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1. Introduction
Telechelic polymers are macromolecules consisting of reactive groups at both chain ends, and they are widely used as 
building blocks for numerous macromolecular architectures including block and graft copolymers and star polymers as 
well as chain extenders, cross-linkers for polymer networks [1]. In polymer chemistry, telechelic polymers can be classified 
as mono-telechelic, di-telechelic and tri-telechelic according to their number of reactive end-groups [2]. There are many 
routes for the preparation of telechelic polymers with terminal reactive functionalities in the literature [3]. At the beginning 
of polymer chemistry, conventional radical polymerization, polycondensation and ionic polymerization techniques were 
mostly used for this purpose [1]. After discoveries of controlled radical polymerization (CRP) including nitroxide mediated 
radical polymerization (NMRP), atom transfer radical polymerization (ATRP) and reversible addition−fragmentation 
chain-transfer (RAFT) polymerization as well as the click chemistry reactions including copper (I)-catalyzed azide/alkyne 
cycloaddition (CuAAC), Diels–Alder and thiol-yne/ene, it is easy to synthesize telechelic polymers with high yield under 
mild conditions [4–9]. For example, several functionalities including -alcohol, -carboxylic acid, -pyrene, and -benzyl 
moieties have been successfully installed on the terminal position of polystyrene (PSt) and poly(epsilon caprolactone) 
(PCL) via photoinduced version of CuAAC click chemistry using 2,4,6-trimethylbenzoyl)diphenylphosphine oxide/
copper (II) chloride/ N,N,N′,N″,N″-pentamethyldiethylenetriamine as catalyst [4]. The efficiency of the photoinduced 
CuAAC click reactions were found higher than 74% that determined by 1H-NMR spectroscopy using the ratio of the 
characteristic peaks of functional groups compared with PSt and PCL.

 Benzodioxinone is an important class of either photo- or heat-sensitive compounds that is responsible to generate 
the reactive quino-ketene upon heat or UV illuminations. The produced ketenes can be readily reacted with amines, 
phenols, and alcohols to get related salicylic amide and esters [10,11]. Thermolysis of benzodioxinones at 200 °C in the 
absence of nucleophiles resulted in dimerization reaction, whereas the corresponding salicylic amides or esters were 
formed in high yields in the presence of nucleophiles such as alcohols or amines [12–15]. Compared to the heat-sensitive 
benzodioxinone, photochemically activated one has several advantages such as being applicable at low temperatures with 
low-energy consumption and provides spatial and temporal regulation of chemical processes [10,16–22]. Furthermore, 
the liberated benzophenone as a by-product can be further employed as a photoinitiator for both free radical and cationic 
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photopolymerizations of (meth)acrylates and epoxides. Additionally, various macromolecular structures including block 
and graft copolymers and polymer networks were simply prepared via benzodioxinone chemistry upon UV irradiation at 
ambient temperature [10,16–24]. In this study, firstly both heat- (2,2-dimethyl-5-(prop-2-yn-1-yloxy)-4h-benzo[d][1,3]
dioxin-4-one) and photo-sensitive (2,2-diphenyl-5-(prop-2-yn-1-yloxy)-4h-benzo[d][1,3]dioxin-4-one) benzodioxinones 
(Alkyne-DPh-Bd and Alkyne-DMe-Bd) were successfully synthesized using modified literature. Then, these compounds 
were easily installed on the terminal position of both azido-functionalized poly(methyl methacrylate) and poly(ethylene 
glycol) methyl ether in order to get their mono-telechelics via CuAAC click chemistry. The mild UV irradiation of the 
obtained photosensitive-monotelechelic (Alkyne-DPh-Bd) in the presence of monohydroxyl-functionalized PCL resulted 
in corresponding block copolymer nearly quantitative yield.

2. Experimental
2.1. Materials
Poly(ethylene glycol) methyl ether, (mPEG-OH, Mn = 5000 g/mol, Aldrich, Darmstadt, Germany), dimethoxyethane (%99.5, 
Fluka), 4-dimethylaminopyridine (DMAP, 99%, Acros, Geel, Belgium), thionyl chloride (%99.5 Acros), benzophenone 
(99%, Aldrich), acetone (%99,5 Merck, Darmstadt, Germany) was used as received. Methyl methacrylate (MMA, 99%, 
Aldrich) was purified via filtering over basic Al2O3. N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA, 99%, 
Aldrich) was distilled before use. Epsilon-caprolactone (eCL, Aldrich, 97 %) was vacuum distilled over calcium hydride. 
Copper(I) bromide (98%, Acros), ethyl 2-bromopropionate (99%, Aldrich), methyl chloride, triethylamine (%99,5 Sigma-
Aldrich), sodium azide (NaN3, 99,5%, Fischer Scientific, Pittsburgh, USA), L-ascorbic acid sodium salt (NaAsc, Acros 
99%), copper(II)sulfate.5H2O (Cu(II)SO4, Acros 99%), tin(II) 2-ethyl-hexanoate (Sn(Oct)2, Aldrich, 95%) and n-propanol 
(n-PA, Aldrich, 99.77%) were used as received. Tetrahydrofuran (THF, >99,8%), anhydrous dichloromethane (>99,8%), 
dimethylformamide (DMF, 99,8%), toluene (99,8%) was purchased from Sigma-Aldrich. Hexane, methanol, and brine 
were technical grades. Silica gel (Al2SO3, Merck, 0.040–0.063 mm) and Na2SO4 (ACS reagent, ≥99.0%, anhydrous, powder) 
were used for purification steps of PEG-N3 and MMA.
2.2. Synthesis of azido-functionalized poly(ethylene glycol) methyl ether (mPEG-N3)
2.2.1. Mesillation of mPEG
mPEG5000 (2 g, 0.4 × 10−3 mol -OH group) was dissolved at 30 mL dry dichloromethane in 50 mL round bottom flask. 
Subsequently, triethylamine (0.56 mL, 4 × 10−3 mol) was added to the solution as a catalyst. After that, methylsulfonyl 
chloride was added drop by drop to the solution at inert atmosphere at 0°C. The final solution was stirred vigorously until 
its temperature gradually rises to room temperature for 24 h. The reaction solution was precipitated in cold diethyl ether 
(100 mL) and filtered via suction filtration. The filtrate was dried in a vacuum oven at room temperature for 24 h. The yield 
was found as 1.76 g and calculated as 88%, gravimetrically.

 FT-IR (υmax): 2886 and 2613 cm−1 (S-C stretching), 2494 and 1171 cm−1 (-SO2 stretching). 
2.2.2. Azidation of mPEG-MSCl
Obtained mesylated mPEG5000 (1g, 0.2 × 10−3 mol) was dissolved in DMF (15 mL) followed by excess sodium azide (0.13 
g, 2 × 10−3 mol) addition. The solution was heated up to 45°C and stirred for 3 days. Dry dichloromethane (30 mL) was 
added to the solution and washed with distilled water 3 times. The organic phase was separated by 250 mL separation 
funnel and dried over Na2SO4, and the mixture was filtered. The obtained solution was concentrated to 30 mL by rotary 
evaporator and precipitated with diethyl ether (300 mL), filtered, and dried in vacuum oven for 24h. The yield (0.92 g, 92%, 
gravimetrically) and molecular characteristics of PMMA-N3 were found as Mn,GPC = 5100 g/mol and Ɖ = 1.41.

FT-IR (υmax): 3401 cm−1 (OH), 2920 cm−1 (C–H), 2111 cm−1 (N3).
2.3. Synthesis of azido-functionalized poly (methyl methacrylate) (PMMA-N3)
Firstly, a bromo-functionalized poly(methyl methacrylate) (PMMA-Br) was synthesized by ATRP according to the 
published procedure [25]. The yield and molecular characteristics of PMMA-Br were found as Mn,GPC = 3700 g/mol and Ɖ 
= 1.33. And then, the obtained PMMA-Br (2 g, 5.12 × 10−3 mol) and sodium azide (0.167 g, 21.6 × 10−3 mol) were dissolved 
in 40 mL DMF in a 100 mL round bottom flask.  The reaction mixture was deaerated by nitrogen and stirred via a magnetic 
stirrer at 60 °C for overnight. After the given time, the mixture was cooled to room temperature and precipitated in 400 mL 
technical grade methanol. The precipitate was filtrated via a suction filtration setup and dried in a vacuum oven. The yield 
(1.88 g, 94%, gravimetrically) and molecular characteristics of PMMA-N3 were found as Mn,GPC = 3900 g/mol and Ɖ = 1.37.

FT-IR (υmax): 2990 cm−1 (C-H, alkyl), 2950 cm−1 (C-H, alkyl), 2100 cm−1 (N3), 1730 cm−1 (C=O).
2.4. Synthesis of hydroxyl-functionalized poly(epsilon caprolactone) (PCL-OH)
The PCL-OH was synthesized by ring-opening polymerization followed by the published procedure [26]. The eCL (5.0 
mL, 45.12 mmol) was added as a monomer in Schlenk tubes equipped with a magnetic stirrer and then a solution of tin(II) 
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2-ethyl-hexanoate in toluene (1.0 mL, 2.256 × 10−2 mmol),  a solution of n-propanol in toluene (1.0 mL, 0.45 mmol) and 
toluene (3.0 mL) were added under nitrogen. The ring-opening polymerization of eCL was carried out at 110 °C for 24 h. 
After the given time, the mixture was poured into a 10-fold excess of cold heptane. The resulting hydroxyl-functionalized 
PCL was filtrated and dried at room temperature in a vacuum oven and obtained as a white powder. The yield (3.35 g and 
65%, gravimetrically) and molecular characteristics of PCL-OH were found respectively as Mn,GPC = 7400 g/mol and Ɖ = 
1.34. 

FT-IR (υmax): 2950 cm−1 (asymmetric C-H stretching), 2870 cm−1 (symmetric C-H stretching), 1725 cm−1 (C=O 
stretching), 1295 cm−1 (C–O and C–C stretching), 1240 cm−1 (asymmetric C–O–C, stretching), and 1170 cm−1 (symmetric 
C–O–C stretching).

1H-NMR (CDCl3, 500 MHz,): 4.00 (CH2O on PCL), 3.65 (2H, CH2OH), 3.45 (CH2-CH2-CH3), 2.50 (1H, CH2–C≡CH), 
2.45–2.41 (CH2-CH2-CH3), 2.35–2.27 (CH2C=O on PCL), 1.67–1.57 (CH2 on PCL and CH2-CH2-CH3), 1.40-1.38 (CH2 
on PCL).
2.5. Synthesis of 2,2-Diphenyl-5-(Prop-2-yn-1-yloxy)-4H-Benzo[d][1,3]Dioxin-4-one (Alkyne-DPh-Bd) and 
2,2-Dimethyl-5-(Prop-2-yn-1-yloxy)-4H-Benzo[d][1,3]Dioxin-4-one (Alkyne-DMe-Bd)
The precursor, 5-hydroxy-2,2-diphenyl-4h-benzo[d][1,3]dioxin-4-one (DPh-Bd) was synthesized by following published 
procedure (Scheme 1) [27,28]. The resulting DPh-Bd compound (1 g, 3.2 × 10−3 mol) and anhydrous potassium carbonate 
(4.4 g, 32 × 10−3 mol) was dissolved in acetone (30 mL) and then stirred for 2 h at room temperature. After the given time, 
the propargyl bromide (1 mL, 10 × 10−3 mol) was first added into the reaction mixture that was subsequently heated at 56 
°C for 4 h. In the final stage, the acetone was removed by a rotary evaporator, and then diethyl ether was added into the 
remaining mixture, washed with water three times after that brine, and then the organic phase was dried over anhydrous 
sodium sulphate. The remaining mixture was purified by a silica column chromatography using n-hexane/ethyl acetate 
(90/10) as the eluent. The Alkyne-DPh-Bd was obtained as a light yellow solid (0.8 g, 70%, mp = 163 °C). 

FT-IR (υmax): 3400 cm−1 (OH), 2948 cm−1 (C-H, Ar), 2800 cm−1 (C-H, alkyl), 2100 cm−1 (C≡C), 1728 cm−1 (C=O), 1608 
cm−1 (C-C, Ar), 1460 cm−1 (C-C, Ar), 1100 cm−1 (C-O), 705 (C-H, Ar) cm-1. 

1H-NMR (CDCl3, 500 MHz,): δ = 7.60-7.2 (m, 10H, Ar), 6.7-6.5 (d, 3H, Ar), 4.9 (s, 2H, OCH2), 2.5 (s, 1H, C≡CH). 
The 5-hydroxy-2,2-dimethyl-4h-benzo[d][1,3]dioxin-4-one (DMe-Bd) compound was also prepared by a similar 

procedure of DPh-Bd using acetone instead of benzophenone. Rest of the synthesis procedure for Alkyne-DMe-Bd was 
same with above. The Alkyne-DMe-Bd was obtained as a light yellow solid (1.15 g, 64%, mp = 142 °C).

FT-IR (υmax): 3410 cm−1 (OH), 2946 cm−1 (C-H, Ar), 2805 cm−1 (C-H, alkyl), 2103 cm−1 (C≡C), 1730 cm−1 (C=O), 1605 
cm-1 (C-C, Ar), 1458 cm−1 (C-C, Ar), 1115 cm−1 (C-O), 715 (C-H, Ar) cm−1.  

1H-NMR (CDCl3, 500 MHz,): δ = 6.7-6.5 (d, 3H, Ar), 4.9 (s, 2H, OCH2), 2.5 (s, 1H, C≡CH), 1.7 (s, 6H, CH3).
2.6. Synthesis of mPEG-based Benzodioxinone mono-telechelics via CuAAC click reaction
The mPEG-N3 (0.51 g, 0.1 × 10−3 mol) and Alkyne-DPh-Bd (0.0356 g, 0.1 × 10−3 mol) was dissolved in 10 mL dissolved. 
Then, Cu2SO4.5H2O (0.025 g, 0.1 × 10−3 mol) and sodium ascorbate (0.02 g, 0.1 × 10−3 mol) were added to the solution and 
vigorously stirred for overnight at room temperature. After the given time, the mixture was precipitated in hexane, filtered, 
and dried in a vacuum oven at room temperature. The click reaction of PEG-N3 and Alkyne-DMe-Bd was carried out with 
the same procedure (Scheme 2). 

The yield (0.50 g, 92%, gravimetrically) and molecular characteristics of mPEG-DPh-Bd were found as Mn,GPC = 5300 
g/mol and and Ɖ = 1.39.

The yield (0.45 g, 85%, gravimetrically) and molecular characteristics of mPEG-DMe-Bd were found as Mn,GPC = 5200 
g/mol and and Ɖ = 1.36.

 
Scheme 1. Synthesis procedures of Alkyne-DPh-Bd and Alkyne-DMe-Bd.
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2.7. Synthesis of PMMA-based benzodioxinone mono-telechelics via CuAAC click reaction
The obtained PMMA-N3 (0.68 g, 0.2 × 10−3 mol) and Alkyne-DPh-Bd (0.071 g, 0.2 × 10−3 mol) were dissolved in 10 mL 
dichloromethane into 25 mL round bottom flask. Then, Cu2SO4.5 H2O (0.032 g, 1.28 × 10−3 mol) and Na Ascorbate (0.025 
g, 1.28 × 10−3 mol) were added to solution and vigorously stirred at room temperature overnight. Then, the reaction was 
precipitated in methanol, filtered, and dried in a vacuum oven. The click reaction of PMMA-N3 and Alkyne-DMe-Bd was 
carried out with the same procedure (Scheme 3). 

The yield (0.71 g, 94%, gravimetrically) and molecular characteristics of PMMA-DPh-Bd were found as Mn,GPC = 4400 
g/mol and Ɖ = 1.31.

The yield (0.65 g, 89%, gravimetrically) and molecular characteristics of PMMA-DMe-Bd were found as Mn,GPC = 4200 
g/mol and and Ɖ = 1.28.
2.8. Synthesis of mPEG-b-PCL copolymer via photoinduced ketene chemistry
The mPEG-DPh-Bd (0.102 g, 0.02 × 10−3 mol) and PCL-OH (0.148 g, 0.02 × 10−3 mol) were dissolved in a small amount 
of CH2Cl2 (1 mL) in a quartz tube. Subsequently, the reaction mixture was degassed with nitrogen and was placed in a 
UV photoreactor to illuminate UV light-emitting 370 nm for 48 h (Scheme 4). Finally, the product was precipitated in 
cold methanol and dried in a vacuum at room temperature after filtration. The yield (0.203 g, 81%, gravimetrically) and 
molecular characteristics of PCL-OH were found as Mn,GPC = 10800 g/mol and Ɖ = 1.44.
2.9. Characterization
Fourier transform infrared (FT-IR) and 1H-NMR spectra of the intermediates and final polymers were recorded on a 
Perkin-Elmer (Perkin Elmer Italia S.p.A., Milano, Italy) FT-IR Spectrum One B and Varian Unity Inova 500 MHz 
spectrometers, respectively. The 1H-NMR measurements were performed in CDCl3 with Si(CH3)4 as the internal standard at 

Scheme 4. Synthesis procedure for mPEG-b-PCL copolymer via photoinduced ketene chemistry.

 
Scheme 2. Synthesis procedures of mPEG-DPh-Bd and mPEG-DMe-Bd.

 
Scheme 3. Synthesis procedures for PMMA-DPh-Bd and PMMA-DMe-Bd.

 



ÇELİK / Turk J Chem

1119

room temperature. Molecular characteristics (molecular weights and molecular weight distributions of resulting polymers 
were determined by size exclusion chromatography (SEC) by a Viscotek GPCmax Autosampler consisting of a Viscotek 
differential refractive index detector, a pump, three ViscoGEL GPC columns (G4000HHR, G3000HHR and G2000HHR) with 
a tetrahydrofuran flow rate of 1.0 mL/min at 30 °C. The refractive index detector was calibrated by a series of polystyrene 
standards, which had a narrow polydispersity set consisting of 7 individual standards. All SEC data were analyzed using 
Viscotek (Malvern Panalytical Ltd., Malvern, UK) OmniSEC Omni–01 software. (Malvern Panalytical Ltd., Malvern, UK)

3. Results and discussion
Ketenes are very reactive molecules towards unsaturated and nucleophilic compounds. The reactions of ketenes with amines, 
alcohols, and carboxylic acids are simple routes for the synthesis of corresponding amides, esters, and anhydrides. However, 
all ketene derivatives are unstable compounds that cannot be isolated due to their instabilities. Therefore, the desired ketenes 
can be in-situ generated by either thermolysis or photolysis of precursors and readily reacted with antagonist nucleophilic 
compounds. Benzodioxinones are important precursors to form reactive ketenes upon heat or UV illuminations. Recently, 
benzodioxinone chemistry has been utilized in homopolymerization, block, and graft copolymerization and cross-linking 
reactions for the construction of various macromolecular architectures including homopolymer block copolymers, graft 
copolymers and polymer networks. Here, thermally (Alkyne-DMe-Bd) and photochemically (Alkyne-DPh-Bd) active 
alkyne functionalized benzodioxinones were firstly synthesized by etherification reactions of propargyl bromide with 
either 5-hydroxy-2,2-dimethyl-4h-benzo[d] [1,3]dioxin-4-one or 5-hydroxy-2,2-diphenyl-4h-benzo[d][1,3]dioxin-4-
one. Then, chemical structures of Alkyne-DMe-Bd and Alkyne-DPh-Bd were confirmed by both FT-IR and 1H-NMR 
spectroscopies. The aromatic and aliphatic C-H bands as well as the C=O band and C-O-C bands at 2950, 2800, 1730, and 
1100 cm-1 in FT-IR spectroscopy confirmed the chemical structures of Alkyne-DMe-Bd and Alkyne-DPh-Bd. In addition, 
the characteristic aromatic bands of benzodioxinone and alkyne groups in both Alkyne-DMe-Bd and Alkyne-DPh-Bd 
molecules were clearly detected at 6.7–6.5, 4.9 and 2.5 ppm, respectively. Furthermore, the phenyl groups of Alkyne-
DPh-Bd coming from benzophenone and methyl groups of Alkyne-DMe-Bd coming from acetone were also revealed at 
7.60–7.2 and 1.7 ppm, respectively (see experimental part).

After successful synthesis of initial Alkyne-DPh-Bd and Alkyne-DMe-Bd, their installations on the azido groups of 
mPEG-N3 were done by CuAAC click reactions at room temperature using Cu2SO4/sodium ascorbate catalyst system. 
For both cases, quantitative yields were determined gravimetrically (92 and 85% for mPEG-DPh-Bd and mPEG-DMe-
Bd, respectively). On the other hand, the CuAAC click reactions were monitored by FT-IR spectroscopy through the 
disappearance of the characteristic azido band at 2111 cm–1. The complete disappearance of azido peak in the FT-IR 
spectra of mPEG-DPh-Bd and mPEG-DMe-Bd in Figure 1 proved the successful CuAAC click reactions.

In addition to FT-IR investigations, the 1H-NMR spectroscopy gives more detailed information about the chemical 
structures of mPEG-DPh-Bd and mPEG-DMe-Bd monotelechelics (Figure 2). In both cases, the characteristic peaks 
(e+f) of mPEG were clearly detected around 3.31–3.92 ppm, while the aromatic and aliphatic peaks of benzodioxinones 
also appeared at 6.51–7.63, 1.73 and 4.76 ppm. Furthermore, the new peak corresponding to triazole rings at 7.83 ppm 
confirmed the successful installation of benzodioxinones onto the terminal positions of mPEG. On the other hand, the 
molecular weights of the resulting polymers were slightly higher than mPEG-N3 due to the contributions of Alkyne-DPh-
Bd and Alkyne-DMe-Bd molecules. On the contrary, the polydispersity indices of the mPEG-DPh-Bd and mPEG-DMe-
Bd monotelechelics were negligibly decreased from 1.41 to 1.39 and 1.36. This could be due to the elimination of possible 
unfunctionalized mPEG chains after the solution/precipitation procedure. 

Finally, the peak areas of the aliphatic protons of mPEG (e and f) and aromatic protons of benzodioxinones (b) in 
1H-NMR spectra of mPEG-DPh-Bd and mPEG-DMe-Bd monotelechelics were utilized to calculate their molecular 
weights. The Mn,NMR values of mPEG-DPh-Bd and mPEG-DMe-Bd were found as 5200 and 5100 g/mol, respectively.

The similar CuAAC click chemistry was also applied for the functionalization of PMMA-N3 with Alkyne-DPh-Bd 
and Alkyne-DMe-Bd. The chemical structures of PMMA-DPh-Bd and PMMA-DMe-Bd were confirmed by FT-IR and 
1H-NMR spectroscopy analysis. The complete disappearance of azido band at 2100 cm–1 of PMMA-N3 approved the 
successful syntheses of PMMA-DPh-Bd and PMMA-DMe-Bd in Figure 3. Moreover, the characteristic C=O, C-O-C, 
and aromatic bands of both PMMA and benzodioxinones units also determined FT-IR spectra of PMMA-DPh-Bd and 
PMMA-DMe-Bd.

The 1H-NMR analyses of PMMA-DPh-Bd and PMMA-DMe-Bd were accomplished, and the characteristic bands 
of both PMMA and benzodioxinones components were assigned in Figure 4. The aromatic and aliphatic groups of 
benzodioxinones were confirmed by detecting a, b, and c peaks at 7.61, 6.62 and 4.83 ppm, respectively. In addition, the 
aliphatic protons coming from ATRP initiator (g+hi+j) and PMMA (e+f) also appeared at 0.78–2.05, 3.69 and 4.07 ppm. 
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The peak areas of the aliphatic protons of PMMA (f) and aromatic protons of benzodioxinones (b) in 1H-NMR spectra of 
PMMA-DPh-Bd and PMMA-DMe-Bd monotelechelics were also utilized to calculate their molecular weights. The Mn,NMR 
values of PMMA-DPh-Bd and PMMA-DMe-Bd were found as 4250 and 4050 g/mol, respectively.

A model study was also completed to investigate the potential use of photochemically active monotelechelic in the 
synthesis of block copolymers. The UV exposure of reactive benzodioxinone terminated mPEG-DPh-Bd and antagonist 
PCL-OH in a UV photoreactor with light-emitting 370 nm for 48 h led to the quantitative block copolymer formation 
(mPEG-b-PCL). Based on the FT-IR spectrum of mPEG-b-PCL, the characteristic ester bands of PCL and ether bands of 
mPEG were clearly detected in Figure 5. This finding confirmed that the obtained mPEG-b-PCL consists of both PCL and 
mPEG blocks.

Figure 1. FT-IR spectra of mPEG-N3, mPEG-DPh-Bd and mPEG-DMe-Bd.

Figure 2. 1H-NMR spectra of mPEG-N3, mPEG-DPh-Bd and mPEG-DMe-Bd.
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On the other hand, the distinguished -CH2- bands of PCL and -CH2- bands of mPEG also appeared at 3.65 and 4.11 
ppm in the 1H-NMR spectrum of mPEG-b-PCL. Moreover, the characteristic triazole (j) and benzodioxinone (f+g+h) 
bands appeared between 6.5 and 8.0 ppm (Figure 6). The peak areas of the CH2 protons of mPEG (m) and O-CH2- protons 
of PCL (e) were utilized to calculate the composition of block copolymers. The composition of mPEG for block copolymer 
was calculated as 40.1%.

In a further investigation, the photoinduced ketene chemistry between mPEG-DPh-Bd and PCL-OH was followed 
by GPC analyses, and their traces were shown in Figure 7. The GPC traces showed us that the mPEG-b-PCL displayed a 

Figure 3. FT-IR spectra of PMMA-N3, PMMA-DPh-Bd and PMMA-DMe-Bd.

Figure 4. 1H-NMR spectra of PMMA-N3, PMMA-DPh-Bd and PMMA-DMe-Bd.
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unimodal and symmetric eluent peak with a slightly broader molecular weight distribution (Ð = 1.44) than mPEG-N3 (Ð 
= 1.41) and mPEG-DPh-Bd (Ð = 1.39). Furthermore, the GPC chromatogram also revealed a significant increase between 
molecular weights of precursors and block copolymers as they were clearly shifted from 5.300 (mPEG-DPh-Bd) and 7.400 
(PCL-OH) to 10.800 (mPEG-b-PCL) g/mol. The combined 1H-NMR and GPC results clearly confirm that the successful 
formation of block copolymer without detectable unreactive free precursors. The molecular weights and molecular weight 
distributions of all precursors, monotelechelics, and block copolymer were summarized in Table 1.

4. Conclusion
In summary, heat- and light-sensitive monotelechelics were successfully synthesized by CuAAC click chemistry using 
mPEG-N3 and PMMA-N3 with Alkyne- DPh-Bd and Alkyne- DMe-Bd compounds under mild conditions. The chemical 
structures of precursors and monotelechelics were clearly confirmed by spectral analyses using FT-IR and 1H-NMR 
spectroscopies. According the 1H-NMR analysis, the desired monotelechelics were quantitatively obtained over 91% CuAAC 

Figure 5. FT-IR spectrum of mPEG-b-PCL.

Figure 6. 1H-NMR spectrum of mPEG-b-PCL.
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click efficiency. The photosensitive mPEG-DPh-Bd monotelechelic was further utilized for block copolymer synthesis with 
antagonist PCL-OH under mild conditions. The 1H-NMR spectroscopy and GPC analysis revealed that successful block 
copolymer formation was achieved upon UV irradiation for 48 h. Consequently, these reactive monotelechelics will utilize 
a vital role for the synthesis of various macromolecular architectures such as block and graft copolymers either heat or 
UV-light exposure.

Figure 7.  GPC chromatograms of mPEG-DPh-Bd, PCL-OH and mPEG-b-PCL.

Table 1. Summary of data obtained from monotelechelics and its block copolymer. 

Entry Yielda

(%)
Mn,GPC
(g/mol) Ɖ Mn,NMR

b

(g/mol)
Click efficiencyb

(%)

mPEG-N3 92 5100 1.41 4900 -
PMMA-N3 94 3900 1.37 3800 -
PCL-OH 65 7400 1.34 7250 -
mPEG-DPh-Bd 92 5300 1.39 5200 96
mPEG-DMe-Bd 85 5200 1.36 5100 91
PMMA-DPh-Bd 94 4400 1.31 4250 97
PMMA-DMe-Bd 89 4200 1.28 4050 94
mPEG-b-PCL 81 10800 1.44 10300 88

adetermined by gravimetric analysis, bcalculated by 1H-NMR spectroscopy using 
characteristic peaks of each segments.
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