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Abstract: The continuous rise in skin cancer cases, especially in malignant melanoma, has resulted in a high mortality
rate of the affected patients due to late detection. Some challenges affecting the success of skin cancer detection include
small datasets or data scarcity problem, noisy data, imbalanced data, inconsistency in image sizes and resolutions, un-
availability of data, reliability of labeled data (ground truth), and imbalance of skin cancer datasets. This study presents
a novel data augmentation technique based on covariant Synthetic Minority Oversampling Technique (SMOTE) to ad-
dress the data scarcity and class imbalance problem. We propose an improved data augmentation model for effective
detection of melanoma skin cancer. Our method is based on data oversampling in a nonlinear lower-dimensional embed-
ding manifold for creating synthetic melanoma images. The proposed data augmentation technique is used to generate a
new skin melanoma dataset using dermoscopic images from the publicly available PH? dataset. The augmented images
were used to train the SqueezeNet deep learning model. The experimental results in binary classification scenario show
a significant improvement in detection of melanoma with respect to accuracy (92.18%), sensitivity (80.77%), specificity
(95.1%), and Fl-score (80.84%). We also improved the multiclass classification results in melanoma detection to 89.2%
(sensitivity), 96.2% (specificity) for atypical nevus detection, 65.4% (sensitivity), 72.2% (specificity), and for common
nevus detection 66% (sensitivity), 77.2% (specificity). The proposed classification framework outperforms some of the

state-of-the-art methods in detecting skin melanoma.

Key words: Malignant melanoma, skin cancer recognition, data scarcity, data augmentation, oversampling, transfer

learning, deep learning

1. Introduction

Malignant melanoma is a deadly form of skin cancer that is responsible for over 20,000 deaths in Europe
with close to 100,000 new cases recorded each year [1]. World Health Organization (WHO) claimed that
approximately 13% of the global mortality rate is associated with cancer-related diseases and this is still on
the rise as future estimate predict that 12 million more are at risk of death by the end of 2030 [2]. Recent
studies have shown that early detection of this disease is the most critical prognostic factor for survival [3].
Presently, the number of cases examined by hospital pathologists rely on the visual examinations. Sensitivity of

dermoscopic melanoma recognition in most cases is less than 80% in routine clinical settings [4]. Differentiating
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between melanoma and nonmelanoma lesions is very hard by a nonexpert pathologist. The manual method
of detecting skin lesions is human-labor intensive, prone to errors considering the level of expertise and time
for visual exploration required, etc. [5]. Therefore there is a need to improve the computer-aided methods to

effectively diagnose skin melanoma cancer as early as possible thereby increasing the survival rate [6].

Feature extraction from dermoscopy images using handcrafted texture and color features could be very
challenging especially when comparing melanomas from nevi due to visual similarity, intraclass variations, and
artifacts [7]. As a result, the analysis of dermoscopic images in real-time continues to remain an attractive
research area for artificial intelligence (AI) researchers. Current research endeavors focus on the development of
the Al methods that would serve doctors and patients through intelligent detection and diagnosis of skin cancer
diseases [8]. Deep learning (DL) methods have played a vital role in skin disease detection and classification [9)].
Several DL architectures were proposed in previous work for detecting skin melanoma such as residual network
ResNet50 [4], attention residual learning [10], AlexNet [11], VGG [12], MobileNet, InceptionV3, etc. [5].

The application of advanced AI methods usually requires a large dataset, which is one of the main
challenges in developing clinical level Al systems [13]. Apart from the shortage of publicly available datasets
used for skin disease classification, the datasets also suffer from class imbalance, noise, high dimensionality
of features, and inconsistency of image sizes and resolution. Research attention has been targeted towards
developing larger image datasets, but there are challenges such as lack of metadata and imaging standards in
dermatology, privacy issues associated with patient’s images, image copyright, diagnostic ground-truth, etc. In
many real-world cases, big datasets are not available, and when the dataset is too small, a neural network is

trained ineffectively [14] thus leading to suboptimal and overfit solutions.

Data augmentation can help to improve accuracy of learning algorithms [15] in case of data scarcity.
Some of the most commonly used data augmentation techniques in skin melanoma include random image
transformation; horizontal and vertical flips [16], random contrast and random brightness, cropping [17],
rotation, zoom in and out, histogram scaling, etc. [18]. The extraction of relevant features from these small and
imbalanced data requires purposeful applications of thorough data analysis techniques. Methods such as feature
space sampling have been used to solve the problem of imbalanced and small datasets and include random
undersampling, clustering undersampling, random oversampling, SMOTE (Synthetic Minority Oversampling
Technique) [19], etc.

The application of data augmentation techniques has played a positive role in improving the performance
of the classifiers through leveraging on small data samples and generating synthetic samples such as fixed and
random rotation angle approaches [11], color space transformation from RGB (red, green, blue) color space
to HSV (hue, saturation, value) color space [20] to increase the number of skin images available for training.
Therefore, data augmentation can be described as the act of enriching training data samples and variance of a

given dataset for better generalization and capturing the underlying distribution of the training data [21, 22] .

The novelty and main contribution of this paper is an enhanced data augmentation technique based
on the covariant SMOTE [23] technique to generate synthetic training data, improve the performance of the
learning model, and reduce overfitting of a classifier for overcoming the challenges of limited dermatological

images and class imbalance.

The remaining parts of the paper are as follows. Section 2 describes in detail the methods and material
of our proposed model. Section 3 presents the implementation and experimental results obtained with detailed

discussion. The paper concludes in Section 4 with highlights on contributions.
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2. Methods and materials

2.1. Outline of the proposed model

The paper presents a skin image classification framework based on image augmentation using image embedding
into lower dimensionality manifold and performing a variant of SMOTE for oversampling, and image classifica-
tion using SqueezeNet [24]. The framework is divided into three stages as shown in Figure 1 and explained in

more detail in the following subsections.

2.2. Preprocessing stage

Data preprocessing is very important for ensuring data cleaning and preparation. The need to avoid inaccuracies
of classifier training requires that the convolutional network is able to differentiate between low contrast among

skin lesion and nearby healthy skin, uneven border, and skin artifacts such as hairs, black frames, etc. [25].
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Figure 1. Flow diagram of the proposed method.

Before classification, we perform the following stages.

1. First, we adopt the hybrid color space to combine different color components to enhance the color
component efficiency to reduce the measure of correlation dependency between color components. A
conversion of images RGB color space to the CIE 1976 was done using standard illuminant D65, [0.9504,
1.0000, 1.0888], which simulates noon daylight with a color temperature of 6504 K. The L*a*b* (Lab)
colors space was conducted using the Hering’s theory for its effectiveness in measuring small color changes
[26]. The theory shows that only red (R), green (G), blue (B), and yellow (Y) can characterize the hue
component [27]. The LAB color space is a 3-dimensional color system with dimension L* for lightness,
and a* and b* for color, where L* is the luminance presented in Eq. (1), where value 0 is represented as

perfect black, and value 100 is assigned to perfect white. The a* and b* axes represent redness/greenness
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and yellowness/blueness as expressed in Eq. (1), and lightness of a pixel is expressed in Eq. (2-4):

1
116(%)3—16 for - > 0.008856

b= 903.3 %) for §- < 0.008856 W
= ()] v -l () (] .

6) = OF for ¢ > 0.008856
)| 7787(s) + 48 for ¢ > 0.008856

X 0.412 0.357 0.180] [R
Y 0212 0.715 0.072| |G| . (4)
Z 0.019 0.119 0.950| |B

2. Next, to minimize illumination heterogeneity and also to increase the edges of the skin lesions, we
implemented a high-pass filter. The high-pass filter is derived by removing the values of the weighted

Gaussian blurred image from the original image as expressed in Eq. (5).
If:I*wGJ(I)ﬂ (5)

where I is input image, Iy is high-pass filtered image, G, is two-dimensional Gaussian kernel, o is

Gaussian window width, and w C [0, 1] is weighting factor that controls the degree of enhancement.

3. We applied the contrast limited adaptive histogram equalization (CLAHE) algorithm to perform image
contrast enhancement. The CLAHE algorithm optimizes the contrast enhancement on local image data
thus effectively reducing the global noise. Furthermore, standard histogram equalization is applied to
each of the nonoverlapping contextual regions. Therefore, each region is contrast-enhanced locally which
is followed by clipping and median filtering. CLAHE algorithm can prevent gray-level peaks by examining
regional and global histogram equalization [28] . To determine two parameters of the CLAHE, we use an

approach proposed in [29] and an example of the results of image enhancement is presented in Figure 2.

4. Hair is detected with Frangi filter [30]. The Hessian matrix H of the image I is derived from the 2nd order

Gaussian derivative of I at point (x,y) and scale o as in Eq. (6):

_ I(z,y) 202 ";(;i;’ v (6)
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Original (left) and Contrast Enhanced (right) Image
oo L

" YT

Figure 2. Example of image enhancement: image from PH? dataset (left); enhanced image (right).

We applied Frangi filter to segment all hairs from the background, while g is set to 0.5 and c is set to 15.
Scale range is set between 0.01 and 7.01, increasing by 0.5 for each scale. We used inpainting based on the

minimization Mumford—-Shah functional [31] to fill in the image pixels removed by the mask as follows:

min /|u—f|2dx+a/ |Vul|?dz + \K| ¢, (8)
u,k Q Q\K

where w — R? is image domain; f : w — R? is initial image function; u : w — R? is unknown
approximation, which is smooth everywhere in w but can have a jump at subregions’ edges K; |.| is the

Euclidean norm; o > 0 and A\ > 0 are parameters, which control smoothness and length of edges.

2.3. Image mapping to lower dimensional manifold space

The mapping of skin images to lower dimensional manifold space is performed as follows. Every pixel of the
skin image is used to construct a high-dimensional manifold space. We adopted a differential manifold for
constructing skin image manifold where its local space follows the Euclidean-style space as expressed in Figure

3.
For dimensionality reduction of the manifold space, we applied Gaussian distribution to generate low-

dimensional space by describing distribution characteristics (T) of data points set within the high-dimensional
manifold space. We minimized the contrast between distributions to finalize the operation of skin classification.
We first applied random projection on a plane of image data point set using a discrete distribution.

Euclidean distance in Eq.(12) is used to determine the interval between points in a 2D plane projection
of skin image data points and surrounding neighboring points with space L, of x; and z;. K-Nearest Neighbor
(KNN) map of the skin image pixels can be generated by the previously described steps, and the obtained KNN
map represents the local features of the manifold data pointset. The skin image data point z; corresponds

to the center of the Gaussian distribution. Point x; uses probability P(j|i) to select point z; as its nearest

neighbor. Probability Pj|i) is inversely proportional to the distance of z; and can be described by Eq. (10):

b~ (52,

2\ 3
A x(l)) ) (9)

i J
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Figure 3. Image mapping to manifold space.

b eap(=lzi — z,]P/202)

i = s 10
= S enp(— [ — ox]2/207) (10)

where +; is the variance of the Gaussian distribution with x; as the center-point. To prevent a crowding issue,
we applied T-distribution to illustrate the local connection of the image points in the low-dimensional manifold.
Suppose that the probability distribution of the neighborhood image data point set in the high-dimensional
space can be characterized by the normal distribution N(p,02). The mean value of the T-distribution in the
low-dimensional space can be obtained using expression in Eq. (11), while the variance of image points can be

derived from Eq. (12) and T-distributed random variable is constructed using Eq. (13):

T=—

3|~
‘“‘3
—
&
—
—_
[u—
N

=LK (13)

where wu; is the skin image points in the KNN domain, and @ is their mean. A uniform symmetrical distance

function Egs. 14 and 15 sustains the symmetry of the two probability distributions in the 2-dimensional space:

I+ ly —yll*) "

qi|j = — (14)
U A e =l
pji + Pij
i = il - |J7 (15)
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where q(i|j) is the probability distribution of the skin image points in the 2D-space.
We calculate the loss function using the Kullback-Leibler (KL) divergence with the aim of reducing the
intervals between distribution of high-dimensional space P(j|i) and low-dimensional space qi|j). The whole

process for reducing dimensionality for the least value of the loss function is expressed in Eq. 19. In order, to
manage the problem of overfitting resulting from limited data samples, a degree of confusion is also applied as

expressed mathematically in Eqs. 16 and 17. The Shannon entropy H(P;) with p; is defined in Eq. 18.

Pjli

ilj
Perp(p;) = oH(Pi) (17)
H(FP;) = — Zj pj\ilog2 Pjli (18)

The adjustment to the degree of confusion is proportional to the entropy thus, the value of entropy varies by
adjusting the degree of confusion. We further construct the objective function by clustering the 2D space of

both positive and negative samples of the skin image data points. Weight between points is set by Eq. (19).

Pleij =1) = f(llyi — y;11*), (19)

where y; and y; is the two points in the low-dimensional space. The probability of a binary edge between two
points is represented as P(e;j = 1). However, P(e;j = 1) becomes larger as the interval space between y; and
y; gets closer and the mathematical expression with weight w;j is depicted in Eq. 20. The KNN diagram was

further applied to obtain the positive sample set E and the negative sample set E.
Peij = wij) =plei; =1)"" (20)

For optimization, we maximize the probability of positive samples weighted edges in KNN graphs and reducing

probability of negative samples in weighted edges of KNN graphs. Eq. 21 is transformed into Eq. 22:

O =1 jespleiy = 1) jep (1 = plei; =1))7 (21)

O = Z(i,j)eE wi,j(p(ei,j = 1) Z(i,j)eE ’y(l _p(ei,j = 1))7 (22)

where ~ is the weight of the negative samples. The computational complexity can be increased by a negative
sample E thus becoming difficult to directly apply gradient descent for training. Consequently, we carefully
choose a negative sampling algorithm, and using a randomly selected number of skin image points, we developed

a negative sample with the noise distribution P, (j). Eq. 23 illustrates the objective function:

0= piaPles =1+ 3 3~ puli)ylog(1 - plesy = ). (23)
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2.4. Data augmentation stage

To perform data augmentation, we have adopted a modification of the Synthetic Minority Oversampling
Technique (SMOTE) [19] method. SMOTE creates artificial instances by oversampling the minority class.
SMOTE recognizes k-minority class neighbors that are near to each minority class sample by randomly selecting
a point between the original sample and its neighbors as the artificial sample. We adopted a variant of SMOTE,
called SMOTE — cov (23], which uses the covariance matrix (CM) to detect dependency connection between
attributes. From the estimated CM, we generate surrogate instances to achieve the balance between the minority
class and the majority class. This process is discontinued once an equilibrium between the classes is achieved.

The example results for PH? dataset in the manifold space are presented in Figure 4.
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Figure 4. (a) Data class visualization of the classes in the PH? dataset; (b) Example of new instances generated in
the manifold space using the PH? dataset. Green dots show the newly generated instances.

We use the same approach to generate new minority class instances in the lower-dimensional manifold
space as described in the previous subsection. After new instances are generated, we transform them from the
manifold space to the image space. Since the manifold space is not linear, we adopt the polynomial regression
approach to find the appropriate transform in the vicinity of each new instance. To begin, we find the nearest n
images in the manifold space M that are closest to the new instance X;. To find a mapping from the manifold
space to the color space M : M — R3, we perform a cubic polynomial regression as follows. Given n data
points (X1, Xa,,X,),X; — R?, we use the least-squares optimization method to regress the data to an m-th
order polynomial as expressed in Eq. 24.

IT=A0+ A X +AX + . +A4, X" m<n (24)

Here A,, are the coefficient matrices and the residual at each image I; is given by: The above are solved to

obtain a mapping M = (Ao, A1,, An). The sample generated images are illustrated in Figure 5.
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Figure 5. Examples of synthetic images generated by the proposed image augmentation technique.

2.5. Deep learning model

Deep learning methods have an important role in the automatic extraction of the relevant set of features and also
successfully improving classification performance [32]. An effective deep learning method is critical to recognize
dermoscopic feature patterns in the skin lesion area, such as streaks, globules, blotches, blue-white veils and
pigment networks. For this study, we adopted the feature extraction method based on the SqueezeNet deep
learning architecture as presented in Figure 6. We selected SqueezeNet, because it allows to achieve AlexNet

level performance with with 50x fewer parameters [24].

convl

96
maxpool/2

512

maxpool/2

256
maxpool/2

512

|

1000
global avgpool 256

Figure 6. Architecture of SqueezeNet network.
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SqueezeNet stacks multiple fire unit and a few pooling layers. The fire unit has the squeeze layer and
the expand layer to keep the same feature map size. The squeeze layer uses 1 x 1 convolution kernels to reduce
the parameters of network. The expand layer has a mix of 1 x 1 and 3 x 3 convolution filters. The results is a

deep network with high performance and low number of parameters.

2.6. Performance metrics

Due to the problem of class imbalance associated with skin melanoma dataset, it is important to consider
other performance measures apart from accuracy to optimize the performance measures. We evaluated the
performance of the proposed method using other optimization metrics such as sensitivity (Se ), specificity (.Sp),

precision (P, ), and F-score.

3. Experimental results and discussion
3.1. Dataset
We conducted our experiment using PH? dataset [33] collected by the Dermatology Service of Hospital Pedro

Hispano, Portugal. A total of 200 images are comprising of 3 classes of clinical diagnosis, namely common
nevus, atypical nevus, and melanoma with a sample ratio of 80:80:40 samples, respectively. For the experiment,
the PH? dataset was split into a training dataset (60%) and validation datasets (40%) were used for testing
the trained network. From the training image samples, we generated two different databases using two data
augmentation methods. The first data augmentation method was based on the covariant SMOTE technique
which was used to generate a new database (AugDB-1) and also balancing the minority class (melanoma). We
further used the conventional geometric data augmentation methods based on rotation, horizontal and vertical
flipping, translation, etc. to generate the second database (AugDB-2). The summary of the experimental data
used in this study is presented in Tables 1 and 2. The analysis and the performance results of our proposed

model on these two data categories which are binary and multiclass classification.

Table 1. Summary of data categories for binary classification.

Data Total images | Training set Testing set
Melanoma | Nonmelanoma | Melanoma | Nonmelanoma
Original | 200 24 96 16 64
AugDB-1 | 224 48 96 16 64
AugDB-2 | 472 236 236 16 64
Table 2. Summary of data categories for multiclass classification.
Data Total images | Training set Testing set
Melanoma | Atypical | Common | Melanoma | Atypical | Common
nevus nevus nevus nevus
Original | 200 24 48 48 16 32 32
AugDB-1 | 224 48 48 48 16 32 32
AugDB-2 | 472 236 236 236 16 32 32
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3.2. Classification results

The implementation of this study was carried out on a workstation with Intel Core i5-5300U CPU @ 2.30GHz
with 8GB RAM and 64-bit Windows 10 operating system. The tool used for implementing the proposed model
was on MATLAB (MathWorks Inc, USA) Deep Learning Toolbox. The network was trained using the stochastic
gradient descent (SGD) optimizer for 10 epochs with the best learning rate chosen from 107%,1075,1076,
piecewise learning rate schedule, the learning rate drop factor of 0.2, and the learning rate drop period of 2.

The classification results for binary and multiclass are fully discussed in details below.

3.2.1. Classification results for binary class skin melanoma detection

The first test was conducted on the original dataset (PH?) using the ratio of 60 : 40 for training and testing.
For the binary classification analysis, we categorized the original dataset into two: melanoma and nonmelanoma
images. We train on 120 images which comprise 24 melanoma and 96 nonmelanoma images and tested on 80
test images (16 melanoma and 64 nonmelanoma) images as summarized in Table 1. The performance of our
proposed model on the PH? dataset using the ImageNet pretrained network achieving the best accuracy of
0.925, the sensitivity of 0.875, specificity of 0.9375, and Fl-score of 0.8235. The experiment was repeated 10
times and the mean performance metrics obtained were 0.8964 for accuracy, the sensitivity of 0.726, specificity
of 0.9406, and F1-score of 0.7365.

The second experiment was based on using our proposed data augmentation method for generating
a purely synthetic dataset for the minority class (melanoma). This newly created dataset (AugDB-1) was
developed using 60% of the melanoma images (24 images) to generate additional 24 new synthetic images
which finally summed up to a total of 144 training images consisting of 48 images for the melanoma and 96
images for nonmelanoma. These new training images were used to train the model and the remaining 40% were
used for testing the model. The test results for the AugDB-1 dataset effectively improves the performance of
classification with the best accuracy of 0.953, sensitivity at 0.8462, specificity at 0.9804, and F1l-score at 0.88.
The performance after repeated experiments gave a mean accuracy rate of 92.18%, sensitivity rate of 80.77%,
specificity rate of 95.1%, and F1l-score of 80.84% respectively.

To validate the effectiveness of our proposed data augmentation method, we applied the geometric
and color transformation techniques which include horizontal flipping, scaling, rotation, translation, contrast
adjustment, sharpened images, etc. Based on these techniques, a new training dataset was generated (AugDB-
2) with a total of 472 images consisting of 236 melanoma and 236 nonmelanoma images. The experiment
results obtained showed that pretraining the model using the AugDB-2 gave an accuracy below 90% due to the
problem of overfitting. The performance comparison results for the three databases are presented in Table 3.

The confusion matrix of the best classification results for the multiclass classification scenario is given in Figure
Ta.

Table 3. Performance comparison for binary classification scenario.

2610
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3.2.2. Classification results for multiclass skin melanoma detection

We further carried out a multiclass detection for the original three classes of the PH? dataset. The summary

of experimental results for three classes: melanoma, atypical nevus, and common nevus is presented in Table 4.

Table 4. Performance comparison for multiclass classification scenario.

Dataset ??2(): Melanoma Atypical nevus Common nevus

Se (%) | Sp (%) | Pr (%) | F1 (%) | Se (%) | Sp (%) | Pr (%) | F1 (%) | Se (%) | Sp (%) | Pr (%) | F1 (%)
Original | 60.4 | 64.2 93.6 73.8 67.4 58.8 68.9 68.9 53.8 63.9 73.4 62.0 62.5
AugDB-1 | 66.4 | 89.2 96.2 84.1 74.9 65.4 72.2 61.3 62.5 66.0 77.2 66.6 65.4
AugDB-2 | 62.0 | 61.5 73.0 76.1 57.6 57.4 61.9 54.0 58.4 56.1 75.2 64.0 58.3

From Table 4, we can see the improvement in the performance of our model trained on AugDB-1 for
melanoma detection with respect to the accuracy, sensitivity, specificity, and F1-score as 66.4%, 89.2%, 96.2%,
and 74.9%, respectively. While the detection rate for atypical nevu shows a sensitivity rate of 65.4%, specificity
rate as 72.2%, and Fl-score as 62.5%; For common nevu detection rate gave a sensitivity as 66.0%, specificity
as 77.2%, and Fl-score of 65.4%. The confusion matrix of the best classification results for the multiclass
classification scenario is given in Figure 7b. Our proposed classification framework was able to effectively detect

melanoma images as the sensitivity rate shows an impressing improvement when compared to the other classes.

Accuracy: 66.25%

Accuracy: 95.00%

Atypical Nevu

Melanoma

" A
Z =
= o 34.38%
% 3 Common Nevu 1
g 2
L2 3
- [
5 &
~
Non-Melanoma 6.25%
Melanoma ’ >

Atypical Nevu  Common Nevu  Melanoma

Target class

Melanoma Non-Melanoma

Target class

Figure 7. Confusion matrices of binary (a) and multiclass (b) classification results.

3.2.3. Comparison with related work
To validate the performance of our proposed model, we compared our work with the experimental outcome
from previously published work using PH? dataset as shown in Table 5. In some of the cases our proposed
approach improves significantly over some previous results. We also can also emphasize that the computational
requirements of our approach were minimal with the time complexity for both binary and multiclass.

Our proposed method delivered an improved performance over some of the results identified in the

previous studies (see Table 5). However, the limitation of the proposed method is that sensitivity and specificity
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rate still requires improvement as we intend to further explore other deep learning architectures to improve the
overall skin detection rate.

Table 5. Comparison with the state-of-the-art works using PH? dataset.

Method Accuracy | Sensitivity | Specificity | Reference

(%) (%) (%)
Combined Gaussian method with color space | 97.74 97.39 98.10 Khan et al. [34]
transformation. Classification is done using deep
CNN based on Inception V3.
Feature similarity measurement (FSM) codebook | 91.9 92.5 91.3 Hu et al. [35]
learning algorithm on SVM classifier
SVM classifier with the linear kernel 86.07 78.93 93.25 Adjed [36]
Fuzzy C-means and Markov random field methods | 94.0 93.2 98.0 Eltayef et al. [37]
Multiscale lesion-biased representation and joint | 92.0 87.5 93.13 Bi et al. [38]
reverse classification
Deep CNN-based using SqueezeNet and covariant | 92.18 80.77 95.1 Proposed
SMOTE augmentation in low dimensional method
manifold

4. Conclusion

Melanoma accounts for the most skin cancer-related deaths, and current research is targeted at early detection
of this disease. The growth of research endeavors in this area has experienced some constraints, which include
a small available dataset for skin cancer detection, class imbalance of skin tumors, limited labeled data, poor
standardization of clinical images, etc., which have resulted in the poor performance of the classifiers. Based
on these challenges, this study improved the classification performance of melanoma skin disease by carefully
applying the proposed model. The proposed model is an effective data augmentation method that is based on
covariant SMOTE to solve the class imbalance problem. The effectiveness of the proposed data augmentation
method has been illustrated through comparison with conventional data augmentation techniques and other
existing approaches.

The obtained results for multiclass classification scenario demonstrate that the developed neural network
architecture can be used to assist dermatologists during a melanoma screening process. The effectiveness and
reliability of the proposed method are proven through comparisons with existing techniques. The proposed
method shows the promising result and can successfully be integrated into a low-resource constraint device and
adequately solve the real-time detection of skin melanoma detection problem.

Future research will aim to explore prospective directions by applying our proposed data augmentation
method with other deep learning architectures, such as AlexNet, ResNet101, and DenseNet201, for efficient
detection of skin melanoma disease. Secondly, the proposed image augmentation method can be applied to
other imaging domain such as in plant disease detection, fault detection, etc. to improve the existing research
bottleneck in small data analytics. Therefore, we will test our method on other datasets. Finally, we hope to
integrate our model into a smartphone application for developing the Al based decision support system to aid

user’s self-clinical examination thus contributing to early detection of skin cancer diseases.
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