memory
constraints, complex computation, and scalability issues.The least square twin support vector machine (LSTSVM)
technique is an extended version of support vector machine (SVM). It is much faster as compared to SVM and is
widely used for classification tasks. However, when applied to large scale datasets having millions or billions of samples
and/or large number of classes, it causes computational and storage bottlenecks. This paper proposes a novel scalable
design for LSTSVM named distributed LSTSVM (DLSTSVM). This design exploits distributed computation on cluster
of machines to provide a scalable solution to LSTSVM. Very large datasets are partitioned and distributed in the form of
resilient distributed datasets on top of Spark cluster computing engine. LSTSVM is trained to generate two nonparallel
hyper-planes. These hyper-planes are achieved by solving two systems of linear equations each of which involves data
instances from either class. While designing DLSTSVM we employed distributed matrix operations using the MapReduce
paradigm of computing to distribute the tasks over multiple machines in the cluster. Thus, memory constraints with
extremely large datasets are averted. Experimental results show the reduction in time complexity as compared to existing
scalable solutions to SVM and its variants. Moreover, detailed experiments depict the scalability of the proposed design
with respect to large datasets.

Key words: Distributed machine learning, Big Data, cluster computing, least square twin support vector machine
(LSTSVM), MapReduce, parallel processing

1. Introduction
Existing machine learning (ML) techniques may be classified into two broad categories; supervised ML tech-
niques and unsupervised ML techniques [1]. In supervised ML, classification rules are built on a training set
which contains data instance with class labels. Then after, new data instances are classified using the learnt
classification rules. Support vector machine (SVM) is an extensively used supervised ML algorithm developed
by Vapnik et al. [1]. SVM generates two parallel hyper-planes during training. These hyper-planes separate
data from two classes. The optimal hyper-plane is generated by solving a complex quadratic programming
problem (QPP). The overall training takes order of O(n3) time if there are n training data samples. A QPP
size directly depends on the dataset size. Moreover, solving a QPP is computationally expensive job. Another
faster variant of SVM has been proposed which solves two smaller QPPs unlike SVM. This technique is known
as twin support vector machines (TWSVM) [2]. This causes significant reduction in time complexity involved
∗Correspondence: rs151@iiita.ac.in
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in SVM training and speeds up the training four times faster than that of SVM. Though, the QPPs are smaller,
solving the same is still a complex task. A new faster version of TWSVM has been proposed developed by Ku-
mar et al. [3] and is well known as LSTSVM which is widely used for the classification task. Unlike TWSVM,
the LSTSVM is trained to generate two nonparallel hyper-planes. These hyper-planes are achieved by solving
two systems of linear equations each of which involves data instances from either class. Thus, it is significantly
faster than TWSVM. Figure 1 represents the categorization of two classes by using LSTSVM. As shown in the
Figure 1 there are two classes; class 1 and class 2, which are divided by using two nonparallel planes in such a
way that each plane is nearer to the data points of one class while farther from the other class.

Figure 1. Hyper-planes generated by LSTSVM.

Although LSTSVM is much faster as compared to TWSVM, yet very large datasets cause computation
and storage bottlenecks in case of LSTSVM. Due to this fact, capability of LSTSVM technique is limited to
smaller dataset only. For very large datasets, training becomes too expensive and system may go out of memory
as well.

1.1. Research contribution
To solve the underlying computation and storage challenges of LSTSVM on very large datasets, the proposed
technique named DLSTSVM employs distributed computing over multiple machines in a parallel fashion on top
of recent distributed parallel computing framework. Our research work makes following contribution:

• The way all computations are distributed over multiple machines makes DLSTSVM a scalable technique
which is the prime objective of current research work.

• DLSTSVM not only handles scales well even with large number of input patterns, due to data parallel
computing, it achieves significant speed-ups too.

• This work gives the designing of DLSTSVM based on MapReduce paradigm of computing along with
detailed performance and scalability analysis.

The present research work is illustrated in six major sections. Section 1 gives a brief introduction to supervised
ML techniques along with their underlying challenges in case of very large datasets. In section 2, state-of-
the-art is presented around distributed frameworks for Big Data machine learning. Also, multiple variants of
SVM, LSTSVM, and distributed SVM are discussed along with their inherent challenges. Section 3 gives a
brief background of mathematical preliminaries of LSTSVM as well as basic fundamentals of Spark framework.
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Section 4 describes the design of DLSTSVM algorithm and discusses its time and storage complexity. Detailed
experimental results in section 5 compare the performance of the proposed algorithm with earlier techniques.
Moreover, to assess the scalability of DLSTSVM, manifold experiments are performed on large-scale synthetically
generated datasets. Finally, section 6 concludes the presented work with probable future prospects.

2. Literature survey

Related research works are explored in three major dimensions; first is related to distributed frameworks and
libraries for handling Big Data, second is related to multiple single machine variants of SVM and LSTSVM,
and third is related to scalable solutions to SVM and its variants along with their limitations.

2.1. Distributed frameworks and libraries for Big Data

To utilize the advantages of distributed computing to enable machine learning systems to deal with large-
scale datasets multiple distributed ML frameworks and libraries are developed. Apache Mahout includes
distributed scalable ML algorithms implemented for Hadoop and provide free scalable ML libraries. GraphLab
implements Machine Learning-Data Mining in the cloud-based environment for graph related operations in
parallel. Microsoft’s DryadLINQ [5]using LINQ on top of Dryad, is well suited for data parallel applications.
Spark [6], a distributed computing engine, well suited for iterative nature of ML and facilitates vivid ML tasks.
Multiple recent survey [7], discusses and compares pros and cons of several computing engines such as Flink,
Spark, H2O, and Storm. Also, they compared ML libraries inside these engines such as Mahout and MLlib.[29]

2.2. SVM and LSTSVM variants
SVM and its various variants for binary class classifications are available. Several researchers extended the basic
SVM and LSTSVM to multi-class scenarios too [9]. Multiple variants of SVMs have been proposed out of which
some are exact solvers [11, 13], some fall under the categories of approximate solvers [14–17], divide and conquer
SVM solvers [10] online SVM solvers [12]. Accurate solvers are time consuming whereas approximate solvers
compromise with accuracy. Although, divide and conquer approach try to give faster solution but with large
scale data instances they still exhibit high training time. In previous couple of years some more nonparallel
variants of binary class LSTSVM have been proposed using Fuzzy Logic, KNN, and entropy based techniques
[18–21] but with million scale data instances their computation time is extremely high.

2.3. Distributed and parallel machine learning algorithms

Parallel machine learning is an aspect to scale up existing sequential ML algorithms [28]. Advancements in the
field of multi-core and cloud computing architectures have caused wide accessibility to distributed and parallel
computing systems [8]. Faster variants of SVM (including LSTSVM) too become incapable of handling very
large-scale datasets. Several solutions have been tried to scale SVM using various approaches like dividing the
dataset, training SVM on each subset in parallel, and then combining multiple classifiers, thereby iterating
this process [32–34]. Some used multiple repartitioning of data which involves sharing of training data among
nodes, thereby causing significant training overhead. Some required frequent communication of subsolutions
resulting in slow training time. Thus, drawback of these approaches is that reallocation process slows down
the training process. Approach given in a research work [13] used cascading of support vectors in multiple
stages of training till final set of support vectors is obtained which involves significant data transfer cost.
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Development of distributed computation on commodity nodes and MapReduce kind of frameworks, the problems
of aforementioned techniques are tried to resolve [35]. Some researchers employed high-speed costly graphics
processing units (GPU) and applied MapReduce based technique. The major drawback of this approach is in
tedious setting up specialized configurations which makes it difficult to use and develop applications using this
approach [28]. Apart from state-of-the-art parallel SVM methods [22, 23] some recent parallel and distributed
SVM techniques are also proposed in previous couple of years [24–26]. One of these approaches provides a
distributed and parallel mechanism for alternating direction method of multipliers for non-convex penalized
SVMs [24] at cost of accuracy. Another technique performs subspace partitioning on the datasets by using
decision tree on projection of data showing maximum variance [25] and shows approximately 150 times speedup
over sequential SVM. One group of researchers proposed a parallelization strategy in training SVM which finds a
low rank approximation of matrices and uses random projection mechanism [26]. This solves the approximated
optimization problem and appears as scalable approach still, its run-time is very high for million scale datasets.

3. Fundamental concepts of LSTSVM and Spark
This section specifies the basic formulation of LSTSVM and its incompetence to handle the large scale datasets
with respect to storage and computation. Further, it briefs the basic description of Spark and its features.

3.1. Mathematical formulation of LSTSVM
As discussed earlier, LSTSVM finds two hyper-planes. These hyper-planes are not necessary to be parallel. The
nonparallel hyperplanes are obtained by following two systems of linear equations given by 1 and 2.

min(w1, b1, ξ)
1

2
||X1w1 + e1b1||2 +

c1
2
ξT ξ

[
(s.t.)− (X2w1 + e2b1) + ξ = e2

]
. (1)

min(w2, b2, η)
1

2
||X2w2 + e2b2||2 +

c2
2
ηT η

[
(s.t.)(X1w2 + e1b2) + η = e1

]
. (2)

Here, X1 and X2 are data matrices corresponding to class -1 and class +1 respectively and have total l1 and
l2 instances. Here, w1, b1 and w2, b2 are respective hyper-plane parameters know as weights and bias. Here,
e ∈ R11 and e ∈ R12 are the vectors with entries of 1 only, c1 and c2 are nonnegative penalty parameters
whereas ξ ∈ R12 and η ∈ R11 are known as slack variables for class –1 and class +1. Thus, optimization
equations 1 and 2, for LSTSVM contain only equality constraints. Finally, upon solving these equations,
hyper-plane parameters are attained as given in equation 3 and 4. Here, G = [X1e1] and H = [X2e2] .[w1

b1

]
= −

(
HTH +

1

c1
GTG

)−1

HT e2. (3)

[w2

b2

]
= −

(
GTG+

1

c2
HTH

)−1

GT e1. (4)

With the help above hyper-plane parameters, the obtained hyper-planes are given as per equation 5 and 6.

XTw1 + b1 = 0. (5)

XTw2 + b2 = 0. (6)
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When a new data instance arrives, it is assigned a class based on the decision function give in equation 7.

f(x) = argmin i=1,2
|wi.x+ bi|

||wi||
. (7)

With very large datasets, computing the equations 3 and 4 causes computation and storage bottlenecks, thereby
training becomes too expensive and system may go out of memory as well. Thus, capability of LSTSVM
technique is limited to smaller datasets only. The next subsection briefs the characteristics of Spark distributed
processing engine used in our research work for distributed parallel computation over cluster of machines.

3.2. Apache Spark - a cluster computing framework

Apache Spark provides cluster computing which encompasses automatic locality-aware scheduling, load balanc-
ing, and fault tolerance. Spark facilitates data-parallel computations on cluster of commodity machines using
MapReduce computing paradigm [4]. Spark is also well suited for iterative computing and interactive analytics.
As shown in Figure 2, Spark engine core takes care of prime functions. These functions cover Spark computing
environment set up, generation, transformation, and distribution of resilient distributed datasets RDDs. Spark
driver internally distributes RDDs onto multiple machines in the cluster. It can be explicitly cached in main
memory for reuse if required in an application [6].

Figure 2. Spark distributed processing

4. Proposed methodology

Design of DLSTSVM includes three phases; first decomposes entire computation into different modules and
identifies the parallel sections, second specifies the Map and Reduce steps for each module, and third discusses
time and space complexities of DLSTSVM to show how the challenges of LSTSVM is resolved by DLSTSVM.

4.1. Problem decomposition

Consider equations 3 and 4 which yields two hyper-planes each corresponding to data instances from a single
class. Following subsections identifies parallel computable parts involved in these series of matrix calculations.

(i) Identification of parallel computations: Equation 3 involves series of matrix operations. Entire
computation is divided into two parts specified by equation 8 and 9. Each part is computed in parallel on the
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data residing on each machine. The serial and parallel portion of computation is clearly depicted in the flow
diagram of Figure 3. Thus, the hyper-plane parameter u can be given as u = Rc×c × Sc×1 such that:

R = −((HTH) + (1/c)(GTG))−1. (8)

S = HT e2. (9)

(ii) Data representation and partitioning: Matrix R requires computation of GTG and HTH .
For very large matrix G , computation of GTG needs to be distributed in such a way that may avert memory
bottleneck as well as speedsup the processing. Therefore, matrix G is distributed as RDD over cluster where each
element of RDD represents a data instance from matrix G in mutually exclusive fashion. Figure 4 depicts this
partitioning of matrix Gr×c having r rows (representing data instances) and c columns (representing dimensions
of each data instance). Here, gi specifies ith data instance of matrix G . Then, GT = [gT1 , g

T
2 , g

T
3 ...g

T
r ]c×r ,

where each gTi is a column vector achieved by taking the transpose of corresponding row vector gi .

Figure 3. Computation flow of parallel (shaded block) and
serial sections

Figure 4. Data partitioning over cluster of machines

4.2. Modeling parallel computations as MAP-REDUCE steps

(i) For computing matrix R: MAP-REDUCE steps for GTG are modeled in following subsections:
MAP step: Figure 5 shows the MAP step which multiplies jth column of GT to jth row of G , i.e. gTi × gi .
Here, gi is a row vector of dimension 1× c and gTi is a column vector of dimension c× 1 . In each partition-i,
this MAP step is executed in parallel for each data instance gj . Thus, tj = gTj × gj is a matrix of dimension
c× c , generated for very instance of matrix G .
REDUCE step: If each machine in cluster has m data instances then it generates m intermediate matrices.
Since, matrix G has r such data instances, therefore total r intermediate matrices throughout the cluster.
REDUCE step is designed to sum up all the temporary matrices tj to produce the matrix GTG as T = Σr

j=1tj
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i.e. all tj are reduced on sum operation for corresponding elements at index(i, j) . A simple matrix addition
is applied on two intermediate matrices at a time in each partition. Another intermediate matrix is added to
the sum matrix produced in the previous step. Cascading the sum, matrix T is computed as shown in Figure
6. Similarly, HTH is also computed in parallel fashion, added to (1/c1)G

TG and inversed to yield matrix R .

Figure 5. MAP step applied to each data instance Figure 6. REDUCE step for summing all intermediate
matrices

(ii) For computing S = HT e2 : For matrix H which is distributed over cluster, it has been evaluated
that vector obtained by multiplying HT to e2 and the vector obtained by transposing the row-vector achieved
after column-wise addition of elements of matrix H are same. Thus, MAP and REDUCE steps are designed
as:
MAP step: For the approach proposed in the work, this step does not make any changes to underlying matrix
elements. It simply forwards the RDD of matrix H for reduction by the following REDUCER.
REDUCE step: In reduce step, the column-vectors of the RDD corresponding to matrix H are reduced
by sum operation defined on the index(j) . Here, j indicates a particular column and 1 <= j <= c . This
reduction is applied in parallel on each machine in the cluster in order to compute HT e2 in distributed parallel
fashion. Internally, two row-vectors of H are picked up at a time in each partition and their corresponding
column elements are added, resulting in new sum-vector. Next row-vector is added to the sum-vector produced
in the previous step. Thus, all row-vectors on multiple machines are summed distributively to give vector S .
Algorithm 1 specifies the required sequence of steps involved in DLSTSVM.

Algorithm 1 DLSTSVM
1: procedure Segregate the data of class-A and class-B and transform it into RDD(as A,B )
2: Define following two matrices: G = [Ae1] and H = [Be2] and two vectors as e1, e2
3: Calculate matrix R1 = (HTH + 1/c1(GTG))−1 and R2 = (GTG+ 1/c2(HTH))−1 as follows:
4: a: Calculate HTH distributively as follows:
5: MAP Phase: t1 = H.map(rowTrans_row)
6: REDUCE Phase: t1 .reduce(sumMatrix)
7: b: Calculate GTG distributively:
8: MAP Phase: t2 = G.map(rowTrans_row)
9: REDUCE Phase: t2 .reduce(sumMatrix)
10: c: Compute (HTH + 1/c1(GTG))−1

11: d: Compute (GTG+ 1/c1(HTH))−1

12: Calculate S1 = HT e2 distributively as follows:
13: MAP Phase: d1 = H.map(feedToReduce)
14: REDUCE Phase: S1 = d1 .reduce(sumRowVector)
15: Calculate S2 = GT e1 distributively as follows:
16: MAP Phase: d2 = G.map(feedToReduce)
17: REDUCE Phase: S2 = d2 .reduce(sumRowVector)
18: Find hyper-plane parameters as follows:
19: [W1, b1] = u = R1 × S1

20: [W2, b2] = u = R2 × S2
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4.3. Analysis of time and space complexity

Consider matrix G be of order r × c . Hence, the resultant matrix T = GT ×G will be of order c× c . Since,
LSTSVM applies usual matrix multiplication hence, takes O(rc2) time and requires O(2rc+ c2) = O(rc+ c2)

storage, O(2rc) for GT and G and O(c2) for matrix T . Very large values of r cause memory bottlenecks.
O(rc2) computations are time-expensive too. Furthermore, we discuss the time and space complexity of
DLSTSVM:
(i) Time and space complexity for R: Since, GT × G is being computed in distributed parallel way, let
there are n machines in the cluster. Computation of each intermediate matrix tj requires c2 products and
c2 storage. Thus, for a single machine O(mc2) time and O(mc) space required which can be handled by a
single machine. Here, m = (r/n) specifies number of data instances lying on each machine. It can be stated
that in DLSTSVM, O(rc2) computation is now distributed among n machines and each machine performs only
O(mc2) computations. Also, storage is distributed, reducing to O(c2) only on a each machine.
Since, matrix GTG and HTH are of dimension c × c , adding (1/c1(G

TG)) and HTH takes O(c2) addition
operations and O(c2) storage. Resulting addition matrix is of order c× c , hence, taking inverse will take O(c3)

computation and O(c2) storage only. Thus, matrix R specified is computed successfully in O(mc2 + c3 + c2) =

O(mc2 + c3) operations and O(c2 + c2 + c2) = O(c2) storage on each machine.
(ii) Time and space complexity for S: As discussed in the REDUCE step of sub-section 4.2 to compute
vector S , sum of corresponding elements from two subsequent vectors performs c additions. Since, each
machine keeps m data instances, total O((m− 1)× c) = O(mc) sum operations are executed on each machine,
all machines running in parallel in cluster. Furthermore, each machine stores only two row-vectors to be added
thereby requiring O(c) space.
In summary, computation of R requires O(mc2+ c3) time and O(c2) space whereas computation of S requires
O(mc) time and O(c) space. Thus, matrix u = R× S , is computed without any bottleneck.

5. Results and discussion
5.1. Experimental setup and configurations

System’s configuration used for our experiment is listed in Table 1 specifying processor, memory, and operating
system. Since, experimental setup requires distributed cluster hence, Table 1 also specifies the cluster size in
terms of nodes, memory, and processor as well as the version of Spark and SBT (simple build tool) used here.

Table 1. System and cluster configuration.

System configuration Parameter value
Processor Intel(R) Core-i3

3.30 GHz
Total number of cores
per computer system

4

RAM per computer
system

6 GB

Operating system Ubuntu 12.04 Linux

Cluster configuration Parameter value
SBT version 0.11.3
Spark version 1.5.0
Number of nodes in the
cluster

8

Total number of cores
in cluster

24 (3 cores from each node
/SPARK_WORKER_CORES = 3)

Total executor memory
in cluster

32 GB (4 GB from each node
/SPARK_WORKER_MEMORY= 4g)
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5.2. Comparison with existing solutions

Effective libraries have been developed for SVM such as LIBSVM [31] and SVMLight. However, SVM and
their optimized implementations in these libraries still do not scale efficiently even for 1 million data samples.
Computation cost is too high and memory requirements are also high. Though some approximate solvers [32–
34] are proposed, but they compromise with accuracy. For the sake of comparison, datasets that have been
used are listed in Table 2. In addition, Table 2 shows a comparison of results of other existing techniques with
DLSTSVM that clearly depicts the time efficiency of DLSTSVM over other state-of-the-art techniques.

Table 2. Performance comparison with earlier techniques.

Dataset Ijcnn1 Census Webspam Kddcup99 Cifar
#Instances 141691 199523 350000 5209460 60000
#Attributes 22 409 254 125 1024
Parameter setting C=32 , γ = 2 C=512, γ = 2−9 C=8, γ = 32 C=256, γ = 2−1 C=8, γ = 2−22

Techniques Time(s)/Acc(%) Time(s)/Acc(%) Time(s)/Acc(%) Time(s)/Acc(%) Time(s)/Acc(%)
DC-SVM-early [10] 12/98.35 261/94.9 670/99.13 470/92.61 1977/87.02
DC-SVM [10] 41/98.69 1051/94.2 10485/99.28 2739/92.59 16314/89.5
LIBSVM [11] 115/98.69 2920/94.2 29472/99.28 6580/92.51 42688/89.5
LaSVM [12] 251/98.57 3514/93.2 20342/99.25 6700/92.13 57204/88.19
CascadeSVM [13] 17.1/98.08 849/93.0 3515/98.1 1155/91.2 6148/86.8
LLSVM [14] 38/98.23 1212/92.8 2853/97.74 3015/91.5 9745/86.5
FastFood [15] 87/95.95 851/91.6 5563/96.47 2191/91.6 3357/80.3
SpSVM [16] 20/94.92 3121/90.4 6235/95.3 5124/90.5 21335/85.6
LTPU [17] 248/96.64 1695/92.0 4005/96.12 5100/92.1 17418/85.3

c1=c2=10−1 c1=c2=10−3 c1=c2=10−3 c1=c2=10−1 c1=c2=10−2

LSTSVM [3] 743.65/98.62 31716.24/95.2 23041.36/99.15 */NA */NA
DLSTSVM 10/98.62 238/95.2 121/99.15 190/94.4 5245/91.3

Here, Table 2 specifies the best performances achieved out of multiple executions of various techniques
over a grid of points corresponding to a range of values for balancing parameters C = [2−10, 2−9, ..., 210] and
kernel parameter γ = [2−10, 2−9, ..., 210] for RBF kernel. Moreover, the stopping criterion is set to the default
value 10−3 in case of LIBSVM and DC-SVM. Rank, #clusters , and #features (corresponding to LLSVM,
LTPU, and FastFood respectively) are taken as 3000. However, for DLSTSVM, value of c1=c2 has been set
at the same value in the range [10−5, 10−4, ....., 105] , on which LSTSVM gives the best performance. It is evi-
dent from the results that at same parameter setting, the predictive performance of LSTSVM and DLSTSVM
is same. Another set of experiments are performed to compare the run-time and predictive performance of
DLSTSVM with state-of-art recent variants of LSTSVM. Results are calculated on bench-marking large scale
datasets like CovType and Mnist [30] as well as David’s NDC data generator [27]. Table 3 lists the properties
of these datasets, parameter settings used in experiments and performance comparison of various techniques.
It is clearly observed that DLSTSVM outperforms all the non-parallel state-of-art LSTSVM and its variant
techniques in terms of run-time performance and at the same time DLSTSVM exhibits comparable predictive
performance too with state-of-the-art techniques.
Moreover, further experiments are conducted to compare DLSTSVM with some existing state-of-the-art dis-
tributed parallel techniques too. Benchmarking datasets like adults, gisette, covType, and Mnist are used in our
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experiments. Table 4 specifies the properties of these datasets, parameter settings used in experiments and per-
formance comparison of various techniques. Results clearly show better or comparable predictive performance
of DLSTSVM with most of the other techniques. At the same time, run-time performance is much better than
parallel SVM, ADMM parallel, xSVM, and parallel distributed penalized SVM techniques. Though, projection-
SVM shows better run-time here for large scale feature vector size however, since, DLSTSVM is scalable in
nature, there is scope of adding more number of executors to reduce this computation time further.

Table 3. Performance comparison with state-of-art LSTSVM variants.

Dataset NDC-100k NDC-500k NDC-1m CovType Mnist
#Instances 100,000 500,000 1,000,000 464,810 2,000,000
#Attributes 32 32 32 54 784
Parameter setting C=1 , γ = 1 C=1, γ = 1 C=1, γ = 1 C=32, γ = 32 C=8, γ = 2−3

Techniques Time (s)/Acc.(%) Time (s)/Acc.(%) Time (s)/Acc.(%) Time (s)/Acc.(%) Time (s)/Acc.(%)
FLSTSVM [18] 21.67/87.48 89.5/86.24 209.28/ 86.10 242.34/94.74 9242.83/95.83
EFLSTSVM [19] 15.53/87.21 91.27/86.62 190.63/87.34 980.19/95.26 14855.62/96.18
ULSTPMSVM [20] 228.56/88.72 1144.95/87.13 2289.84/88.48 2082.46/95.42 */NA
KNN-based LSTSVM [21] 1919.5/87.69 119968.46/87.37 */ NA */NA */NA

c1=c2=10−1 c1=c2=10−3 c1=c2=10−3 c1=c2=10−1 c1=c2=10−2

LSTSVM [3]] 421.76/88.14 2102.34/87.42 4263.78/87.58 15017.35/96.15 #/NA
DLSTSVM 6.31/88.14 30.22/87.42 63.47/87.58 91.26/96.15 4827.68/97.58

*Represents experiment stopped as computation time was very high, #Represents memory out of run.

Table 4. Performance comparison with state-of-art distributed and parallel SVM techniques.

Dataset Adult Gisette CovType Mnist
#Instances 32,561 6000 464,810 2,000,000
#Attributes 123 5000 54 784
Parameter setting C=32 , γ = 2−7 C=1, γ = 2−4 C=32, γ = 32 C=1, γ = 2−5

Techniques Time (s)/Acc.(%) Time (s)/Acc.(%) Time (s)/Acc.(%) Time (s)/Acc.(%)
Parallel SVM [22] 488.32/84.42 8241.47/97.56 5281.74/95.89 */NA
ADMM Parallel [23] 59.87/85.67 1251.52/97.62 934.54/96.03 1855.12/97.21
Parallel and distributed penal-
ized SVM [24]

33.51/84.31 745.20/96.43 567.44/96.24 1101.59/97.04

Projection-SVM [25] 58.86/84.83 1007.94/97.20 877.15/97.12 2986.21/97.59
xSVM [26] 39.11/85.14 712.23/97.41 543.56/96.03 4079.74/97.70

c1=c2=10−1 c1=c2=10−3 c1=c2=10−3 c1=c2=10−2

DLSTSVM 2.87/85.74 4107.36/97.91 91.26/96.85 3827.68/97.58

5.3. Scalability analysis of DLSTSVM
This section conducts experiments to test the scalability of DLSTSVM and observes its performance with respect
to #cores, #instances, and #features on synthetically generated datasets. Multiple datasets are generated with
a different number of data instances; 1, 3, 5, 7, 9, and 11 million, a different number of attributes; 100, 300, 500,
700, and 900. Run-times of DLSTSVM are estimated with varying number of cores, instances, and features in
the following subsections.
(i) Number of cores versus computation time: Several graphs depicted in Figures 7 and 8 are drawn between
cores (at x-axis) and computation time (at y-axis). Graphs are plotted for 1, 3, 5, 7, 9, and 11 million
data instances respectively. Multiple curves in each Figure 7a–8f shows the run-time for 100, 300, 500, 700,
and 900 attributes. Run-time decreases with addition of executor-cores in the cluster. This decrement in
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time however decreases gradually because addition of more machines puts communication overheads, meta-
information management cost, and task scheduling delays too. Also, more attributes results in more computation
time.
(ii) Number of data instances versus computation time: Figures 9 and 10 analyze the computation time with
increasing number of data instances where each graph corresponds to a fixed number of cores. It establishes
the scalability of DLSTSVM with respect to large-scale data instances. Machines in cluster do not hang even
for 11 million instances whereas LSTSVM is unable to handle even 1 million instances. Multiple curves in
each Figures 9a–9d and 10a–10c shows the run-time for 100, 300, 500, 700, and 900 attributes. It is evident
from Figures 9a to 10c that computation time of DLSTSVM behaves linearly with respect to increase in data
instances. However, for a higher number of attributes (>= 300), the slope of the curve gets steeper.
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Figure 7. Run-time performance for different cores.
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Figure 8. Run-time performance for different cores.

(iii) Number of attributes versus computation time: Each graph in Figures 11 and 12 is plotted for
execution time against varying number of attributes and for a fixed value of data instances. Multiple curves
in each graph are drawn corresponding to different number of cores from among 24 cores available. All plots
show similar pattern of performance. It is also evident that greater the number of attributes, the higher is the
computation time. It is also observed that computation time inflates as we go beyond 300 attributes which
supports the computational analysis for DLSTSVM given in subsection 4.2.

(iv) 3S based performance evaluation of DLSTSVM: Performance of distributed parallel algorithms can
be assessed along 3S evaluators; Sizeup, Speedup, and Scaleup. These parameters specify three different aspects
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Figure 9. Run-time performance for different data instances.
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Figure 10. Run-time performance for different data instances.
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Figure 11. Run-time performance for different attributes.

of a distributed parallel algorithm. Description and significance of each parameter along with the measurements
for DLSTSVM is illustrated in following subsections.

Sizeup:- Performance evaluation parameter Sizeup is a measure of computation time of the algorithm
with respect to increment in input size keeping number of computation unit fixed. For an ideal situation graph,
depicting Sizeup of an algorithm should be linear. However, practically Sizeup may be sublinear. Figure 13a
shows Sizeup of DLSTSVM for different computation units (executor-cores) where multiple curves show the
Sizeup for 100, 300, 500, 700, and 900 attributes respectively. Evidently, Sizeup of DLSTSVM is almost linear.
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Figure 12. Run-time performance for different attributes.
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Figure 13. 3S based performance evaluation of DLSTSVM.

Scaleup:- This parameter captures the behavior of algorithm in case when data size and computation units
are scaled in same ratio. Let a system with 1 computation unit takes time t on data size d . If k times larger
computing system takes t time on kd size data, then the system scales perfectly. However, perfect scalability is
practically typical to achieve. Figure 13b specifies Scaleup of DLSTSVM for different settings of attributes. To
measure Scaleup, number of executor cores in the cluster is set to 1, 3, 5, 7, 9, and 11 corresponding to 1 million,
3 million, 5 million, 7 million, 9 million, and 11 million data instances respectively. It is observed that Scaleup
degrades with rise of executor cores (or #machines) due to inter-machine communication cost, task scheduling
delays, uneven machine performance and skewed data distribution. In case of lesser attributes such as 100, all
afore-mentioned overheads are dominant over computation cost, hence, degrade in Scaleup is maximum for it.
However, in case of more attributes (300 and above) and with 9 to 11 million data instances, Scaleup varies
from 88% to 70%, whereas with 1 to 9 million data instances between 100% to 88% which is quite good.
Speedup:- Speedup describes the behavior of a distributed parallel algorithm with increase in number of machines
in the cluster keeping the data size fixed. Presented work evaluates speedup over 1 to 8 nodes/machines (i.e.
number of cores from 1 to 24) in the cluster. Figure 13c depicts speedup where different curves corresponds to
number of attributes 100, 300, 500, 700, and 900 respectively. Here, number of instances is fixed at 11 million.
DLSTSVM exhibits prominent speedups. For number of attributes >= 300 speed up is extremely good.
Speedup decreases with adding more number of nodes in the cluster which is expected behavior of any scal-
able distributed algorithm. For 100 attributes, the decrement in speedup is more because of dominance of
communication and scheduling overheads over computation costs. All discussions regarding the performance of
DLSTSVM for the 3S evaluators are summarized in Table 5.
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Table 5. Summary of performance of DLSTSVM for 3S evaluators.

Performance evaluators # Data instances Attribute range
100 100-300 300

Sizeup 1–11 million Almost Linear

Range of Scaleup achieved
Scaleup 1–7 million 100%–79% 100%–89%

7–11 million 84%–70% 93%–82%

Speedup achieved
Speedup 1–11 million Average Good Very good

6. Conclusion and future work
In this research work a novel technique DLSTSVM is proposed which achieves scalability by using MapReduce
to process distributed data partitions on cluster of machines in parallel fashion. It not only averts memory and
computational bottlenecks of existing nonparallel version LSTSVM, but also achieves significant speedups too
without losing predictive accuracy. Detailed experimental comparison with existing nonparallel versions of SVM
and LSTSVM show that DLSTSVM exhibits speedups in running-time and achieve scalability with respect to
large scale datasets. The number of attributes has more impact on run-time. DLSTSVM shows speedup 3x to
20x performance gains. Speedups performance of DLSTSVM is evaluated along well known 3S criterion, i.e.
Sizeup, Scaleup, and Speedup, and found to be effective. Sizeup of DLSTSVM is almost linear. For attributes
above 300 and data instances 7 to 11 million a Scaleup of 77% to 53% is observed, whereas for 1 to 7 million
data instances, a Scaleup of 100% to 70% is achieved effectively. DLSTSVM exhibits prominent speedups and
is extremely good for number of attributes ≥ 300.
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