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Abstract: This paper presents a novel hybrid filter along with a universal extension to remove salt and pepper noise
even at a very high noise density. The proposed filter initially specifies a threshold and then denoises the image using a
combination of linear, nonlinear, and probabilistic techniques. Furthermore, to improve the quality, a universal add-on
is presented which uses edge detection and smoothening techniques to brush out fine details from the restored image.
To evaluate the efficacy, the proposed and existing filtering techniques are implemented in MATLAB and simulated
with benchmark images. The simulation results show that the proposed filter is able to restore image details even at
the extremely high noise density of 99%. Moreover, the proposed filter provides admirable results on natural as well
as medical images from very low to very high noise density. Finally, it is observed that, on average, the proposed filter

improves the PSNR by 11% over the state-of-the-art technique.
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1. Introduction

Images are often corrupted with random noise when it is transmitted through a noisy medium. The major
constituent of this noise is salt and pepper or impulse noise. This is a phenomenon in which pixels in the image
randomly obtain extreme values, e.g., 0 and 255 [1]. This in turn, results in transfer of false information. To
overcome this issue, various linear and nonlinear filters have been introduced over the past three decades [2, 3].
Furthermore, it is observed that nonlinear median filters produce better outputs. This is because most pixels
have higher correlation with their neighboring pixels, and the median filter utilizes this fact more beneficially
than the mean filter [1].

The advance filtering techniques include value-weighted filtering that calculates weighted average based
on the values gathered from the currently processing window [4]. Other techniques like interpolation-based
filters are also presented, but their performance is not satisfactory at high noise densities because the number of
pixels with original value (noise-free) is reduced [5, 6]. A combination of mean and median filters is also used;
for example, based on noise density, the filter decides whether to apply the mean or median operation to restore
the noisy pixel [7]. In most cases, mean operation is used at high noise densities, whereas median operation
is used at low noise densities. However, these filters cannot provide better results at higher noise densities,
e.g., 95% and 97% [7-10]. Therefore, to overcome this problem, a novel filtering technique is proposed with

following features:
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1. We have integrated three major concepts, namely weighted median, noise density-based filtering, and

iterative filtering, to improve the overall image quality of the filter images.

2. The proposed edge-based logical smoothener acts as a universal add-on that improves the quality of images

obtained from various filtering techniques at high noise densities.

3 We have concatenated concepts such as canny edge detection, mean blur, and gaussian blur to improve

image quality by using multiple thresholding criteria.

The rest of the paper is organized as follows. Section 2 provides detailed literature review while Section 3
presents the proposed filtering approach. The simulation results and comparative analysis are given in Section

4, and Section 5 concludes the paper.

2. Related work

A number of noise removal filters have been introduced to overcome the limitations of mean and median filters
using a more complex combinational approach as summarized in Figure 1.
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Figure 1. Flowchart of the related work.

1945



GHUMAAN et al./Turk J Elec Eng & Comp Sci

Decision-based filters such as decision-based adaptive median filter (DBAMF) [11] apply sorting such
that the central pixel is the median of the 3 x 3 window, if no noise-free pixel is found, it is replaced by the
nearest nonnoisy pixel. However, at high noise densities, when the noise-free pixels are rare, the candidate
noisy pixel is replaced by the nearest nonnoisy pixel. This results in repetition of the same pixel in the image.
Some trimmed filters such as unsymmetric trimmed mean filter (UTMF) [12] of the trimmed mean category and
unsymmetric trimmed midpoint filter (UTMP) of the trimmed midpoint subcategory are presented to overcome
the shortcomings of DBAMEF. The UTMP has a better performance at low noise densities, whereas UTMF
performs better at high noise densities. The UTMF uses mean of nonextreme values of 3 x 3 window, whereas
UTMP uses midpoint of nonextreme pixels. Both filters have good results in their respective domains, but they
miserably fail if considered separately.

To overcome the abovementioned problems in the trimmed filter category, modified decision-based unsym-
metric trimmed median filter (MDBUTMF) [8] that makes substantial use of trimming technique was presented.
In this technique, the noisy pixel is replaced by the median of 3 x 3 trimmed window constructed around it.
Furthermore, if a zero size matrix is obtained by trimming operation, the noisy pixel is replaced by the mean
of untrimmed 3 x 3 window. The small window size ensures high levels of edge preservation. However, at high
noise densities, a large amount of pixels get replaced by random values upon performing the mean operation.
Another member of this family of combinational filters, belonging to the subcategory of untrimmed filters is fast
switching-based mean median filter (FSBMMF) [7]. This filter is the first of its kind to make use of previously
processed pixels for estimating pixel values that are otherwise left unprocessed during the median calculation
phase. This filter denoises each noisy pixel (z; ;) based on the following expression. Here, med3, med5, mean5,
and ppp represent median operation with 3 x 3, 5 x 5, mean operation with 5 x 5 window, and previously

processed pixel operation, respectively.

med3(x; ;), if med3(x; ;) is NFP.
med5(z;,;),  elseif med(x; ;) is NFP.

meanb(x; ;), elseif, z; ; does not belong to boundary

(1)

Yij =

PPP(z;;), else, previously processed pixel of that row/col

The interpolation-based filters such as recursive cubic spline interpolation filter (RSIF) [10] are very
similar to MDBUTMF [8], the only difference being, instead of performing median operation on a 3 x 3 window,
it takes a 3 x 3 window, and if all the pixels of this window are noisy, then the mean of this window replaces
noisy pixels, else cubic spline interpolation is performed.

. {meanB(nImg), if w33 contains noisy pixels only @)
d a; X 22 +b; x x?2 +¢; x x+d;, Cubic spline interpolation

Owing to the mathematical superiority of the estimation technique, this filter performs extremely well
when compared to its predecessors mentioned before. On the contrary, it requires large execution time and
provides blurred output image due to denoising using the mean value under very high noise density conditions.

Adaptive switching median filter (ASWMF) [4] of the weighted filter subcategory has a different approach
for removing salt and pepper noise. Here every pixel has to meet certain criterion to be classified as a noisy
pixel. If the pixel is found to be noiseless, then it is left unprocessed. Otherwise, the pixel is estimated by

taking the median of a variable sized window depending on the length of the window (even or odd). If the

1946



GHUMAAN et al./Turk J Elec Eng & Comp Sci

trimmed window length is even, then the most reoccurring pixel of this window is repeated once again, and if
there is no reoccurring element, then the nearest nonnoisy pixel is repeated. This makes the window length odd,
and the median of this updated window is used to replace the corrupted pixel. An improved approach of the
weighted filter subcategory is the three value weighted approach (TVWA) [13] which takes into consideration
a variable size trimmed window. The pixels of this window are divided into three groups, namely minimum,
maximum, and middle, based on their closeness to the same. The noisy pixel is then replaced by sum of products
of weighting factors with their maximum, middle, and minimum values of respective groups. The size of the
processing window is increased to a maximum size of 7 x 7 until a noise-free pixel is detected. The larger
window sizes such as 7 x 7 and 5 x 5 lead to loss of edge details, which results in blurred images.

The adaptive Riesz mean filter (ARMF [25]) initially creates a binary bitmap based on whether a given
pixel is noisy or nonnoisy, it assigns the pixel a value of 0 or 1, respectively. It takes into consideration a window
of variable size, the size of which is determined by values in its corresponding bitmap. If all values in a given
bitmap symbolize noisy pixels, then processing window size is increased to incorporate nonnoisy pixels. Once a
window size is decided, the processing pixel is replaced by Riesz mean of the selected window.

Recently, different applied median filter (DAMF) [14] of the preprocessed/iterative subcategory has proven
to be a state-of-the-art filter. DAMF distinguishes between corrupted and original values by equating corrupted
pixels to logic 1 and original pixels to logic 0. This, in turn, results in a binary image. Then the pixels with
logic 1 are processed by considering a 3 x 3 window, the size of this window is linearly increased until the point
where at least one uncorrupted pixel is present. There is only one condition that the size of the mask must not
exceed 7 x 7. Then the noisy pixel is replaced by the median of the trimmed window values. Once the entire
image is filtered in this way, the resulting image is again processed by first converting it into a binary image.
Then the entire image is reprocessed in a similar fashion as before, the only difference being that the window
size is kept constant at 3 x 3. The major reason for this filter’s success is its optimized use of preprocessed
pixels unlike the FSBMMF filter where only four previously processed pixels are available for estimation. This
filter provides eight preprocessed pixels during the second iteration. This technique also takes special care for
lack of information present in the corner and edges by utilizing symmetric padding instead of zero padding. The
only observable drawback is the use of large window sizes in the first step, which adversely affects the edges in
the processed image, thus resulting in a blurred image. Along with these filters, various other filters have been

proposed, and they had one of the issues above [1-30].

To resolve the abovementioned drawbacks, the next section presents an novel hybrid decision-based
algorithm (HDBF) that effectively eliminates impulse noise while preserving the detailed image information.
In addition to this, a universal add-on named edge-based logical smoothener (EBLS) is proposed for image

enhancement at high noise densities.

3. Proposed hybrid decision-based filtering (HDBF') approach

The following subsections first present the flowchart of HDBF followed by its algorithm and finally the flowchart
of EBLS.

3.1. Flowchart of the proposed filtering approach

The flowchart of the proposed filter is shown in Figure 2. Initially, the threshold variables and flags are initialized

as shown in Figure 2, and the noise density (ND) is calculated using the formula given below. Here nlmg,
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are the pixel values of the nIlmg, and M x N represents the image size:
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Figure 2. Flowchart of the proposed filter.
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The proposed approach performs different operations under different noise density conditions as follows:

1. ND < 25% condition: Under this condition, if the flag is zero (initially its value is zero), then the
noisy pixel is replaced by the median of a 3 x 3 trimmed window. The process of obtaining a trimmed

window from window W33 is explained in the example given below in Figure 3:

0 255 0

Wi = 0 [ 0 ] 162 130 | 155 | 162 | 170 | =Wixs
155 | 130 | 170

Note this is the example for trimmed window.

Figure 3. Example of a trimmed window.

If the trimmed window is found to be empty and the candidate pixel is a corner pixel, then the mean of
trimmed 5 X 5 window replaces the noisy pixel. However, under the same circumstance, if the corrupted
pixel is a boundary pixel, then the previously processed pixel of that very row or column replaces the noisy
pixel. However, a pixel from the interior of the image is replaced by the mean of previously processed
pixels in a 3 x 3 window. Under this condition, the denoising process is performed by the steps highlighted

in yellow and green in Figure 2.

2. 25% < ND > 70% condition: The corrupted pixel is replaced with the mean of trimmed 3 x 3 window
constructed across it. If the window size is found to be zero, then the window size is increased to 5 x 5,
and it is checked if its size is greater than one, if so the corrupted pixel is replace by its mean. Otherwise,
the steps are followed as done for the noise density less than 25%. The denoising steps performed under

this condition are shown in blue and green in Figure 2.

3. ND > 70% condition: If the length of the trimmed 3 x 3 window is more than the first threshold variable
(length(Wé’ng) > a), then it executes the three valued probability-based weighted mean (TVPWM)
function as per Algorithm 1 given in the next subsection. In case the first threshold condition is not met
(length(W3! Xf 3) < a), the window size is increased, and the length of trimmed 5 x 5 is checked against the

second threshold variable (length(W;Xf 5) > b), and TVPWM is executed. Now if the second threshold
nf

condition is not met (length(W;%:) < b), the same procedure is repeated for window of size 7 x 7, and

the length of trimmed 7 x 7 is checked against the third threshold variable (length(Wil.) > ¢). After
the entire image has been processed, the threshold and flag values are updated. We then perform the
same process as before. Now the image obtained at the end of the second iteration is passed through the
proposed EBLS add-on logic presented in subsection 3.3 to further improve the edge information of the

reconstructed image. For this condition, the steps are highlighted in orange in Figure 2.

3.2. Proposed TVPWM function
The pseudocode of the TVPWM function is shown in Algorithm 1. The algorithm divides the elements of the

trimmed window of size a X a into three sets, where « is the window size obtained form the previous step.
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Algorithm 1 TVPWM

W W W W W W W NN NN NDNDNDIDNDNDIDN = = = == = = =
STEEIVNE OSSP ISTEINE SO X ITEBD D

IHPUt Waxa
Output Pix
Initialize: v, < 0;7v5 « 0;
Initialize: &) « [];02 « [];
for each P; do

Y1 |ﬂmaz - R‘v

Y2 = |Bmin — Pil;

if 71 <, then

51 — [61, Pi];
else
b2 < [02, P

end if
end for
Ps, «length(d1)/length (W,);
Ps, < length (d2)/length (W,);
Bmid = P51 X Bmaz + P52 X Brmin;
Return: (,,:4;
Initialize: ~; < 0;792 < 0;93 + 0;
Initialize: &) <« [];02 « [];05 < [ ];
for each P; do

Y1 — |ﬁmax - PL‘»

3 < |Bmia — Bil;

if v1 <7 and v, < 3 then

51 “— [61, Pi];
else if v <~ and 72 < 3 then
0o  [02, P;];
else
(53 — [(53, Pz]7
end if
: end for

: Ps, +length (d1)/length (W,);

Ps, <length (d2)/length (W,);
Ps, <length (d3)/length (W,);

Return: Pix;

> Input Trimmed window across corrupted pizel of size a X «
> Restored pixel value

: Pi.%‘(—Pgl Xﬁma:r'i_PﬁQ Xﬂmin"_Pﬁg Xﬂmid;

Initially, the maximum and minimum values within the window are computed, and then on the basis of these

values, the elements of the trimmed window are divided into two sets, where the values close to the maximum

and minimum are stored in d; and Jo, respectively. The middle value of this set is calculated using Eq. 5.

Bm,id = P61 X /Bm(m? + Péz X ﬂmin (5)

Here Ps5, and Ps, are the probability of finding elements of d; and 47, respectively, in the trimmed

window, whereas S, and B, are maximum and minimum values, respectively. Now, based on the middle

value [Bniq, we divide the elements of the trimmed window into three groups d1,02,d3 where each of these

groups store the value closest to the maximum, minimum, and middle value respectively. Finally, the processed
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pixel is given by Eq. (6).

Pix = Ps, X Bmaxz + Psy X Bmin + Py X Brmid (6)
where Pj,, Ps,, and Pj, represent the probability of finding an element of §;,d2, 3 in the trimmed window,
respectively. To further improve the performance of the filter, an extension named edge-based local smoothener

is proposed in the next subsection.

3.3. Illustration for the proposed EBLS add-on

The EBLS effectively calculates the edges of the image using canny edge detection [15] and then makes accurate
decision to use different smoothener for different parts of the image. The flowchart of the proposed EBLS add-on

is shown in Figure 4. Steps to perform the same are given below:
1. The image is symmetric padded.
2. Canny edge detection is used to extract the edges of the image.

3. Two thresholds for applying the canny method are initialized: a high and a low threshold for low and high
edge sensitivity, respectively. The edge with lower sensitivity is started and then flattened to incorporate
associate edge pixels from the high sensitivity result. This fills the gaps between the detected edges and
provides an edged image. In this case, the default value of thresholds are chosen. The resulting image is

stored in matrix E3.

4. Then image dilation [17] (used to expand the pixels in an image) is performed to bold out the edges and
to extract most of the information out of the edges. To perform image dilation, 2D convolution of edged

image is done with 5 x 5 Gaussian kernel with rethreshold of 0.2, and the result is stored in E4.

1 2 4 2 1
2 4 8 4 2
kernel= |4 8 16 8 4 (7)
2 4 8 4 2
1 2 4 2 1

5. Logical smoothing is performed on the dilated image where based on the pixel value 1 or 0 (edged region),

the average or Gaussian smoothing is performed respectively on the image.

EBLS could be applied to almost every salt and pepper filter after some value of threshold. In the
next section, the performance of the proposed EBLS is explained in a detail along with the table that shows
improved performance in terms of PSNR. The next section presents a comparative analysis of simulation results

to evaluate the efficacy of the proposed filter over the existing.

3.4. Illustrations of the proposed algorithm

How the filter works on different matrices at different noise densities can be seen in Figures 5-7. To understand
how the proposed filtering algorithm works, let us consider the noisy pixel 255 located at (1,1) in Figure 5.
Since the trimmed 3 x 3 window around this noisy pixel does not have any noise-free pixels, window size of
5 x 5 is considered. The median of this 5 x 5 restores the noisy pixel. To denoise the pixel located at (1,2), a
3 x 3 window is considered. Since the trimmed window around this pixel does not have any noise-free pixels and
since this pixel belongs to the first row (i.e. boundary pixel), this pixel is restored by the previously processed

pixel which is 162. Similarly, the proposed algorithm denoinses other noisy pixels as shown in Figures 5-7.
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Figure 4. Flowchart of the proposed EBLS add-on.
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89% noisy image ) / Processed Image
Mean of previously

processed pixels in Wagys=(156X2+160X3+162X3+161+163X3)/12
Woys = 161

Figure 5. Operation at low noise density (< 25).

4. Simulation

The simulation is performed for the proposed and other state-of-the-art filters, namely ArMF[25], MDBUTMF,
FSBMMF, RSIF, TVWA, ASWMF, and DAMF. Different benchmark images are considered for analysis.

Initially, the salt and pepper noise-corrupted images with varying noise densities (10% to 99%) are generated
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nf
P=median(Wy;)

median[178]=178 \
258 0

0 0 0 0 160 178 | 178 | 178 160 | 160
0 255 0 0 255 | 255 0 178 | 178 | 178 | 152 | 143 | 160 | 160 "U
255 | 178 | 255 | 255 | O | 25 0 178 | 178 | 152 | 125 | 125 | 143 | 160 g
0 0 0 125 0 0 0 149 | 148 | 144 | 125 | 125 /{3'8 160 g"_
142 | 128 | 145 0 0 255 | 25 142 | 128 | 145 | 133 | 127/] 160 | 160 g
0 167 | 255 | 129 | 255 0 160 154 | 167 | 147 | 129 }(5 157 | 160 °
168 | 165 | 148 | 148 | 148 | 156 | 164 168 | 165 | 148 148//148 156 | 164
69% noisy image P= mcdian(W:;S)l dian[125,160]=125+160/2=143

Figure 6. Operation at high noise density (25 < noise density < 70).
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PP = PIX — CAL(I51,151,151) = 151 PY; =PIX-CAL(158, 156, 157)=157

EBLS
0 <

0 9255 | 156 [ 255 | #7] 255 | 158 W1 [ 154 [ 156 | 156 | 157 [ 158 | 158 151 | 154 | 156 [ 156 | 157 | 158 | 158
151 [ 255255 0 |255[255| 0 151 | 154 [ 156 | 156 [ 157 | 158 | 158 151 | 154 [ 156 | 156 [ 157 | 158 | 158
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2551 0 [255( 0 |255] 0 [ O 151 | 151 | 155 | 157 | 157 | 155 | 155 151 | 151 | 155 [ 157 | 157 | 155 | 155
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0 |255] 0 | g0 |255[159| 0 0 \154( 157 | 159 | 159 | 157 156 159 | 157 [ 159 [ 159 | 157
Noisy Image /Filt d Image (1t Iteration)

=03 =43 Ny
ip > C => \\'H X
159; B, = 155

=MID - CAL(159,155) = 157

P, =PIX - CAL(159,155,157)= 157

n,,=2; c=0;n
e ‘ Bumia = MID — CAL(159,155) = 155
Py, = PIX — CAL(159,151,155) = 155

Figure 7. Operation at higher noise density (>70).

and then filtered using the proposed and existing filters. For the quantitative analysis, the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) values are calculated. The mathematical expression of
PSNR is given by Eq. (8).

MAX?
PSNR =1 _—
SNR 0 x log10 MSE (8>

where MSE is the mean square error and Max is the max pixel value residing in the image. In case of 8-bit
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images, the value of Max is 255.

1 M N
MSE = —— % z;zl(xm — Yij) 9)
i=1 j=

Parameters M and N represent dimensions of the input and output image x and y. Here z; ; and y; ; represent

the pixel values at positions (i, j), respectively.

(2 X pg X iy +C1) X (2 X 04y + Co)

SSIM(z,y) = 10

= e R ) < (2 024 ) o
;X

Standard Deviation(c) = N ;(xz —p)? (11)

where i, (0, ) and p, (o0, ) represent the mean (standard deviation) value in z and y directions, respectively.
Furthermore, C; and C5 represent the constants which are considered to limit the SSIM value to 1.
The following subsections provide the qualitative and quantitative analyses of the proposed filter over

the existing with different benchmark images.

1. Colored Peppers image of size 512 x 512.

2. Medical image Thigh (256 x 256) and Lungs (425 x 425).

w

. Average of Lena, Boat, and Zelda images (512 x 512) and Kodak images.

4. Performances of other filters using EBLS on Lena.

4.1. Simulation result analysis with colored Peppers image

Table 1 shows PSNR and SSIM values of colored Peppers image (512 x 512) filtered using the proposed and
existing filters with noise densities varying from 85% to 99%. From the results, we can confirm that the proposed
algorithm gives better results even for colored images with an average of 0.5 dB and 0.015 increase in PSNR and
SSIM values, respectively. For colored images too, at 97% and 99%, the performance of the filter is exceptionally
well. This shows the filter’s efficacy for all kind of images with very high noise densities. Figures 8a and 8b
present the plot for PSNR and SSIM of the Peppers image for varying noise densities, respectively. Figures
9a and 9b represent original nonnoisy and noisy (with 85% noise density) images, respectively. Figures 9¢—9j
provide restored Peppers images for visual analysis using different filters at 85% noise density. It is evident that
the proposed filter can precisely restore edges throughout the entire range of noise densities.

To check the computational cost, the execution time of all the filters are computed with 10% to 90% noise
density. From Table 1, we can infer that at lower noise densities, the time complexity of the filter is comparable
with most of the other filters. At higher noise densities, the algorithm takes a slightly longer time, but better

performance is achieved at the expense of higher computational cost.
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Table 1. PSNR and SSIM of the filtered colored images using the proposed and existing filters.

Metric | Noise (%) | ArtMF | ASWMF | MDBUTM | FSBMM | RSIF | DAMF | TVWA | PA
85 26.82 | 26.00 17.74 25.06 24.18 | 26.68 26.81 27.79
87 26.63 | 25.71 16.90 24.85 23.79 | 26.45 26.57 27.63
89 26.29 25.10 16.06 24.32 23.22 26.09 26.22 27.04
o 91 25.72 24.03 15.17 23.45 22.53 25.32 25.52 26.82
c% 93 25.11 22.47 14.51 22.63 21.69 23.85 24.71 26.02
- 95 24.24 | 20.39 13.65 21.69 20.72 | 21.07 23.95 25.03
97 23.00 17.54 12.88 19.96 19.13 15.46 22.18 23.88
99 20.61 14.46 12.13 16.28 16.32 8.77 18.24 20.58
85 0.873 | 0.860 0.365 0.839 0.815 | 0.873 0.875 0.897
87 0.860 | 0.843 0.313 0.823 0.795 | 0.860 0.862 0.886
89 0.848 | 0.814 0.268 0.807 0.776 | 0.847 0.850 0.878
= 91 0.829 | 0.765 0.220 0.776 0.742 | 0.825 0.830 0.863
% 93 0.804 | 0.678 0.183 0.744 0.704 | 0.779 0.805 0.842
95 0.770 | 0.527 0.134 0.695 0.649 | 0.681 0.774 0.812
97 0.719 | 0.348 0.100 0.626 0.568 | 0.431 0.726 0.760
99 0.607 | 0.170 0.064 0.501 0.429 | 0.107 0.598 0.635
10 0.242 | 1.852 0.186 0.123 3.176 | 0.194 0.493 0.359
— 20 0.138 2.322 0.200 0.091 4.167 0.345 0.534 0.420
o 30 0.247 | 3.584 0.359 0.158 5.336 | 0.277 0.556 0.515
-g 40 0.294 | 3.179 0.346 0.150 6.594 | 0.291 0.470 0.517
g 50 0.217 | 3.569 0.346 0.156 8.281 | 0.304 0.437 0.504
g 60 0.214 | 4.157 0.394 0.153 7.627 | 0.344 0.482 0.550
L% 70 0.253 | 3.931 0.438 0.232 8.384 | 0.386 0.586 1.882
80 0.342 | 4.401 0.474 0.200 9.576 | 0.446 0.678 1.747
90 0.447 | 4.082 0.532 0.204 10.335 | 0.603 0.784 2.232
Average 0.266 | 3.453 0.364 0.163 7.053 | 0.354 0.558 0.970
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Figure 8. PSNR and SSIM plots of colored Peppers image filtered using various filters at different noise densities.
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Figure 9. Colored Peppers image (a) original, (b) with 85% noise density, and filtered images using: (c¢) ARmF, (d)
MDBUTM, (e) FSBMM, (f) RSIF, (g) TVWA, (h) ASWMF, (i) DAMF, and (j) the proposed filter.

4.2. Analysis on medical images

This subsection consists of quantitative analysis on a medical thigh image (256 x 256) in terms of PSNR and
SSIM and visual representation of lungs image (425 x 425) at noise density of 97%. Table 2 clearly depicts that
the proposed filter produces improved results over a wide range of noise densities (i.e. 10% to 90%). Figures 10a
and 10b provide a graphical representation for the same. Figures 11a and 11b represent the original nonnoisy
and noisy (with 95% noise density) images, respectively. Figures 11c—11j show the visual analysis of restored
lungs image at 97% noise density using various other filters and the proposed filter. The proposed algorithm
produces the best quality restored images with better feature preservation, lower streaking, and significantly

lower blurring.

4.3. Comparative analysis of grey-scale images

Table 3 encapsulates the average PSNR and SSIM values for the proposed and the existing state-of-the-art filters
for Lena, Boat, and Zelda images (512 x 512) with noise density shifting from 75% to 99%. The simulation
outcomes demonstrate that the proposed algorithms have significantly performed better in terms of PSNR
and SSIM as compared to the other filters even at high noise densities like 97% and 99% with 5% average
improvement in PSNR. Figures 12a and 12b provide the plot for PSNR of the same. The trend evidently
depicts that the proposed filter surpasses the PSNR and SSIM of other methods. Figures 13a and 13b represent
the original nonnoisy and noisy (with 91% noise density) images, respectively. Figures 13c—13j show pictorial
representation of the Lena image filtered using the proposed as well as the existing filters at 91% salt and pepper
noise. Therefore, the proposed filter can retrieve the details of an image better than the existing filters and is
very efficient in noise removal at high noise densities.

To compare the performance on larger dataset, images are tested on kodak benchmark dataset containing
24 natural images of size 512 x 768 and 768 x 512 shown in Table 4. In this case too, the proposed HDBF
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Table 2. Quality metrics of the filtered X-ray images using the proposed and existing filters.

Metrics | Noise (%) | ARmF | ASWMF | MDBUTM | FSBMMF | RSIF | DAMF | TVWA | PA
10 35.82 35.30 33.05 36.80 35.69 | 30.71 35.26 37.82
20 34.16 32.57 29.44 33.31 33.49 | 29.79 33.84 34.95
30 32.74 29.99 26.54 31.04 31.00 | 27.52 32.00 32.92
o 40 31.63 28.36 23.93 29.18 29.38 | 26.43 31.15 32.04
c% 50 30.43 26.69 21.83 28.01 27.87 | 24.72 30.16 31.22
. 60 28.88 25.21 19.31 26.90 26.34 | 23.99 28.69 28.94
70 27.30 23.12 16.89 25.87 24.68 | 22.34 27.27 27.80
80 25.44 21.13 13.98 24.44 22.33 | 20.74 25.50 26.76
90 22.92 17.68 11.20 22.44 19.72 | 17.97 23.12 24.53
10 0.977 0.976 0.948 0.979 0.976 | 0.976 0.975 0.981
20 0.970 0.963 0.918 0.962 0.966 | 0.967 0.967 0.976
30 0.961 0.944 0.872 0.943 0.950 | 0.952 0.955 0.959
S 40 0.949 0.928 0.804 0.920 0.931 | 0.939 0.943 0.949
»n 50 0.935 0.907 0.733 0.893 0.903 | 0.920 0.929 0.939
n
60 0.914 0.875 0.618 0.862 0.868 | 0.894 0.906 0.910
70 0.880 0.830 0.464 0.820 0.812 | 0.860 0.875 0.882
80 0.831 0.758 0.281 0.762 0.724 | 0.809 0.825 0.835
90 0.737 0.581 0.137 0.658 0.569 | 0.693 0.740 0.771
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Figure 10. PSNR and SSIM plots for the medical image Thigh, each of size 256 x 256.

outperforms the other existing filters with an average improvement of around 1 dB in PSNR and 0.1 in SSIM.

Moreover, average standard deviations of the proposed algorithm on 24 images are also provided in Table 4,

which shows the filters’ consistent performances on multiple images as none of the value is greater than 1 dB.
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Figure 11. X-ray (Chest) images (a) original, (b) with 95% noise density, and filtered images using: (c¢) ARmF, (d)
MDBUTM, (e) FSBMM, (f) RSIF, (g) TVWA, (h) ASWMEF, (i) DAMF, and (j) the proposed filter.
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Figure 12. PSNR for different filters with varying noise densities using Lena image (512 x 512).

4.4. Analysis of the proposed EBLS add-on

Table 5 shows the performance of the filters, namely DAMF [14], ASWMF [4], and TVWA [13] in terms
of PSNR. To evaluate these metrics, the Lena (512 x 512) image is processed with and without the use of
universal EBLS add-on at varying noise densities. Variation in noise density is dependent on the threshold
value for respective filters. Threshold is defined as the value beyond which the extension produces significantly
better results for a given filter respectively. Thus, the table suggest that there is improved performance in each
filter after some threshold. The table shows, on an average, 14.8%, 2.23%, and 5.25% improvement in PSNR
values of DAMF, TVWA, and ASWMF, respectively. Figures 14a—14c shows the plot of these filters before and
after the application of the proposed EBLS add-on. From the plot, we can infer that each filter after some value

of threshold noise density gives significant increase in the performance in terms of PSNR.
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Table 3. Average PSNR and SSIM of filtered Lena, Zelda, and Boat images using the proposed and existing filters.

Metric | Noise (%) | ARmF | ASWMF | MDBUTM | FSBMM | RSIF | DAMF | TVWA | PA
75 29.98 28.70 22.15 27.89 26.97 | 29.48 29.78 30.55
7 29.54 28.39 21.21 27.54 26.48 | 29.14 29.42 30.30
79 29.21 28.12 20.36 27.22 26.17 | 28.86 29.10 30.06
81 28.87 27.71 19.15 26.84 25.65 | 28.48 28.71 29.75
83 28.42 27.36 18.69 26.46 25.22 | 28.10 28.31 29.43
o 85 27.99 26.78 17.80 25.87 24.53 | 27.62 27.82 28.97
% 87 27.42 26.26 17.03 25.40 24.09 | 27.20 27.38 28.57
- 89 26.84 25.37 16.15 24.73 23.47 | 26.58 26.81 28.01
91 26.17 24.24 15.38 23.92 22.75 | 25.64 26.08 27.29
93 25.46 22.52 14.54 23.03 21.91 | 24.10 25.36 26.54
95 24.55 20.19 13.75 21.79 20.71 | 20.60 24.22 25.31
97 23.18 17.48 12.95 19.96 19.28 | 15.28 22.57 23.80
99 20.70 14.60 12.20 16.69 16.74 | 8.82 18.79 19.80
(0] 0.938 0.929 0.677 0.907 0.893 | 0.935 0.937 0.937
T 0.931 0.923 0.619 0.897 0.881 | 0.928 0.930 0.932
79 0.925 0.916 0.566 0.888 0.869 | 0.922 0.924 0.927
81 0.917 0.908 0.518 0.878 0.854 | 0.914 0.916 0.920
83 0.909 0.899 0.464 0.865 0.837 | 0.906 0.908 0.914
S 85 0.898 0.885 0.405 0.846 0.814 | 0.894 0.895 0.904
% 87 0.883 0.869 0.353 0.827 0.792 | 0.882 0.884 0.894
89 0.867 0.840 0.301 0.803 0.761 | 0.865 0.868 0.880
91 0.844 0.792 0.251 0.768 0.723 | 0.838 0.845 0.859
93 0.819 0.707 0.200 0.728 0.673 | 0.796 0.819 0.837
95 0.777 0.559 0.150 0.668 0.604 | 0.684 0.776 0.795
97 0.712 0.365 0.105 0.576 0.507 | 0.437 0.714 0.736
99 0.573 0.173 0.063 0.422 0.359 | 0.111 0.550 0.573

(b)

(g

(h)

(d

Figure 13. Lena images (a) original, (b) with 91% noise density, and filtered images using: (¢) ARmF, (d) MDBUTM,
(e) FSBMM, (f) RSIF, (g) TVWA, (h) ASWMF, (i) DAMF, and (j) the proposed median filters.
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Table 4. Average PSNR and SSIM of filtered Kodak-24 bench mark images using proposed and existing filters.

Metric | Noise (%) | ARmF | ASWMF | MDBUTM | FSBMM | RSIF | DAMF | TVWA | PA
5 25.38 20.55 24.21 23.67 24.76 | 25.39 23.12 25.84
7 25.12 19.81 23.97 23.41 24.49 | 25.08 22.81 25.60
79 24.82 19.10 23.76 23.21 24.25 | 24.82 22.53 25.44
81 24.54 18.34 23.51 22.94 23.96 | 24.52 22.21 25.21
83 24.18 17.60 23.21 22.63 23.67 | 24.10 21.88 24.88
e 85 23.87 16.84 22.98 22.35 23.36 | 23.83 21.51 24.68
t% 87 23.46 16.10 22.65 22.07 23.01 | 23.46 21.13 24.35
- 89 23.10 15.34 22.26 21.72 22.63 | 23.04 20.65 24.04
91 22.61 14.58 21.83 21.31 22.03 | 22.56 20.16 23.63
93 22.11 13.84 21.33 20.77 21.00 | 21.92 19.51 23.10
95 21.43 13.10 20.51 20.08 18.75 | 21.25 18.74 22.51
97 20.64 12.36 19.51 19.17 14.40 | 20.25 17.59 21.52
99 19.07 12.73 16.85 16.77 8.64 | 17.01 15.02 17.89
5 0.891 0.604 0.851 0.840 0.883 | 0.891 0.824 0.881
7 0.882 0.554 0.840 0.828 0.875 | 0.882 0.810 0.875
79 0.872 0.505 0.828 0.816 0.865 | 0.871 0.795 0.867
81 0.860 0.453 0.814 0.800 0.853 | 0.859 0.776 0.858
83 0.847 0.403 0.798 0.784 0.841 | 0.847 0.757 0.847
E 85 0.832 0.353 0.779 0.766 0.826 | 0.831 0.734 0.835
a 87 0.813 0.305 0.758 0.743 0.808 | 0.814 0.707 0.820
89 0.793 0.259 0.731 0.717 0.786 | 0.791 0.675 0.803
91 0.767 0.214 0.700 0.686 0.756 | 0.766 0.637 0.781
93 0.734 0.173 0.661 0.646 0.707 | 0.733 0.589 0.753
95 0.691 0.133 0.611 0.597 0.596 | 0.690 0.530 0.716
97 0.630 0.094 0.543 0.529 0.362 | 0.630 0.442 0.658
99 0.522 0.068 0.252 0.220 0.087 | 0.312 0.192 0.325

Table 5. Average PSNR of three existing filters before and after application of add-On.

Noise DAMF TVWA ASWMF

density | W/o EBSL | With EBSL | W/o EBSL | With EBSL | W/o EBSL | With EBSL
50% NULL NULL NULL NULL 32.31 32.35
55% NULL NULL NULL NULL 31.58 32.02
60% 31.73 31.96 NULL NULL 30.81 31.66
65% 30.99 31.62 31.42 31.55 29.97 31.20
70% 30.30 31.19 30.53 31.05 29.18 30.65
75% 29.38 30.50 29.76 30.50 28.42 30.10
80% 28.43 29.76 28.70 29.65 27.73 29.56
85% 27.31 28.69 27.75 28.69 26.48 28.42
90% 25.69 27.10 26.52 27.37 24.47 26.43
95% 20.56 24.00 24.59 25.12 20.12 22.00
97% 15.34 20.79 23.10 23.56 17.61 19.00
99% 9.01 15.44 20.26 20.56 14.76 15.44
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Figure 14. PSNR plots of different filters before and after the application of EBLS add-on.

5. Conclusion

In this paper, a new hybrid decision-based filter is proposed which uses variable size processing windows to
remove noise at different noise densities. Furthermore, a universal edge-based logical smoothener add-on is also
proposed that can be utilized with the proposed or any other existing salt and pepper noise removal filter to
improve the performance. The proposed filter can preserve the edges of the image even at 97% and 99% noise
densities and hence has better PSNR and SSIM. The simulation results show that the proposed filter provides
stable high performance on grey-scale, colored, and medical benchmark images. Finally, it is observed that the
proposed add-on improves the performance of all the existing filters by improving their results to a good extent.

Moreover, the application of this filter in medical images could be used as an asset.
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