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1. Introduction
For recent years, germylene and its derivatives have been well studied as a bioactivator in medicine. Germylenoid is a derivative 
of germylene. Since Lei and Gaspar [1] firstly pointed out that there may exist an intermediate named germylenoid in the 
reaction of dichlorodimethyl germane with lithium in the presence of substituted 1,3-dienes in 1991, both theoretical and 
experimental research on germylenoid have been going on for more than 20 years. In 2000, Ichinohe et al. [2] proved that an 
active germylenoid intermediate t-Bu3SiGeCl2Na played an important role in the reaction of t-Bu3SiNa with GeCl2· dioxane. 
In 2006, Tokitoh et al. [3,4] pointed out that an important intermediate in the addition reaction of 1,2,4,5-tetrabromobenzene 
with dilithiogermane Tbt(Dip)GeLi2 was germylenoid Tbt(Dip)GeLiBr. In 2012, Fillipou et al. [5] firstly synthesized the 
zwitterionic germylidene complexes and they believed a germylenoid was one of the reactants in the reaction. There was 
no one stable germylenoids being prepared experimentally until Sasamori et al. [6] firstly synthesized a stable germylenoid 
successfully in 2016. A chlorogermylenoid (Fc*GeCl2Li) that includes 2,5-bis(3,5-di-t-butylphenyl) ferrocenyl (Fc*) group 
was generated in their groundbreaking work and the specific structure and ambident reactivity of this chlorogermylenoid 
were investigated. With the development of the experimental works about germylenoids, more attention has been paid to 
theoretical researches [7–32]. In 1999, Qiu et al. [7] firstly studied the germylenoid H2GeLiF by ab initio quantum calculations 
method. By analyzing structures and the solvent effect in different solvents of the germylenoid H2GeLiF, Ma et al. [8] obtained 
four possible stable equilibrium structures in the gas phase in 2007. In 2006, Li et al. [9] firstly came up with this concept for 
unsaturated germylenoid H2C=GeNaF. In 2008, Tan et al. [10] systematically investigated the geometries and isomerization 
of the germylenoid HN=GeNaF and discussed the insertion reactions with R–H (R = F, OH, NH2, CH3), and the study 
came to a conclusion that the relative reactivity of reactants is as follows: H–F > H–OH > H–NH2 > H–CH3.The structures 
and properties of other different germylenoids such as H2GeLiF [11,12], H2GeFMgF [13], H2GeZnCl2 [14], HP=GeLiF [15], 
H2GeAlCl3 [16], and so on, were investigated using theoretical methods. The different reactions such as insertion, elimination, 
substitution, and addition reactions [11–32] of germylenoids were also analyzed by theoretical calculations. These works 
provide a lot of useful information for the correct understanding of the structure, properties and reactivity of germylenoid 
compounds. However, few studies have been done on the addition reactions of germylenoid. Only the addition reactions of 
some germylenoid with ethylene [13–16,26–31] and formaldehyde [32] have been reported in the literature. Recently, we 
have calculated the addition reaction of H2GeLiCl with acetone and found that the product is a heterocyclic germanium 
compound, which provides new inspiration for the synthesis of new germanium-containing compounds. 
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2. Theoretical methods 
The relevant calculation details have been depicted in previous research [16]. The instrument that caused the calculation 
to be implemented was Gaussian 09 series of programs [33]. The geometries of the whole stationary points were optimized 
by using the method of density functional theory (DFT) M06-2X [34,35] and 6-311+G (d,p) [36] basis set (BSI). The 
vibrational frequency was calculated by the same method in order to confirm the minima or saddle points of structures 
and obtain zero-point energies (ZPEs). The mechanism of the addition reaction pathways was proved by using the IRC 
[37] analysis to probe every transition state connected with the corresponding stationary points correctly. The single-point 
computations were carried out using the QCISD [38,39] method with 6-311++G (d,p) basis set (BSII). The given relative 
energies in this paper were calculated by QCISD/BSII//M06-2X/BSI level and including the M06-2X/BSI calculated ZPEs 
(without scale) corrections. The molecular electrostatic potentials (MEPs) for the reactants were also calculated at M06-
2X/BSI level.

3. Results and discussion
The previous calculations [2,11,12] proved that germylenoid H2GeLiCl has three equilibrium structures, and the most 
stable configuration of them is the p-complex. That is to say, the p-complex structure of H2GeLiCl is obviously the target 
when we investigated the addition reaction of germylenoid H2GeLiCl (R1) and acetone CH3COCH3 (R2). 

There are two steps in the addition reaction of H2GeLiCl with acetone according to the calculation results. In the first 
step, an oxagermacyclopropane (c-H2GeOC(CH3)2, marked as P) can be generated. In the second step, P can further react 
with acetone CH3COCH3 in two possible pathways. The M06-2X/BSI calculated MEPs for R1, R2, and P were shown in 
Scheme 1. From Scheme 1 it can be seen that there is a positive electrostatic potential region around the Ge atom in R1 and 
a negative electrostatic potential region around the O atom in R2. The interaction of these two regions will lead to the first 
step of the reaction of R1 and R2. Interestingly, there are two positive electrostatic potential regions around the Ge atom in 
P. When the O atoms in acetone approach different positive electrostatic potential regions of P, different reaction pathways 
(path I and II) will occur. These two steps and two different pathways will be illustrated in detail.

3.1. Step 1 of the addition reaction of H2GeLiCl with acetone
The reaction equation for the first step of the reaction of germylenoid H2GeLiCl with CH3COCH3 is depicted as follows: 

H2GeLiCl(R1) + CH3COCH3(R2) → LiCl + c-H2GeOC(CH3)2(P)
Based on the computation results, we found that along the potential energy surface there is one precursor complex (Q), 

one transition state (TS), and one intermediate (IM). The geometries of the stationary points which calculated at the M06-
2X/BSI level are shown in Figure 1, and their relative energies are shown in Figure 2. The calculated structure coordinates 
of reactants, intermediates, transition states and products were shown in the supporting information.

One precursor complex Q will be formed when R1 approaches R2 as shown in Figure 1. The distances of O-Ge and 
C-Ge are 0.267 and 0.355 nm respectively and the C-O-Ge angle is 129.4 degrees. These facts indicated the interaction 
between R1 and R2 is weak and the reaction will proceed further. As shown in Figure 2, the relative energy of Q is –13.69 
kJ/mol.

Scheme 1. The molecular electrostatic potentials for the reactants (R1, R2, and P) calculated at M06-2X/BSI level (color ranges 
are: red, greater than 0.03; yellow, between 0.03 and 0; green, between 0 and –0.01; blue, less than 0.01, in eV).
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Due to the rotation of acetone(<90º), the distance of O-Ge and C-Ge are becoming shorter and the C-O-Ge angle is 
becoming smaller, a transition state (TS) is formed. As shown in Figure 1, in TS the distance of O-Ge and C-Ge are 0.212 
and 0.201 nm respectively, and the C-O-Ge angle is only 70.5 degrees. The IRC results show that TS is correctly in the 
middle of Q and intermediate IM. The imaginary frequency of TS is 207.0i cm–1. The relative energy of TS is 77.56 kJ/mol, 
consequently, the barrier height is 91.25 kJ/mol.

As reaction goes on, the intermediate IM will be formed after TS, and it can be regarded as the complex of the last 
products LiCl and c-H2GeOC(CH3)2 (P). As shown in Figure 1, in IM the distances of O-Ge and C-Ge of IM further 
decrease to 0.187 and 0.192 nm respectively, and the angle of C-O-Ge is 69.4 degrees, which indicates the formation of 
O-Ge and C-Ge bonds. As shown in Figure 2, the relative energy of IM is 68.27 kJ/mol.

The reaction of H2GeLiCl (R1) and CH3COCH3 (R2) resulted in the formation of LiCl and c-H2GeOC(CH3)2 (P) in the 
first step. The relative energies of the products (LiCl + c-H2GeOC(CH3)2) is 99.17 kJ/mol. It can be seen that the addition 
reaction of H2GeLiCl with acetone is endothermic in the first step.

Figure 1. The geometries of the stationary points along the potential energy surfaces of the addition reaction of H2GeLiCl and acetone 
optimized at the M06-2X/6-311 + G (d,p) level (bond lengths are given in nm and angles in degrees).

Figure 2. The potential energy surface profile of step 1 (the 
relative energies are given in kJ/mol).
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3.2. Step 2 of the addition reaction of H2GeLiCl with acetone
The M06-2X/BSI calculations indicate that there are two possible pathways (path I and II) in the reaction of c-H2GeOC(CH3)2 
and CH3COCH3. The Ge atom of c-H2GeOC(CH3)2 approaches the O atom of CH3COCH3 in the path I and path II 
and then interacts with each other. But the interaction from different directions results in different transition states and 
ultimate products. In path I, the O1-Ge bond of c-H2GeOC(CH3)2 and the O2-C2 bond of CH3COCH3 are spatially close in 
a parallel manner, and then the O1-Ge bond of c-H2GeOC(CH3)2 is broken, with the Ge atom approaching and interacting 
with the O2 atom of CH3COCH3, at the same time, the O1 atom of c-H2GeOC(CH3)2 approaches and interacts with the C2 
atom of CH3COCH3 to form the product 2,4-dioxagermolane (P1). However, in path II, the O2-C2 bond of CH3COCH3 
is not parallel to the O1-Ge bond of c-H2GeOC(CH3)2 but approaching the C1-Ge bond of c-H2GeOC(CH3)2 in an almost 
parallel manner. After the C1-Ge bond of c-H2GeOC(CH3)2 is broken, the Ge atom approaches and interacts with the O2 
atom of CH3COCH3 and the C1 atom of c-H2GeOC(CH3)2 approaches and interacts with the C2 atom of CH3COCH3 
causing the formation the product 2,5-dioxagermolane (P2). As shown in Figure 3, TS1 is the transition state of path I, of 
which unique imaginary frequency is 231.82i cm–1 calculated by M06-2X/BSI. The relative energy of TS1 is 56.94 kJ/mol 
as depicted in Figure 4, which is the barrier height of path I. A spiro-Ge-heterocyclic product (P1), 2,4-dioxagermolane, is 
formed at the end of path I, and the relative energies of P1 is –147.84 kJ/mol.

In path II, TS2 is the transition state as shown in Figure 3. The unique imaginary frequency of TS2 is 406.6i cm–1 
calculated by M06-2X/BSI. The relative energy of TS2 is 134.35 kJ/mol (in Figure 4), which is the barrier height of path II. 
At the end of path II, the other spiro-Ge-heterocyclic product (P2) forms, which is the 2,5-dioxagermolane. The relative 
energy of P2 is –218.88 kJ/mol.

We can find that path I and II are both exothermic. The barrier height of path I is about 77.41 kJ/mol lower than path 
II which can be concluded from Figure 4. Then we can draw a conclusion that the path I is more favorable dynamically.

Figure 3. The geometries of the stationary points along the potential energy surfaces of the addition reaction of c-H2GeOC(CH3)2 and 
acetone optimized at the M06-2X/6-311+G (d,p) level (bond lengths are given in nm and angles in degrees).
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Figure 4. The potential energy surface profile of path I and 
path II (the relative energies are given in kJ/mol).

Figure 5. The calculated IRC results of three transition states.
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3.3. The mechanism of addition reactions
For studying the addition reaction pathway, the IRC analysis was carried out on the basis of the TS, TS1, and TS2 to study 
the interactions of the step 1 and the step 2 respectively in the addition reaction.

We took the first step as an example. The total energy (E) of the reactants and the bond lengths of C-Ge and O-Ge are 
shown in Figure 5 along the reaction pathway. When the reaction coordinates rise from –5.0 to 0.0, the total energy (E) 
increases rapidly and reaches a peak. Also, the bond lengths of C-Ge and O-Ge gradually decrease to a stable value, which 
indicates the formation of C-Ge and O-Ge bonds. Consequently, TS connects Q and IM correctly. In the two paths of the 
step 2, the results of IRC calculations of the TS1 and TS2 are also shown in Figure 5 and both of them are correct.

4. Conclusion
By using the DFT M06-2X and QCISD methods, firstly we studied the addition reaction of the germylenoid H2GeLiCl 
with acetone. The geometry optimizations were carried out at M06-2X/6-311+G (d,p) level and the single-point 
energies were computed at the QCISD/6-311++G (d,p) level in sequence. The results reveal that there are two ways 
existing for the reaction of H2GeLiCl and CH3COCH3, and different products are formed: 2,4-dioxagermolane (P1) and 
2,5-dioxagermolane(P2), respectively. The process can be viewed as a two-step reaction and the step 1is the same for two 
products. In step 1, H2GeLiCl and acetone react and oxagermacyclopropane (P) is formed by an addition reaction. There is 
a precursor complex, a transition state and an intermediate existing in step I along the potential energy surface. In step 2, 
there is a continuous reaction of product oxagermacyclopropane (P) with acetone, and the different bond-forming ways of 
them lead to the formation of different spiro-Ge-heterocyclic products. There are two possible pathways (I and II), which 
finally form spiro-Ge-heterocyclic products 2,4-dioxagermolane (P1) and 2,5-dioxagermolane (P2), respectively. The 
barrier height of path I is 56.94 kJ/mol while the barrier height of path II is 134.35 kJ/mol, which means the path I favors 
thermodynamically. Therefore, it can be concluded that the dominant channel of the addition reaction of H2GeLiCl and 
CH3COCH3 is that firstly R1 + R2 → P and then P + R2→ P1. We are confident that this work will provide a new inspiration 
for the synthesis of new germanium-containing compounds.
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Supporting information

The structure coordinates of reactants, intermediates, transition states, and products:

R1:
Ge                      –2.56829  –0.28241  –0.00284 
 H                       –2.78369   0.89251    1.12108 
 H                       –2.78763   0.90659  –1.11107 
 Li                      –4.23708   1.59101     0.01196 
 Cl                      –5.0275   –0.44301    0.00049

R2:
 C                       2.50731  –0.37278    0.60534 
 O                      1.54757   0.29175      0.30668 
 C                      2.3953     –1.85413    0.89342 
 H                      2.7478    –2.06328     1.90679 
 H                      1.36199  –2.17702     0.78596 
 H                      3.03472  –2.41561     0.20729 
 C                      3.89238   0.22709       0.71334 
 H                      4.28682   0.07265       1.72104 
 H                      4.57088  –0.27759      0.02064 
 H                      3.85582   1.29078        0.48805

Q:
Ge                     –0.84749  –0.46504    0.0182 
 H                      –0.75031   0.8763       0.93765 
 H                      –0.79836   0.5103     –1.28457 
 Li                     –1.94153   1.76091   –0.32943 
 C                       2.70521    –0.43519    0.04558 
 O                       1.71284    0.23225    –0.14528 
 C                       4.08214    0.15143    –0.14277 
 H                       4.73268   –0.11611     0.69264 
 H                       4.52445   –0.27635   –1.0474 
 H                       4.01855     1.23231    –0.24837 
 C                       2.63324    –1.87709    0.47914 
 H                       3.33185   –2.48565   –0.09904 
 H                       2.93975   –1.94048     1.5276 
 H                       1.61797   –2.25726     0.37951 
 Cl                     –3.35742   0.15328    –0.03065

TS:
Ge                     –0.28391  –0.30278      0.07138 
 H                      –0.7351    –0.52581   –1.43903 
 H                      –0.59787  –1.59492      0.83841 
 Li                     –2.5419    –0.23429    –1.63119 
 C                       1.72312      0.25602    –0.00533 
 O                       1.64948    –0.96084    –0.4839 
 Cl                     –3.02224     0.36362      0.30496 
 C                        2.32919      0.436          1.37158 
 H                        3.41852      0.38519      1.25455 
 H                        2.06628      1.39989      1.80745 
 H                        2.02546  –0.37135   2.03752 
 C                        2.00111   1.38179  –0.97981 
 H                        1.73052   2.35288  –0.56511 
 H                        3.07819   1.37311  –1.18573 
 H                        1.47894   1.21564  –1.92178
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IM:
Ge                      0.13164     0.34786   –0.13985 
 H                     –0.55325   0.72195      1.22229 
 H                     –0.09623   1.35683    –1.25292 
 Li                     –2.2985   –0.04348     1.35567 
 C                      1.43682   –1.05163  –0.05039 
 O                      1.94242      0.2336     0.32457 
 Cl                    –2.67869  –0.46143  –0.63336 
 C                      2.04589  –1.59632  –1.32161 
 H                      3.08475  –1.87996  –1.11644 
 H                      1.50407  –2.47651  –1.67312 
 H                      2.05476  –0.84549  –2.11279 
 C                      1.40887  –2.04325    1.09046 
 H                      0.83067  –2.93194    0.82853 
 H                      2.43729  –2.34825    1.31623 
 H                      0.99435  –1.59505    1.99576

LiCl–

Li                      –3.85526  –1.28196     0.15847 
Cl                      –2.20558  –1.69782  –0.93094

 P:
Ge                     –0.51681   0.05007    0.00228 
 H                     –1.26589   0.3489       1.3034 
 H                     –1.27687   0.33029   –1.29664 
 C                      1.28974  –0.6225     –0.00097 
 O                      1.17372   0.80248    –0.01028 
 C                      1.90178  –1.16101    1.27092 
 H                      1.81037  –2.24763    1.32258 
 H                      2.9658   –0.89824     1.28733 
 H                      1.43533  –0.72135     2.1537 
 C                      1.89037  –1.1783     –1.2709 
 H                      2.95423  –0.91604   –1.30032 
 H                      1.79832  –2.26548   –1.30735 
 H                      1.4161    –0.7503     –2.15526

TS1:
Ge                     –0.70694  –1.33075   –0.08446 
 H                      –0.95848  –2.29472   –1.29068 
 H                      –0.29844  –2.34449     1.04574 
 C                      1.76486      0.07342     –0.04701 
 O                      1.07275    –0.76459    –0.67773 
 C                      –0.95839    1.20527      0.07982 
 O                      0.23587      1.5563        0.27399 
 C                      2.69522      0.9483      –0.81943 
 H                      2.38818      0.98949    –1.86239 
 H                      2.69543   1.94723   –0.38482 
 H                      3.70703   0.53478   –0.75059 
 C                      1.96295  –0.06431   1.43051 
 H                      2.69793  –0.86179   1.59181 
 H                      2.33201    0.86467    1.85934 
 H                      1.03346  –0.34857   1.92268 
 C                     –1.53259   1.41457   –1.31337 
 H                     –2.49153   0.9144    –1.45055 
 H                     –1.67228   2.49507  –1.44514 
 H                     –0.82468   1.07352  –2.06981 
 C                     –1.9361    1.35947     1.23366 



ZHANG et al. / Turk J Chem

3

 H                     –2.15024   2.43081    1.33377 
 H                     –2.87238   0.83015    1.05967 
 H                     –1.4839     1.01718     2.16396

P1:
Ge                     0.88674   –0.02142    0.11379 

 H                       1.67374    –0.33239    1.40507 
 H                       1.80997      0.0172     –1.11503 
 C                      –1.65884  –0.73743     0.22796 
 O                      –0.40761  –1.25096   –0.17448 
 C                      –0.48907   1.41459      0.26209 
 O                      –1.69302    0.6808       0.0054 
 C                      –0.37237   2.44679    –0.85503 
 H                      –1.24619   3.10508    –0.83179 
 H                       0.52489    3.05891    –0.73279 
 H                      –0.33828   1.96385   –1.83346 
 C                      –0.5531     2.10935      1.62063 
 H                       0.34474    2.71128      1.78609 
 H                      –1.42227   2.77397      1.64214 
 H                      –0.64569    1.4054       2.4482 
 C                      –1.89654  –1.06138     1.70109 
 H                      –2.81251  –0.58355     2.0526 
 H                      –1.97907  –2.14237     1.82426 
 H                      –1.06061  –0.71879     2.31495 
 C                      –2.73591  –1.31956   –0.66498 
 H                      –2.74947  –2.40536   –0.56324 
 H                      –3.71158  –0.91613   –0.38933 
 H                      –2.5169   –1.05726    –1.69975

TS2:
Ge                     0.68396   –1.10731    0.02721 

 H                       0.58035    –1.9134   –1.26697 
 H                       1.05877    –1.71586   1.37684 
 C                        0.72405     0.98365   –0.04446 
 O                        1.92038    0.19944    –0.30405 
 C                      –1.48764  –0.09404      0.051 
 O                      –1.30995  –1.30662      0.47915 
 C                      –1.93054    0.06797    –1.38294 
 H                      –2.95593  –0.32148   –1.40058 
 H                      –1.94745     1.10311   –1.71394 
 H                      –1.33971  –0.54049  –2.06654 
 C                      –2.05019   0.89951      1.02385 
 H                      –1.58753   0.79366     2.00311 
 H                      –1.98008   1.92612     0.66667 
 H                      –3.11139   0.63703      1.12129 
 C                        0.49547    1.93061   –1.19704 
 H                      –0.37364   2.57572    –1.0429 
 H                      1.38496     2.56806    –1.27395 
 H                      0.39034    1.39974      –2.14432 
 C                      0.88985    1.7115         1.27763 
 H                      1.84541    2.24681       1.2292 
 H                      0.09822    2.43887       1.46224 
 H                      0.94201    1.02692       2.12797

P2:
Ge                     –1.65214   0.00018   –0.00014 
 H                     –2.49414  –0.55066    1.16046 
 H                     –2.49416   0.5511     –1.16068 
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 C                      0.86894     0.78242      0.07591 
 O                     –0.41121   1.13601      0.62786 
 C                      0.86872  –0.78264   –0.07579 
 O                    –0.41136  –1.1358    –0.62817 
 C                      1.00967  –1.47691     1.2795 
 H                      0.78297  –2.53656     1.15089 
 H                      2.02269  –1.38313     1.67616 
 H                      0.31468  –1.0573       2.01238 
 C                      1.92721  –1.29035   –1.04384 
 H                      2.92502  –0.96276   –0.74027 
 H                      1.91077  –2.38167   –1.05491 
 H                      1.72614  –0.93648   –2.0548 
 C                      1.92728   1.28978       1.04431 
 H                      2.92509   0.96189       0.74104 
 H                      1.91117   2.3811         1.05539 
 H                      1.72579   0.93595       2.0552 
 C                      1.01054   1.47664    –1.27933 
 H                      0.78416   2.53636    –1.1508 
 H                      2.02365   1.38251    –1.67569 
 H                      0.31563   1.05724    –2.01241


