A new species of Calomyscus Thomas, 1905 (Calomyscidae: Rodentia) from western Iran

 Arya SHAFAEIPOUR ${ }^{4}$ © ${ }^{[}$Omid MIRSHAMSI $1,2,{ }^{*}$ (${ }^{\text {D }}$
${ }^{1}$ Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{2}$ Research Department of Zoological Innovations (RDZI), Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{3}$ Rodentology Research Department, Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran ${ }^{4}$ Department of Biology, Faculty of Science, Yasouj University, Yasouj, Iran

Abstract

Received: 18.01.2021 Accepted/Published Online: 01.07.202: Final Version: 15.11.2021 Abstract: Eight extant species have been so far recognized for Calomyscus Thomas, 1905 which is distributed in the west of Asia. The only species which was reported from the Zagros Mountains in western and southern Iran was C. bailwardi. However, based on the integrative methods such as molecular, morphometric and karyological studies a new species is worth to be described other than C. bailwardi from the Zagros Mountains. In the present survey a new species which has been distributed in western regions of Iran was described as Calomyscus behzadi sp. nov. The new species constituted a monophyletic clade in phylogenetic tree which its relationships are unresolved. A new karyotype was reported for the new species as $2 \mathrm{~N}=44$ and $\mathrm{FNa}=48$. The results of multivariate statistical analyses also separated the new species from C. bailwardi and other recognized species of the genus Calomyscus. Based on the size + shape data, C. behzadi sp. nov. has shorter nasal than C. bailwardi, group D and C. grandis and narrower than C. baluchi but wider than C. hotsoni and C. elburzensis. Moreover, according to the shape data, the new species has shorter m2 than C. elburzensis, C. bailwardi, C. hotsoni, C. grandis and group D and narrower than C. bailwardi, C. grandis and C. baluchi. The new species was described from regions which had been known already as distribution area of C. bailwardi.

Key words: Calomyscus behzadi sp. nov., phylogeny, karyotype, Zagros Mountains, mitochondrial genes

1. Introduction

The taxonomic rank of the genus Calomyscus Thomas, 1905 or beauty mouse and the number of its species, have been puzzling and underwent many changes from its discovery. It had been recognized as a distinct tribe named Calomyscini, in Cricetidae (Vorontsov and Potapova, 1979). Musser and Carleton once in 1993 elevated this tribe to subfamily Calomyscinae, and again in 2005 to family Calomyscidae (Musser and Carleton, 2005; Norris et al., 2008). Calomyscidae is one of the oldest families of Muroidea that was situated in a new taxon of Eumuroida along with Nesomyidae, Cricetidae, and Muridae by Steppan et al. (2004). Phylogenetic trees reconstructed based on four nuclear genes revealed that Calomyscidae is the basal family of this new taxon (Steppan et al., 2004). Splitting of Calomyscus from the rest of the Eumuroid was estimated in the most recent study by Rezazadeh et al. (2020) which is about 21.53 Mya. Two main clades of Calomyscus were diverged older than 9.49 Mya, in two stages in the Late Miocene and Pliocene (Rezazadeh et al., 2020).

Nowadays, eight extant species have been recognized for the family which is distributed throughout the west of Asia in Turkmenistan, Iran, Afghanistan, Pakistan, and Syria (Musser and Carleton, 2005; Kilpatrick, 2017). Six Calomyscus species were reported from different
mountainous regions of Iran. One of the well-known species is Calomyscus bailwardi which was the first species recognized in the genus, was described from Khuzistan province in southwestern Iran and its distribution area had been known through Zagros Mountain from western to southern Iran in Kurdistan, Kermanshah, Ilam, Khuzistan, Lorestan, Fars, and Kerman provinces. But different studies showed that this species is distributed only in some localities in central parts of Zagros Mountains and other regions of these mountains are occupied by at least four potential new species which have to be described (Morshed and Patton, 2002; Karami et al., 2008; Akbarirad et al., 2016a; Rezazadeh et al., 2020). Calomyscus elburzensis with two subspecies as C.e. elburzensis in the north and northwestern Iran and $C . e$. isatissus in the center of Iran (Akbarirad et al., 2016b). Calomyscus grandis is known from northern Iran (Karami et al., 2008; Akbarirad et al., 2016b; Rezazadeh et al., 2020). Calomyscus hotsoni is distributed in Pakistan and southeastern Iran in Sistan-o-Baluchistan, South Khorasan, Kerman, and Hormozgan provinces (Khajeh et al., 2015; Akbarirad et al., 2016c). Calomyscus urartensis in the Azerbaijan Republic and Azerbaijan province in northwestern Iran (Karami et al., 2008; Rezazadeh et al., 2020) and Calomyscus mystax from Great Balkhan Mountains in southwestern

Turkmenistan and northeastern Iran (Akbarirad et al., 2015). However, recent complementary studies on the genus Calomyscus in Iran revealed four lineages in the distribution area was recognized as C. bailwardi's area which are distinct from known beauty mouse species and are worth to describe as new species which were named as Calomyscus group B, group C, group D and group G (Akbarirad et al., 2016a; Razazadeh et al., 2020). In the present study, we extended Calomyscus samplings from the Zagros Mountains in western Iran and applied an integrative approach to evaluate the taxonomic status of the lineage of Calomyscus group C which was reported in Akbarirad et al. (2016a) from Kermanshah and described it as new species.

2. Methods and materials

2.1. Molecular study

To complete our data, some sampling has done in western Iran in the Zagros Mountains. Ten Calomyscus samples were collected from Ilam province (2017) near Songhor in Kermanshah province.

Genomic DNA was extracted from three samples collected from Ilam province from 99\% of ethanol preserved tissues according to protocols of DENAzist Asia's Animal DNA isolation kit (S-1033-1). Polymerase chain reaction (PCR) amplification was performed for two mitochondrial genes: CO1 using primers BatL5310 (5' CCTACTCRGCCATTTTACCTATG 3^{\prime}) and R6036R (5' ACTTCTGGGTGTCCAAAGAATCA 3^{\prime}) (Herbreteau et al., 2011; Robins et al., 2007) and CYTB using L7: 5'-ACT AAT GAC ATG AAA AAT CAT CGT/T3' and H6: 5^{\prime}-TCT TCATTT TTG GTT TAC AAG AC-3' (Montgelard et al., 2002). PCR reactions were performed using Taq PCR master mix kit (Qiagen). CYTB amplification protocol was: initial denaturation for $1 \min 30$ s at $95^{\circ} \mathrm{C}$, followed by 40 cycles of denaturation for 30 s at $95^{\circ} \mathrm{C}$, annealing for 1 min at 48 ${ }^{\circ} \mathrm{C}$, and elongation for $30 \sec$ at $72^{\circ} \mathrm{C}$, followed by terminal elongation for 2 min at $72{ }^{\circ} \mathrm{C}$. PCR protocol using amplifying CO1 gene was: initial denaturation step at 94 ${ }^{\circ} \mathrm{C}$ for 4 min , followed by 40 cycles of the 30 s at $94{ }^{\circ} \mathrm{C}, 30$ s at $45-48^{\circ} \mathrm{C}$ and 60 s at $72^{\circ} \mathrm{C}$, with a final extension time of 10 min at $72^{\circ} \mathrm{C}$. PCR products were analyzed by agarose gel electrophoresis and visualized with UV light on gel documentation for confirming the lack of any pseudogenes with only one sharp bands of $C Y T B$ or CO1 on gel. Moreover, sequences of two mitochondrial genes, CYTB and CO1 belong to Calomyscus samples from seven species and two distinct lineages were retrieved from GenBank (Table S1). All the examined stations were indicated in Figure 1. All the sequences were checked, edited and aligned using the CLUSTAL W algorithm in BioEdit (Hall, 1999). Then the sequences were checked for stop codons or gaps in MEGA 6 (Tamura et al., 2013). All the data of CYTB and CO1 were combined in a single dataset and best-fit models of nucleotide substitution were found with the Akaike information criterion using jModelTest2 (Darriba et al. 2012). Bayesian inference (BI) performed using MrBayes 3.2.7a (Ronquist and Huelsenbeck 2003) on the CIPRES Science Gateway3.3
(available online: www.phylo.org). The MCMC was run for 60 million generations and sampled every 1000 generations. The robustness of nodes was tested with the posterior probability which was calculated from remaining trees after discarding the first 25% trees as burn-in. Maximum likelihood phylogenetic analyses were performed in PhyML (Guindon et al., 2010). Kimura 2parameters distances were estimated using MEGA 6 and ExcaliBAR (Aliabadian et al., 2014) for within and between species genetic divergences. Nannospalax from Spalacidae and Rhyzimys from Rhizomyidae was chosen as an appropriate outgroup, as it was explained in Akbarirad et al. (2016a).

2.2. Morphometric analysis

A total of 107 Calomyscus individuals have been analyzed in morphometric methods which all of them were adults with fully erupted molars (Table S1). Four external traits of body length: BL, tail length: TL, hindfoot length to the base of claw: FL, and ear length: EL, along with thirty-one craniodental characters (Figure S1) were measured. A dissecting microscope equipped with an eyepiece graticule for dental measurements and a digital dial caliper (0.1 mm) for other measurements has been used. Statistical analyses were performed on both original data (size + shape) and size-out data (shape) according to Navarro et al. (2004). In this size normalization, overall size defined as the geometric mean between variables for every individual and shape is the log ratios of original variables divide by overall size. All the measurements were checked for normality and homogeneity of variance with the Shapiro-Wilk test (Shapiro and Wilk, 1965) and Levene's tests (Levene, 1960), respectively. KruskalWallis ANOVA and median test used for nonnormal external measurement in univariate analyses. For estimating statistically significant differences between groups ANOVA test were performed. Evaluating the sexual dimorphism and significant differences between species were carried out by two-way multivariate analysis of variance (MANOVA). The significance level for all statistical tests was set at p < 0.05. A discriminant analysis (DA) was also performed on craniodental measurements to confirm between-group separation in multivariate space. All morphometric statistical analyses were conducted with the STATISTICA 12 software.

2.3. Karyological study

For the preparation of mitotic chromosome preparations bone marrow cells were extracted from the femur of Calomyscus samples of Ilam which were treated 45 min with 10% vinblastin solution at a dose of $1 \mathrm{ml} / 100 \mathrm{~g}$ of body weight injected under the skin of the abdomen, using the method of Dutrillaux et al. (1982). A total of 10 slides were provided and stained with Giemsa for each individual. The diploid number of chromosomes (2 N) and the number of autosomal arms (FNa) were assigned in the photos of 15 well-spread metaphase plates by the Chromosome Image Processing (CIP) software, provided

Figure 1. Sampling localities of examined Calomyscus specimens in this study.
Table. K2P genetic distances between groups and species of Calomyscus samples for CYTB gene.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
1.C. bailwardi									
2. Calomyscus group B	10.5								
3. C. hotsoni	10.2	9.4							
4. Calomyscus sp. group C	16.0	15.8	14.8						
5. C. elburzensis	15.5	14.3	14.6	10.5					
6. C. baluchi	10.5	9.0	8.5	15.8	14.4				
7. C. grandis	14.9	15.4	14.4	9.2	8.6	15.5			
8. C. urartensis	17.2	14.8	15.4	9.6	9.1	14.2	9.6		
9. Calomyscus group D	15.8	13.9	14.0	10.6	9.5	13.5	9.2	6.9	
10. C. mystax	15.6	14.8	13.3	10.4	9.8	13.7	9.8	8.6	8.6

by the Rodentology Research Department of Ferdowsi University of Mashhad.

3. Results

3.1. Molecular results

Totally, 1616 bp sequences (988 bps of $C Y T B$ and 628 bps of CO1) were obtained for two combined mitochondrial genes, with 397 variable sites (25%) and 465 mutations of which 350 positions (23\%) were parsimony informative. The best-fit models of sequence evolution for maximum likelihood reconstruction was GTR $+\mathrm{I}+\mathrm{G}$ and for Bayesian reconstruction was GTR $+\mathrm{I}+\mathrm{G}$ for combination of two genes. Two phylogenetic trees of Bayesian inference and ML analyses resulted from combined data of CYTB and CO1 sequences showed the same results so only Bayesian tree is presented in Figure 2 with bootstrap values of ML analyses on each node. The distinct group which was
explained by Akbarirad et al. (2016a) from Kermanshah (Calomyscus sp. group C) was resolved in the tree along with more specimens from Ilam province. This group is highly supported in both phylogenetic analyses. Calomyscus sp. group C was separated from the other Calomyscus groups by high genetic p-distances value (with C. elburzensis (10.5\%), C. mystax (10.4\%), C. urartensis (9.6\%), C. grandis (9.2\%), Calomyscus sp. group B (15.8.\%), Calomyscus sp. group D (10.6\%), C. bailwardi (16\%), C. hotsoni (14.8\%) and

C. baluchi (15.8\%) (Table).

3.2. Morphometric results

MANOVA analysis ($\mathrm{p}>0.05$) determined significant differences between Calomyscus sp. group C and other specimens of examined Calomyscus species in this study in both original and shape data. However, there were not any significant differences between sex in all the species.

Discriminant analyses classified 98.76% and 97.49% of Calomyscus specimens correctly based on size + shape and shape data, respectively. The canonical variates analysis
(CVA) for craniodental measurements was performed and the between-group mahalanobis distances were calculated. The first two functions included 63% and 60%

Figure 2. The combined tree resulted from Bayesian analysis on CYTB and CO1 genes. Posterior probability are the numbers on the left which were presented as percentages values and bootstraps of maximum likelihood analyses are the ones on the right sides on each node.

C. elburzensis
C. bailwardi
C. hotsoni
C. grandis
C. baluchi
Calomyscus sp. Group C
Calomyscus sp. Group D

O C. elburzensi
\square C. bailwardi \diamond C. hotsoni Δ C. grandis
C. baluchi
Calomyscus sp. Group C O Calomyscus sp. Group D

Figure 3. Canonical variate analyses (CVA) based on the size + shape data (A) and shape data (B) in Calomyscus species.
of the total pool of variance based on the size + shape and shape data, respectively. Both CVA analyses on size + shape (Figure 3A) and shape (Figure 3B) data showed that the first two canonical axes were separated Calomyscus sp. individuals (Kermanshah and Ilam) are overlapped with C. bailwardi, but discriminated from all other Calomyscus group. Univariate analysis on skull size (geometric mean between variables) of examined species showed that Calomyscus sp. group C had a significantly greater value in comparison with C. elburzensis and C. hotsoni. This group had significantly different overall dental size compared to C. elburzensis and C. grandis (Table S2). The results of Welch's t-test and Student's t-test are presented in the description section and Table S2.

3.3. Karyology results

One male and one female specimen of Calomyscus sp. group C, from Ilam province, were used in the karyological studies. They have 21 pairs of autosomal chromosomes with three pairs of subtelocentric and 18 pairs of acrocentric chromosomes. The X chromosomes were subtelocentric and Y chromosome was acrocentric (Figure 4).

According to the present analyses and due to the study of Akbarirad et al. (2016a) we suggested defining a new species from Kermanshah and Ilam provinces in Zagros folded belt.

3.4. Taxonomy

Calomycus behzadi Akbarirad, Dezhman, Aliabadian, Siahsarvie, Shafaeipour, Mirshamsi sp. nov.

3.4.1. Holotype

1 © (ZMFUM-5383), IRAN: Ghalarang Mountains, 11 km to the north of Ilam, Ilam province $\left(33.63^{\circ} \mathrm{N}, 46.53^{\circ} \mathrm{E}\right)$, 2473 m, 15 August 2017, skin, skull and tissues preserved in 99% ethanol (all parts in good condition), leg. M. Dezhman (Figures 5 and 6).

Holotype measurements (in mm): BL: 85; TL: 92; FL: 22; EL: 19.

3.4.2. Paratypes

ఠf (ZMFUM-5379), 1 ($\mathrm{\sigma}$ (ZMFUM-5380), 1% (ZMFUM5381), (ZMFUM-5382), 1 ఠో (ZMFUM-5384), 1 ఠ子 (ZMFUM-5385), ZMFUM-5386, ZMFUM-5387 and 1 な (ZMFUM-5388) from Ghalarang Mountains, 11 km to the north of Ilam, Ilam province, Iran ($33.63^{\circ} \mathrm{N}, 46.53^{\circ} \mathrm{E}$), other data same as holotype.

3.4.3. Etymology

The epithet 'behzadi' is named in honoring Professor Mahmoud Behzad (1913-2007), known as the father of modern biology in Iran.

3.4.4. Description

Calomyscus behzadi sp. nov. (or group C, in Akbarirad et al., 2016a) is a medium size brush-tailed mouse with head and body length $=83.25 \pm 0.89$, tail length $=92.25 \pm 0.45$, ear length $=18.08 \pm 0.23$ and hind foot length $=21 \pm 0.28$. The upper parts are light brown and under parts are white, there is a distinct border line between upper and under parts colors. C. behzadi sp. nov. has long hind foot, long ear, long mandible, palatine and upper diastema and broad rostrum, narrow cranium, narrow and short parietal region, large depth of braincase and long maxillary tooth row, broad interorbital region; connecting line between articluar and angular process is less curved.

Figure 4. Two karyotypes of Ilam specimens belong to Calomyscus sp. group C. ($2 \mathrm{~N}=44, \mathrm{FNa}=48$).

Figure 5. Dorsal, ventral and lateral views of holotype sample of Calomyscus behzadi sp.

Tail is narrow and haired along the terminal one-third of its length with a terminal brush. M2 is long, M3 is wide and m 2 is short and narrow. Mitochondrial gene sequences situated them in a distinct cluster with high genetic diversity with other species of Calomyscus.

3.4.5. Diagnosis

Although Calomyscus species are similar in external morphology but craniodental measurements can discriminate C. behzadi sp. nov. from other Calomyscus species. Univariate analyses based on size + shape data showed that in this group, cranium is narrower than C. bailwardi, group D and C. baluchi but wider than C. hotsoni, higher than C. hotsoni and longer than C. hotsoni and C. elburzensis and interorbital region is wider than C. grandis, C. elburzensis and C. hotsoni but narrower than group D. In this group, condylobasal is longer than C. hotsoni and C. elburzensis but shorter than group D and C. baluchi. C. behzadi sp. nov. show shorter nasal than C. bailwardi, group D and C. grandis and narrower than C. baluchi but wider than C. hotsoni and C. elburzensis. In the new species, the mandible is longer than C. hotsoni and C. elburzensis but shorter than group D and higher than C. elburzensis but lower than group D. C. behzadi sp. nov. has lower height of lower diastema than C. bailwardi, group D and C. baluchi. Specimens from Kermanshah and Ilam
have longer mandibular tooth row than C. bailwardi, C. grandis, C. hotsoni and C. elburzensis.

Also, in shape data, C. behzadi sp. nov. show longer cranium than C. elburzensis, C. grandis and C. baluchi, narrower than C. elburzensis and C. baluchi and higher than C. baluchi and group D; shorter nasal than C. elburzensis, C. bailwardi and C. grandis and narrower than C. grandis and C. baluchi but wider than group D; lower height of lower diastema than C. elburzensis, C. bailwardi, C. hotsoni, C. baluchi and group D; longer mandible than C. elburzensis, C. bailwardi, C. hotsoni and C. baluchi and lower mandible than C. hotsoni and group D; longer M1 than group D but shorter than C. baluchi, narrower than C. elburzensis, C. bailwardi, C. baluchi and C. grandis but wider than C. hotsoni; shorter m2 than C. elburzensis, C. bailwardi, C. hotsoni, C. grandis and group D, narrower than C. bailwardi, C. grandis and C. baluchi; longer m 3 than C. grandis, C. baluchi but shorter m3 than C. hotsoni and group D.

In karyology, this new species has the different chromosome formula; it has 44 chromosomes and 48 autosomal arms.

3.4.6. Comparisons

Based on size + shape data, C. behzadi sp. nov. is distinct from C. bailwardi by shorter ear, longer mandible, lower height of lower diastema, shorter nasal, narrower
cranium, shorter and narrower m2, narrower M1, narrower m1, longer M2, wider M3 and in shape data lower height of lower diastema, shorter nasal, longer mandible, narrower M1, wider M3, narrower m1, shorter and narrower m2.

The new species is distinguished from C. grandis with longer maxillary tooth row, shorter distance between two meatus, shorter tympanic bulla, shorter anterior palatine foramen, narrower and shorter nasal, shorter m2, shorter M1, shorter M2, longer M3, longer cranium, longer mandible, longer m3, wider inter orbital region and in shape data shorter nasal, shorter anterior palatine foramen, narrower nasal, higher cranium, longer occipitonasal, wider inter orbital region, shorter distance between two meatus, narrower M1, narrower M2, shorter and narrower m 2 and longer m 3 .
C. behzadi sp. nov. distinct from Calomyscus group D by lower mandibular height, shorter condylobasal, lower height of lower diastema, shorter nasal, shorter cranium, shorter mandibular tooth row, longer M1, longer m3, wider nasal, higher cranium, narrower cranium and interorbital region, shorter tympanic bulla; and longer M1, shorter m2 and in shape data, lower height of lower diastema, lower mandibular height, narrower nasal, higher cranium, shorter mandibular tooth row, longer M1, shorter m2 and shorter m3.

Individuals of the new species have longer maxillary tooth row, longer palatal length, higher mandibular height, higher upper diastema, longer occipitonasal, longer condylobasal, longer and narrower cranium, shorter and wider nasal, longer maxillary and mandibular tooth row, longer mandible, longer and wider M3 and wider m 1 than C. elburzensis and in shape data, lower height of lower diastema, shorter nasal, shorter Length of anterior palatine foramen, longer occipitonasal, narrower cranium, wider inter orbital region, longer condylobasal, longer mandible, narrower M1, shorter m2 and wider M3.
C. behzadi sp. nov. have longer body, tail and hind foot; wider zygomatic, longer condylobasal, longer palatal length, longer occipitonasal, wider nasal, higher upper diastema, longer lower diastema, higher, longer and wider cranium, longer mandible and mandibular tooth row, wider interorbital width, shorter M2, wider M3 than C. hotsoni and in shape data, lower height of lower diastema, lower mandibular height, higher upper diastema, shorter tympanic bulla, longer condylobasal, shorter distance between two meatus, longer mandibular tooth row, longer mandible, narrower M1, narrower m1, shorter and narrower m2 and wider M3.
C. behzadi sp. nov. show shorter distance between two meatus, shorter anterior palatine foramen, lower height of lower diastema, shorter condylobasal, narrower nasal, narrower, shorter and higher cranium; narrower and shorter M1, shorter m2, longer m3 than C. baluchi and in shape data lower height of lower diastema, shorter anterior palatine foramen, narrower nasal, longer occipitonasal, higher and narrower cranium, shorter distance between two meatus, longer mandible, shorter
and narrower M1, narrower M2, narrower m2 and longer m3.
C. behzadi sp. nov. has the same chromosome number as C. elburzensis and C. grandis; but the number of autosomal arms is different from these two species. In C. elburzensis autosomal arms were ranged from 60 to 72 , and in C. grandis is 46, while C. behzadi sp. nov. has 48 autosomal arms. Chromosome number of the new species is different from other Calomyscus species in Zagros Muntains as C. bailwardi, Calomyscus group B.

3.4.7. Distribution

Calomyscus behzadi sp. nov. is known from two locations in western Iran: one from type locality situated in Songhor of Kermanshah province and Ghalarang in Ilam province (see Figure 1).

4. Discussion

Phylogenetic analyses of CYTB and CO1 genes showed a distinct clade in specimens of the Zagros Mountains which were separated from all other beauty mice species with high genetic divergences. This separation was first represented for the Kermanshah population in Akbarirad et al. (2016a) and also in Rezazadeh et al. (2020). However, the phylogenetic position of this new species was unresolved. In Akbarirad et al. (2016a) monophyletic group C (Kermanshah population) was placed as a sister group with C. grandis without any support. And in Rezazadeh et al. (2020) with adding a group of Calomyscus samples named as group G was placed as a supported sister group to C. grandis, the specimens of Kermanshah constituted a distinct clade in a sister position with C. urartensis/Calomyscus sp. group D with no support. In the present study Kermanshah and Ilam specimens as C. behzadi sp. nov. formed a monophyletic group with high support and situated as the sister group to C. mystax but again with no support. So, this unclear position of C. behzadi $\mathbf{s p}$. nov. showed that it has a sister group or near relationship with another group or unknown species of Calomyscus which is not described until now. The patchy distribution of Calomyscus species and several mountain chains which are their habitats, in Iran, Afghanistan, Pakistan, Turkmenistan, and Turkey resulted in the existing of several possible species that were not identified in the available published studies. Describing of this possible species will resolve the phylogenetic relationships of Calomyscus species.

Morphometric characters of cranial, dental, and mandibular measurements also separated Zagros Mountains populations from Kermanshah and Ilam from C. bailwardi. Besides, these analyses showed some characters which could describe the C. kemranshahi sp. nov. as a new species.

Karyotype analysis also presented a different diploid number of chromosomes and autosomal arms in the Ilam population of C. behzadi sp. nov. ($2 \mathrm{~N}=44, \mathrm{FNa}=48$) with C. bailwardi ($2 \mathrm{~N}=46, \mathrm{FNa}=44$) (Akbarirad et al., 2016a).

Calomyscus behzadisp. nov. in Songhor of Kermanshah province and Ghalarang in Ilam province in western Iran and north of C. bailwardi's distribution range
is a new species recorded from regions which were recognized as distribution area of C. bailwardi by all other authors (Graphodatsky et al., 2000; Morshed and Patton, 2002; Musser and Carleton, 2005; Karami et al., 2008).

Funding

This research was supported by the office of research affairs, Ferdowsi University of Mashhad, Iran (Project No. 3-42645).

Conflict of interest

The authors declare that they have no conflict of interest, financial or other, exist.

References

Akbarirad S, Darvish J, Aliabadian M, Kilpatrick CWM (2015). Biosystematic study of Calomyscus mystax (Rodentia, Calomyscidae) from northeastern Iran. Iranian Journal of Animal Biosystematics 11 (1): 65-77.
Akbarirad S, Darvish J, Aliabadian M (2016a). Increased species diversity of brush-tailed mice, genus Calomyscus (Calomyscidae, Rodentia), in the Zagros Mountains, western Iran. Mammalia 80 (5): 549-562.
Akbarirad S, Darvish J, Aliabadian M (2016b). Phylogeography of Calomyscus elburzensis (Calomyscidae, Rodentia) around the Central Iranian Desert with description of a new subspecies in center of Iranian Plateau. Journal of Science, Islamic Republic of Iran 27 (1): 5-21.
Akbarirad S, Darvish J, Aliabadian M (2016c). Molecular, chromosomal and morphometric variation in Calomyscus hotsoni and C. elburzensis (Calomyscidae, Rodentia) in the east of Iran. Folia Zoologica 65 (1): 27-37.
Aliabadian M, Nijman N, Mahmoudi A, Naderi M, Vonk R, Vences M (2014). ExCaliBAR: a simple and fast software utility to calculate intra- and interspecific distances from DNA Barcoding. Contribution to Zoology 83 (1): 79-83.
Darriba D, Taboada GL, Doallo R, Posada D (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772-772.
Dutrillaux B, Couturier J, Muleris M, Lombard M, Chauvier G (1982). Chromosomal phylogeny of forty-two species of Cerecopithecoids (Primates Catarrhini). Annales de Génétique 25 (2): 96-109
Graphodatsky AS, Sablina OV, Meyer MN, Malikov VG, Isakova EA et al. (2000). Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenetics and Cell Genetics 88: 296-304.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. (2010). New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59 (3): 307-321.

Hall TA (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95-98.
Herbreteau V, Jittapalapong S, Rerkamnuaychoke W, Chaval Y, Cosson JF et al. (2011). Protocols for field and laboratory rodent studies. Bangkok, Thailand: Kasetsart University.
Karami M, Huttere R, Benda P, Siahsaevie R, Krystufek B (2008). Annotated check-list of the mammals of Iran. Lynx 39 (1): 63102.

Khajeh A, Darvish J, Razmi GR (2015). A contribution on rodents fauna of the Jaz Murian depression, southeast Iran. Biodiversity Journal 7 (2): 203-214.

Acknowledgments

Permission to the sampling of mouse-like hamsters was authorized by the Iranian Department of Environment (Permission Number: 96/4735; 2017; 2th May). We are indebted to the late Professor Jamshid Darvish for his many years of inspiration to us, proposing and supervising this project. We sincerely thank Hadi Dezhman, Majid Vafaei, Ahmad Mahmoudi and Zeinolabedin Mohammadi for their help in the samplings of this work.

Kilpatrick CW (2017). Family Calomyscidae (brush-tailed mice). In: Wilson DE, Mittermeier RA, Lacher TE (editors). Handbook of mammals of the world. Vol. 7. Rodents II. 2st ed. Barcelona, Spain: Lynx Edicions, pp. 144-155.
Levene H (1960). Robust Tests for Equality of Variances. In: Olkin SG, Ghurye W, Hoeffding WG, editors. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling Stanford. California, USA: Stanford University Press, pp. 278292.

Morshed S, Patton J (2002). New records of mammals from Iran with systematic comments on hedgehogs (Erinaceidae) and mouselike hamsters (Calomyscus, Muridae). Zoology in the Middle East 26 (1): 49-58.
Montgelard C, Bentz S, Tirard C, Verneau O, Catzeflis FM (2002). Molecular systematics of Sciurognathi (Rodentia): the mitochondrial cytochrome b and $12 S$ rRNA genes support the Anomaluroidea (Peptidae and Anomaluridae). Molecular Phylogenetics and Evolution 22 (2): 220-233.
Musser GG, Carleton MD (1993). Family Muridae. In: Wilson DE, Reeder DM (editors). Mammal species of the world, A taxonomic and geographic reference. 2st ed. Washington DC, USA: Smithsonian Institution Press, pp. 501-755.
Musser GG, Carleton MD (2005). Subfamily Murinae. In: (D. E. Wilson and D. M. Reeder eds.) In: Wilson DE, Reeder DM (editors). Mammal species of the world, A taxonomic and geographic reference. 3st ed. Baltimore, Maryland, USA: The Johns Hopkins University Press, pp. 894-1531.
Navarro N, Zatarain X, Montuire S (2004). Effects of morphometric descriptor changes on statistical classification and morphospaces. Biological Journal of the Linnean Society. 83 (2): 243-260.

Norris RW, Woods CW, Kilpatrick CW (2008). Morphological and molecular definition of Calomyscus hotsoni (Rodentia: Muroidea: Calomyscus). Journal of Mammalogy 89 (2): 306315.

Peshev D (1991). On the systematic position of the mouse-like hamster Calomyscus bailwardi Thomas, 1905 (Cricetidae, Rodentia) from the Near East and Middle Asia. Mammalia 55 (1): 107-112.

Rezazadeh E, Aliabadian M, Darvish J, Ahmadzadeh F (2020). Diversification and evolutionary history of brush-tailed mice, Calomyscidae (Rodentia), in southwestern Asia. Organisms Diversity and Evolution 20: 155-170.
Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Molecular Ecology Notes 7 (5): 717-729.

Ronquist F, Huelsenbeck JP (2003). Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (12): 1572-1574.

Shahabi S, Darvish J, Aliabadian M, Mirshamsi O, Mohammadi Z (2011). Cranial and dental analysis of mouse-like hamsters of the genus Calomyscus (Rodentia: Calomyscidae) from plateau of Iran. Hystrix Italian Journal of Mammalogy 22 (2): 311-323.
Shapiro SS, Wilk MB (1965). An analysis of variance test for normality (complete samples). Biometrika 52 (3/4): 591-611.
Steppan SJ, Adkins RM, Anderson J (2004). Phylogeny and divergence-date estimates of rapid radiation in muroid
rodents based on multiple nuclear genes. Systematic Biology 53 (4): 533553.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725-2729.
Vorontsov NN, Potapova EG (1979). Taxonomy of the genus Calomyscus (Cricetindae), 2. Status of Calomyscus in the system of Cricetinae. Zoologicheskii Zhurnal 58: 1391-1397 (in Russian).

Figure S1. Thirty two craniodental characters were measured in examined samples of Calomyscus based on Peshev (1991) and Shahabi et al. (2011): 1- occipitonasal length (Occl); 2- nasal length (NL); 3- nasal width (NW); 4-interorbital width (Intw); 5-zygomatic width (ZW); 6- cranium width (CW); 7- upper diastema length (UDL); 8- height of lower diastema (HLD); 9- length of lower diastema (LLD); 10- mandible length (Mndl); 11- palatal length (Patl); 12- length of anterior palatine foramen (Forl); 13- width of anterior palatine foramen (Forw); 14- maxillary tooth row length (Mxl); 15-distance between two meatus (DB2M); 16- length of tympanic bulla (BULL); 17- maximum mandibular height (MH); 18- condylobasal length (CBL); 19 - maximum cranial height (SH); 20-mandibular tooth row length (Mnl); 21- length of $\mathrm{m} 1(\mathrm{~m} 1 \mathrm{~L})$; 22- length of $\mathrm{m} 2(\mathrm{~m} 2 \mathrm{~L}) ; 23$ - length of $\mathrm{m} 3(\mathrm{~m} 3 \mathrm{~L}) ; 24$ - width of $\mathrm{m} 1(\mathrm{~m} 1 \mathrm{~W})$; 25- width of m 2 (m2W); 26- width of m3 (m3W); 27- length of M1 (M1L); 28- length of M2 (M2L); 29- length of M3 (M3L); 30-width of M1 (M1W); 31- width of M2 (M2W); 32- width of M3 (M3W).

Table S1. Details of sampled localities, tissue and voucher numbers and accession numbers of specimens examined in this study (for each sample the first accession number is for CYTB and the second is for CO1 genes).

Species	Locality (city, province)	Voucher no.	Accession no.	
			CYTB	CO1
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3869	KT878596	KT878556
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3870	KT878597	KT878557
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3878	KT878600	KT878560
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3881	KT878598	KT878558
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3882	KT878599	KT878559
Calomyscus sp. Group D	Saghez, Kurdistan	ZMFUM3897	KT878601	KT878561
C. behzadi sp. nov. (C)	Songhor, Kermanshah	ZMFUM3871	KT878603	KT878563
C. behzadi sp. nov. (C)	Songhor, Kermanshah	ZMFUM3880	KT878605	KT878565
C. behzadi sp. nov. (C)	Songhor, Kermanshah	ZMFUM3891	KT878604	KT878564
C. behzadi sp. nov. (C)	Songhor, Kermanshah	ZMFUM3896	KT878602	KT878562
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5380		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5382	MW888462	MW892625
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5383		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5384	MW888460	MW892623
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5385	MW888459	MW892624
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5386		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5387		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5388		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5379		
C. behzadi sp. nov. (C)	Ilam, Ilam	ZMFUM 5381		
C. grandis	Fasham, Tehran	ZMFUM 3992	KT884559	KT884587
C. grandis	Fasham, Tehran	ZMFUM1985	KT878591	KT878551
C. grandis	Fasham, Tehran	ZMFUM3992	KT878592	KT878552
C. grandis	Fasham, Tehran	ZMFUM1948	KT878593	KT878553
C. grandis	Fasham, Tehran	ZMFUM1943		
C. mystax	Taklah Quz, North Khorasan	ZMFUM 2984	KU129019	KU129021
C. elburzensis	Mashhad, Khorasan-e-Razavi	ZMFUM1542	KT878581	KT878542
C. elburzensis	Mashhad, Khorasan-e-Razavi	ZMFUM2023		
C. elburzensis	Sarakhs, Khorasan-e-Razavi	ZMFUM1874	KT878585	KT878546
C. elburzensis	Sarakhs, Khorasan-e-Razavi	ZMFUM1922	KT878586	KT878547
C. elburzensis	Torbat, Khorasan-e-Razavi	ZMFUM2088	KT878587	KT878548
C. elburzensis	Saluk, North- Khorasan	ZMFUM2978	KT878588	KU043034
C. elburzensis	Shirvan, North- Khorasan	ZMFUM3533	KT878590	KT878550
C. elburzensis	Chenaran, North- Khorasan	ZMFUM3100		
C. elburzensis	Bijand, Gazik, South Khorasan	ZMFUM 4529	KT884557	KT884586
C. elburzensis	KhajeMor, Khorasan-e-Razavi	ZMFUM 1546	KT884547	KT884576
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2148	KT884550	KT884580
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2152	KT884551	KT884581
C. elburzensis	Ghaen, South Khorasan	ZMFUM 3304	KT884553	KT884583
C. elburzensis	Kurkhud, North Khorasan	ZMFUM 3629	KT884555	KT884584
C. elburzensis	Sabzevar, Khorasan-e-Raza	ZMFUM 4490	KT884556	KT884585
C. elburzensis	Taft, Shirkuh, Godar-Nir, Yazd	ZMFUM 1	KU042999	KU043023
C. elburzensis	Taft, Shirkuh, Godar-Nir, Yazd	ZMFUM4	KU043000	KU043024
C. elburzensis	Taft, Shirkuh, Godar-Nir, Yazd	ZMFUM9	KU043001	KU043025

C. elburzensis	Taft, Shirkuh, Godar-Nir, Yazd	ZMFUM 10	KU043002	KU043026
C. elburzensis	Taft, Shirkuh, Yazd	ZMFUM 2932	KU043004	KU043027
C. elburzensis	Taft, Shirkuh, Cheshme, Yazd	ZMFUM 2948	KU043007	KU043029
C. elburzensis	Taft, Shirkuh, Yazd	ZMFUM 2952	KU043010	KU043030
C. elburzensis	Taft, Shirkuh, Tezerjan, Yazd	ZMFUM 3039	KU043015	KU043036
C. elburzensis	Qeidar, Zanjan	ZMFUM 3925	KU043020	KU043037
C. elburzensis	Qeidar, Zanjan	ZMFUM 3937	KU043021	KU043038
C. elburzensis	Karkas, Isfahan	ZMFUM 3938	KU043022	KU043039
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2144		
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2149		
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2172		
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2156		
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2169		
C. elburzensis	Neyshabur, Khorasan-e-Razavi	ZMFUM 2158		
C. elburzensis	Esfarayen, North Khorasan	ZMFUM 3224		
C. elburzensis	Saluk, Bojnurd,	ZMFUM 3085		
C. elburzensis	Bojnord, North Khorasan	ZMFUM 2616		
C. elburzensis	Esfaraien, North Khorasan	ZMFUM 3216		
C. elburzensis	Nishapur, Razavi Khorasan	ZMFUM 2176		
C. elburzensis	Shirkuh, Yazd	ZMFUM 2949		
C. elburzensis	Shirkuh, Yazd	ZMFUM 2968		
C. elburzensis	Shirkuh, Yazd	ZMFUM 2945		
C. elburzensis	Mahriz, Kuhe-Bakhtaki, Yazd	ZMFUM 3088		
C. elburzensis	Shirkuh, Yazd	ZMFUM 3057		
C. elburzensis	Dehaj, Kerman	ZMFUM 5410		
C. elburzensis	Dehaj, Kerman	ZMFUM 5411		
C. elburzensis	Dehaj, Kerman	ZMFUM 5414		
C. elburzensis	Dehaj, Kerman	ZMFUM 5416		
Calomyscus sp. Group B	BagheShadi, Yazd	ZMFUM3324	KT878608	KT878571
Calomyscus sp. Group B	BagheShadi, Yazd	ZMFUM3327	KT878609	KT878572
Calomyscus sp. Group B	BagheShadi, Yazd	ZMFUM3328	KT878610	KT878573
Calomyscus sp. Group B	BagheShadi, Yazd	ZMFUM3333	KT878611	KT878574
Calomyscus sp. Group B	BagheShadi, Yazd	ZMFUM3351	KT878612	KT878575
Calomyscus sp. Group B	Anjerk, Kerman	ZMFUM2003	KT878613	KT878566
Calomyscus sp. Group B	Anjerk, Kerman	ZMFUM2004	KT878614	KT878567
C. baluchi	Pakistan, Sibi Dist	980 (OUT-13)		KT884596
C. baluchi	FATA, North Waziristan, Pakistan	N/A	EU135591.1	
C. baluchi	Balochistan., Pakistan	N/A	EU135586.1	
C. baluchi	Balochistan, Kalat, Pakistan	N/A	AY288509.1	
C. baluchi	Ziarat, Pakistan	ZTNH897		KT878579
C. baluchi	Datta Khel, Pakistan	ZTNH1262		KT878580
C. baluchi	Bamyan, Afghanistan	ZMFUM2798		
C. baluchi	Takhte Waras, Afghanistan	ZMFUM2782		
C. baluchi	Yakawlang, Afghanistan	ZMFUM2786		
C. baluchi	Bamyan, Afghanistan	ZMFUM2800		
C. baluchi	Yakawlang, Afghanistan	ZMFUM2787		
C. baluchi	Yakawlang, Afghanistan	ZMFUM2820		

C. baluchi	Yakawlang, Afghanistan	ZMFUM2789		
C. baluchi	Surkh Joy, Afghanistan	ZMFUM2813		
C. baluchi	Afghanistan	ZMFUM 2718		
C. baluchi	Afghanistan	ZMFUM2821		
C. baluchi	Afghanistan	ZMFUM2810		
C. baluchi	Pitab-Joy, Afghanistan	ZMFUM2784		
C.hotsoni	Bashagard, Hormozgan	ZMFUM4739		
C.hotsoni	Khash, Sistan and Baluchestan	ZMFUM 3563		
C.hotsoni	Zahedan, Sistan and Baluchestan	ZMFUM3564		
C.hotsoni	Zahedan, Sistan and Baluchestan	ZMFUM3529		
C.hotsoni	Balouchestan, Sistan and Baluchestan	ZMFUM4409		
C.hotsoni	Saravan, Sistan and Baluchestan	ZMFUM3287		
C.hotsoni	Bashagard, Sistan and Baluchestan	ZMFUM19		
C.hotsoni	Bashagard, Sistan and Baluchestan	ZMFUM4785		
C.hotsoni	Bashagard, Sistan and Baluchestan	ZMFUM4761		
C.hotsoni	Birjand, South Khorasan	ZMFUM4024		
C.hotsoni	Birjand, South Khorasan	ZMFUM4012		
C.hotsoni	Birjand, South Khorasan	ZMFUM4013		
C. hotsoni	Saravan, Sistan-o-Baluchistan	ZMFUM2068	KT884560	KT878577
C. hotsoni	Saravan, Sistan-o-Baluchistan	ZMFUM2069	KT884561	KT878578
C. hotsoni	Saravan, Sistan-o-Baluchistan	ZMFUM2102	KT884562	KT884588
C. hotsoni	Saravan, Sistan-o-Baluchistan	ZMFUM2103	KT884563	KT884589
C. hotsoni	Saravan, Sistan-o-Baluchistan	ZMFUM3286	KT884564	KT884590
C. hotsoni	Khash, Sistan-o-Baluchistan	ZMFUM3306	KT884567	KT884591
C. hotsoni	Zahedan, Sistan-o-Baluchistan	ZMFUM3962	KT884571	KT884593
C. hotsoni	Bagheran, Bijand, South Khorasan	ZMFUM4013	KT884573	KT884594
C. bailwardi	Ludab, Kohgiluyeh and Boyer-Ahmad	ZMFUM5348		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5174		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5175		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5176		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5177		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5178		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5179		
C. bailwardi	Sudejan, Chaharmahal and Bakhtiari	ZMFUM5180		
C. bailwardi	Sudejan, Chaharmahal and Bakhtiari	ZMFUM5181		
C. bailwardi	Sureshjan, Chaharmahal and Bakhtiari	ZMFUM5158		
C. bailwardi	Dorud, Lorestan	ZMFUM5372		
C. bailwardi	Dorud, Lorestan	ZMFUM5373		
C. bailwardi	Dorud, Lorestan	ZMFUM5374		
C. bailwardi	Dorud, Lorestan	ZMFUM5375		
C. bailwardi	Dorud, Lorestan	ZMFUM5376		
C. bailwardi	Dorud, Lorestan	ZMFUM5377		
C. bailwardi	Dorud, Lorestan	ZMFUM5378		
C. bailwardi	Semirom, Isfahan	ZMFUM5412		
C. bailwardi	Semirom, Isfahan	ZMFUM5413		
C. bailwardi	Semirom, Isfahan	ZMFUM5415		
C. bailwardi	Semirom, Isfahan	ZMFUM5417		

C. bailwardi	Semirom, Isfahan	ZMFUM5418		
C. bailwardi	Semirom, Isfahan	ZMFUM5419		
C. bailwardi	Semirom, Isfahan	ZMFUM5420		
C. bailwardi	Semirom, Isfahan	ZMFUM5421		
C. bailwardi	Behbahan, Khuzestan	ZMFUM2536		
C. bailwardi	Izeh, Khuzistan	ZMFUM3569		
C. bailwardi	Izeh, Khuzistan	ZMFUM3570		
C. bailwardi	Izeh, Khuzistan	ZMFUM3571		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2514		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2516		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2522		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2524		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2529		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2536		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2700		
C. bailwardi	Behbahan, Khuzistan	ZMFUM2701		
C.bailwardi	Behbahan, Khuzistan	ZMFUM2702		
C. urartensis	Kordasht, Eastern Azerbaijan	ZMFUM2253	KT878594	KT878554
C. uratensis	Kordasht, Eastern Azerbaijan	ZMFUM2908	KT878595	KT878555

Table S2. Means and standard errors of craniodental measurements in Calomyscus groups: C. baluchi (BA), C. elburzensis (El), C. grandis (Gr), Calomyscus sp. from Kermanshah and Ilam (C), Calomyscus sp. group D (D), C. bailwardi (Bai), C. hotsoni (Ho).

Variables	C. elburzensis	C. bailwardi	C. hotsoni	C. grandis	C. baluchi	Calomyscus sp. (from Kermanshah and Ilam)	Calomyscus sp. Group D	T-test and Welch t-test result (size + shape)	Shape data
BL	$\begin{aligned} & 79.29 \pm \\ & 0.92 \end{aligned}$	$\begin{aligned} & \hline 83.17 \pm \\ & 1.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 74.78 \pm \\ & 1.81 \end{aligned}$	$\begin{aligned} & 80.25 \pm \\ & 3.52 \end{aligned}$	$\begin{aligned} & \hline 77.75 \pm \\ & 2.61 \end{aligned}$	83.25 ± 0.89	79.5 ± 1.84	Ho<C	
TL	$\begin{aligned} & 89.87 \pm \\ & 1.09 \end{aligned}$	$\begin{aligned} & \hline 90.44 \pm \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 84.42 \pm \\ & 1.62 \end{aligned}$	$\begin{aligned} & 91.5 \pm \\ & 2.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 92.08 \pm \\ & 2.47 \end{aligned}$	92.25 ± 0.45	89.66 ± 1.54	Ho<C	
El	$\begin{aligned} & 17.54 \pm \\ & 0.39 \end{aligned}$	$\begin{aligned} & \hline 19.64 \pm \\ & 0.26 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \pm \\ & 0.59 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.75 \pm \\ & 1.75 \end{aligned}$	$\begin{aligned} & 17.5^{ \pm} \\ & 0.66 \\ & \hline \end{aligned}$	18.08 ± 0.23	18.5 ± 0.43	C<Bai	
FL	$\begin{aligned} & 20.16 \pm \\ & 0.19 \end{aligned}$	$\begin{aligned} & 21.92 \pm \\ & 0.26 \end{aligned}$	$\begin{aligned} & \hline 19.07 \pm \\ & 0.35 \end{aligned}$	$\begin{aligned} & 20.75 \pm \\ & 0.48 \end{aligned}$	$\begin{aligned} & 20.66 \pm \\ & 0.33 \end{aligned}$	21 ± 0.28	20.83 ± 0.48	$\mathrm{C}>\mathrm{Ho}$	
LLD	3.81 ± 0.04	$\begin{aligned} & 4.04 \pm \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.61 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.00 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.90 \pm \\ & 0.07 \\ & \hline \end{aligned}$	3.91 ± 0.08	3.98 ± 0.06	Ho<C	
HLD	2.29 ± 0.02	$\begin{aligned} & 2.37 \pm \\ & 0.03 \end{aligned}$	$\begin{aligned} & 2.29 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 2.37 \pm \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2.4 \pm \\ & 0.02 \end{aligned}$	2.23 ± 0.04	2.38 ± 0.02	$\begin{aligned} & \text { Bai>C, D>C, } \\ & \text { BA>C } \end{aligned}$	$\begin{aligned} & \mathrm{El}>\mathrm{C}, \mathrm{Bai}>\mathrm{C}, \\ & \mathrm{Ke}>\mathrm{C}, \mathrm{Ho}>\mathrm{C}, \\ & \mathrm{BA}>\mathrm{C}, \mathrm{D}>\mathrm{C} \\ & \hline \end{aligned}$
MH	5.86 ± 0.04	$\begin{aligned} & 6.08 \pm \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.01 \pm \\ & 0.07 \end{aligned}$	$\begin{aligned} & 6.12 \pm \\ & 0.07 \end{aligned}$	$\begin{aligned} & 6.07 \pm \\ & 0.03 \end{aligned}$	6.00 ± 0.06	6.30 ± 0.07	$\mathrm{D}>\mathrm{C}, \mathrm{C}>\mathrm{El}$	Ho>C, D>C
UDL	6.68 ± 0.03	$\begin{aligned} & 6.97 \pm \\ & 0.08 \end{aligned}$	$\begin{aligned} & 6.34 \pm \\ & 0.08 \end{aligned}$	$\begin{aligned} & 7.29 \pm \\ & 0.10 \end{aligned}$	$\begin{aligned} & 6.97 \pm \\ & 0.06 \end{aligned}$	6.92 ± 0.10	7.00 ± 0.15	$\mathrm{Ho}<\mathrm{C}, \mathrm{C}>\mathrm{El}$	Ho<C
NL	9.54 ± 0.09	$\begin{aligned} & \hline 10.01 \pm \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.43 \pm \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.67 \pm \\ & 0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.76 \pm \\ & 0.08 \\ & \hline \end{aligned}$	9.56 ± 0.10	9.82 ± 0.11	$\begin{aligned} & \text { Bai>C, } \mathrm{D}>\mathrm{C}, \\ & \mathrm{Gr}>\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { C<El,Bai>C, } \\ & \text { Gr>C } \end{aligned}$
ZW	$\begin{aligned} & 12.35 \pm \\ & 0.06 \end{aligned}$	$\begin{aligned} & 12.69 \pm \\ & 0.10 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.96 \pm \\ 0.09 \end{array}$	$\begin{aligned} & 12.67 \pm \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.96 \pm \\ & 0.09 \end{aligned}$	12.61 ± 0.015	12.91 ± 0.13	Ho<C, $\mathrm{Ke}<\mathrm{C}$	
Forl	4.81 ± 0.04	$\begin{aligned} & 4.89 \pm \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.64 \pm \\ & 0.07 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.31 \pm \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.00 \pm \\ & 0.05 \\ & \hline \end{aligned}$	4.71 ± 0.09	4.79 ± 0.09	$\mathrm{BA}>\mathrm{C}, \mathrm{Gr}>\mathrm{C}$	$\begin{aligned} & \mathrm{C}<\mathrm{El} . \mathrm{Ke}>\mathrm{C}, \\ & \mathrm{Gr}>\mathrm{C}, \mathrm{BA}>\mathrm{C} \end{aligned}$
NW	2.92 ± 0.03	$\begin{aligned} & 3.09 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.87 \pm \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.41 \pm \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.44 \pm \\ & 0.07 \\ & \hline \end{aligned}$	3.12 ± 0.08	3.57 ± 0.07	$\begin{array}{\|l\|} \hline \mathrm{BA}>\mathrm{C}, \mathrm{Ho}<\mathrm{C}, \\ \mathrm{Ke}<\mathrm{C}, \mathrm{C}>\mathrm{El} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Ke}<\mathrm{C}, \mathrm{Gr}>\mathrm{C}, \\ & \mathrm{BA}>\mathrm{C}, \mathrm{D}<\mathrm{C} \end{aligned}$
Patl	$\begin{aligned} & 11.58 \pm \\ & 0.04 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.86 \pm \\ 0.12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.26 \pm \\ 0.12 \\ \hline \end{array}$	$\begin{aligned} & 12.09 \pm \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.04 \pm \\ & 0.05 \end{aligned}$	11.93 ± 0.12	12.02 ± 0.14	$\begin{array}{\|l\|} \hline \mathrm{Ho}<\mathrm{C}, \mathrm{Ke}<\mathrm{C}, \\ \mathrm{C}>\mathrm{El} \end{array}$	$\mathrm{Ke}<\mathrm{C}$
SH	7.89 ± 0.04	$\begin{aligned} & 8.07 \pm \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 7.76 \pm \\ 0.07 \\ \hline \end{array}$	$\begin{aligned} & 7.76 \pm \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.91 \pm \\ & 0.05 \\ & \hline \end{aligned}$	8.02 ± 0.07	7.95 ± 0.11	Ho<C, Ke>C	$\begin{aligned} & \mathrm{Ke}>\mathrm{C}, \mathrm{BA}<\mathrm{C}, \\ & \mathrm{D}<\mathrm{C} \end{aligned}$
Occl	$\begin{aligned} & 25.05 \pm \\ & 0.10 \end{aligned}$	$\begin{aligned} & 26.31 \pm \\ & 0.22 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 24.80 \pm \\ 0.21 \\ \hline \end{array}$	$\begin{aligned} & 26.01 \pm \\ & 0.23 \end{aligned}$	$\begin{aligned} & 25.98 \pm \\ & 0.07 \end{aligned}$	25.98 ± 0.19	26.25 ± 0.29	$\mathrm{Ho}<\mathrm{C}, \mathrm{C}>\mathrm{El}$	$\begin{aligned} & \mathrm{C}>\mathrm{El}, \mathrm{Gr}<\mathrm{C}, \\ & \mathrm{BA}<\mathrm{C} \end{aligned}$
CW	$\begin{aligned} & 11.59 \pm \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11.82 \pm \\ 0.07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.24 \pm \\ 0.08 \\ \hline \end{array}$	$\begin{aligned} & 11.80 \pm \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.25 \pm \\ & 0.08 \\ & \hline \end{aligned}$	11.60 ± 0.06	12.06 ± 0.08	$\begin{array}{\|l\|} \hline \text { Bai>C, } \mathrm{D}>\mathrm{C}, \\ \mathrm{BA}>\mathrm{C}, \mathrm{Ho}<\mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C}<\mathrm{El}, \mathrm{Ke}>\mathrm{C}, \\ & \mathrm{BA}>\mathrm{C} \end{aligned}$
INTW	4.0 ± 0.01	$\begin{aligned} & 4.34 \pm \\ & 0.03 \end{aligned}$	$\begin{aligned} & 4.05 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 4.15 \pm \\ & 0.08 \end{aligned}$	$\begin{aligned} & 4.25 \pm \\ & 0.03 \end{aligned}$	4.28 ± 0.02	4.44 ± 0.06	$\begin{array}{\|l\|} \hline \mathrm{D}>\mathrm{C}, \mathrm{Gr}<\mathrm{C}, \\ \mathrm{C}>\mathrm{El} \mathrm{Ho}<\mathrm{C}, \\ \mathrm{Ke}<\mathrm{C} \\ \hline \end{array}$	$\mathrm{C}>\mathrm{El}, \mathrm{Gr}<\mathrm{C}$
BULL	5.70 ± 0.04	$\begin{aligned} & \hline 5.88 \pm \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.65 \pm \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.00 \pm \\ & 0.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.71 \pm \\ & 0.07 \\ & \hline \end{aligned}$	5.75 ± 0.05	6.04 ± 0.06	D>C, $\mathrm{Gr}>\mathrm{C}$	Ke>C, $\mathrm{Ho}>\mathrm{C}$
CBL	$\begin{aligned} & 22.09 \pm \\ & 0.10 \end{aligned}$	$\begin{aligned} & 23.09 \pm \\ & 0.17 \end{aligned}$	$\begin{array}{\|l} 21.69 \pm \\ 0.18 \end{array}$	$\begin{aligned} & 23.24 \pm \\ & 0.17 \end{aligned}$	$\begin{aligned} & 23.22 \pm \\ & 0.08 \end{aligned}$	22.91 ± 0.12	23.45 ± 0.24	$\begin{array}{\|l\|} \hline \mathrm{D}>\mathrm{C}, \mathrm{BA}>\mathrm{C}, \\ \mathrm{Ho}<\mathrm{C}, \mathrm{Ke}<\mathrm{C}, \\ \mathrm{C}>\mathrm{El} \\ \hline \end{array}$	C>El, $\mathrm{Ho}>\mathrm{C}$
DB2M	8.10 ± 0.06	$\begin{aligned} & 8.26 \pm \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.99 \pm \\ & 0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.89 \pm \\ & 0.11 \end{aligned}$	$\begin{aligned} & 8.81 \pm \\ & 0.04 \\ & \hline \end{aligned}$	8.16 ± 0.06	8.41 ± 0.14	BA>C, $\mathrm{Gr}>\mathrm{C}$	$\begin{aligned} & \mathrm{Ho}>\mathrm{C}, \mathrm{Gr}>\mathrm{C}, \\ & \mathrm{BA}>\mathrm{C} \end{aligned}$
MxI	3.40 ± 0.02	$\begin{aligned} & \hline 3.42 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 3.41 \pm \\ 0.03 \end{array}$	$\begin{aligned} & 3.32 \pm \\ & 0.04 \end{aligned}$	$\begin{aligned} & 3.51 \pm \\ & 0.04 \end{aligned}$	3.50 ± 0.04	3.45 ± 0.07	$\begin{aligned} & \hline \mathrm{Gr}<\mathrm{C}, \mathrm{Ke}<\mathrm{C}, \\ & \mathrm{C}>\mathrm{El} \end{aligned}$	
Mnl	3.37 ± 0.02	$\begin{aligned} & 3.33 \pm \\ & 0.03 \end{aligned}$	$\begin{aligned} & 3.37 \pm \\ & 0.04 \end{aligned}$	$\begin{aligned} & 3.33 \pm \\ & 0.04 \end{aligned}$	$\begin{aligned} & 3.47 \pm \\ & 0.06 \end{aligned}$	3.47 ± 0.02	3.54 ± 0.04	$\begin{array}{\|l\|} \hline \mathrm{Bai}<\mathrm{C}, \mathrm{Gr}<\mathrm{C}, \\ \mathrm{Ho}<\mathrm{C}, \mathrm{Ke}<\mathrm{C}, \\ \mathrm{C}>\mathrm{El} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Ke}<\mathrm{C}, \mathrm{Bai}<\mathrm{C}, \\ & \mathrm{Ho}<\mathrm{C}, \mathrm{D}>\mathrm{C} \end{aligned}$
Mndl	$\begin{aligned} & 12.92 \pm \\ & 0.06 \end{aligned}$	$\begin{aligned} & 13.42 \pm \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.61 \pm \\ & 0.08 \end{aligned}$	$\begin{aligned} & 13.51 \pm \\ & 0.14 \end{aligned}$	$\begin{aligned} & 13.43 \pm \\ & 0.04 \end{aligned}$	13.50 ± 0.05	13.70 ± 0.08	D>C, $\mathrm{Ho}<\mathrm{C}$, $\mathrm{Ke}<\mathrm{C}, \mathrm{C}>\mathrm{El}$	C>El ,Bai<C, $\mathrm{Ke}<\mathrm{C}, \mathrm{Ho}<\mathrm{C}$, BA<C
M1L	1.68 ± 0.01	$\begin{aligned} & \hline 1.67 \pm \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.69 \pm \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.61 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.76 \pm \\ & 0.01 \end{aligned}$	1.69 ± 0.01	1.62 ± 0.02	D<C, BA>C	$\begin{aligned} & \text { Ke>C, } \mathrm{BA}>\mathrm{C}, \\ & \mathrm{D}<\mathrm{C} \end{aligned}$
M1W	1.13 ± 0.01	$\begin{aligned} & 1.11 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.15 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.13 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.19 \pm \\ & 0.01 \end{aligned}$	1.11 ± 0.01	1.10 ± 0.01	BA>C	C<El ,C<Bai, $\mathrm{Ke}>\mathrm{C}, \mathrm{Ho}<\mathrm{C}$, Gr>C, BA>C
M2L	1.27 ± 0.01	$\begin{aligned} & \hline 1.23 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 1.24 \pm \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.27 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1.32 \pm \\ & 0.02 \end{aligned}$	1.28 ± 0.02	1.27 ± 0.04	$\begin{array}{\|l\|} \hline \mathrm{Bai}<\mathrm{C}, \mathrm{Ho}>\mathrm{C}, \\ \mathrm{Ke}<\mathrm{C} \end{array}$	

M2W	1.07 ± 0.01	$\begin{aligned} & \hline 1.07 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.09 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.12 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.15 \pm \\ & 0.01 \\ & \hline \end{aligned}$	1.09 ± 0.01	1.12 ± 0.01	BA>C, $\mathrm{Ke}<\mathrm{C}$	Gr>C
M3L	0.62 ± 0.01	$\begin{aligned} & 0.64 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.64 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.61 \pm \\ 0.03 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.66 \pm \\ & 0.01 \\ & \hline \end{aligned}$	0.66 ± 0.02	0.71 ± 0.02	$\mathrm{Gr}<\mathrm{C}, \mathrm{C}>\mathrm{El}$	$\mathrm{Ke}<\mathrm{C}, \mathrm{BA}>\mathrm{C}$
M3W	0.72 ± 0.01	$\begin{aligned} & 0.72 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 0.72 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.74 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.75 \pm \\ & 0.01 \end{aligned}$	0.77 ± 0.01	0.79 ± 0.02	$\begin{aligned} & \mathrm{Bai}<\mathrm{C}, \mathrm{Ho}<\mathrm{C}, \\ & \mathrm{Ke}<\mathrm{C}, \mathrm{C}>\mathrm{El} \end{aligned}$	$\begin{aligned} & \mathrm{C}>\mathrm{El}, \mathrm{Bai}<\mathrm{C}, \\ & \mathrm{Ho}<\mathrm{C} \end{aligned}$
m11	1.44 ± 0.01	$\begin{aligned} & \hline 1.46 \pm \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1.49 \pm \\ 0.02 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.47 \pm \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.48 \pm \\ & 0.01 \\ & \hline \end{aligned}$	1.49 ± 0.02	1.50 ± 0.02		
m1W	0.96 ± 0.01	$\begin{aligned} & 1.00 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.01 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.97 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 1.01 \pm \\ & 0.01 \end{aligned}$	0.99 ± 0.01	1.00 ± 0.01	C>El	$\begin{aligned} & \text { Ke>C, } \mathrm{Bai}>\mathrm{C}, \\ & \mathrm{Ho}>\mathrm{C} \end{aligned}$
m21	1.25 ± 0.01	$\begin{aligned} & 1.25 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.27 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1.24 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 1.28 \pm \\ & 0.01 \end{aligned}$	1.25 ± 0.00	1.30 ± 0.02	$\begin{aligned} & \mathrm{D}>\mathrm{C}, \mathrm{BA}>\mathrm{C}, \\ & \mathrm{Ke}<\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C}<\mathrm{El} \\ & , \mathrm{Bai}>\mathrm{C}, \mathrm{Ho}>\mathrm{C}, \\ & \mathrm{Gr}>\mathrm{C}, \mathrm{D}>\mathrm{C} \end{aligned}$
m2W	1.05 ± 0.01	$\begin{aligned} & \hline 1.10 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1.08 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.06 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{aligned} & 1.11 \pm \\ & 0.01 \\ & \hline \end{aligned}$	1.07 ± 0.01	1.06 ± 0.02	BA>C, C>El	$\begin{aligned} & \mathrm{Ke}>\mathrm{C}, \mathrm{Bai}>\mathrm{C}, \\ & \mathrm{Gr}>\mathrm{C}, \mathrm{BA}>\mathrm{C} \end{aligned}$
m3L	0.79 ± 0.01	$\begin{array}{\|l} 0.79 \pm \\ 0.01 \end{array}$	$\begin{aligned} & 0.79 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.72 \pm \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.76 \pm \\ & 0.02 \end{aligned}$	0.82 ± 0.01	0.86 ± 0.01	$\begin{aligned} & \mathrm{BA}<\mathrm{C}, \mathrm{Gr}<\mathrm{C}, \\ & \mathrm{Ke}<\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{Ke}<\mathrm{C}, \mathrm{Ho}>\mathrm{C}, \\ & \mathrm{Gr}<\mathrm{C}, \mathrm{BA}<\mathrm{C}, \\ & \mathrm{D}>\mathrm{C} \end{aligned}$
m3w	0.71 ± 0.01	$\begin{aligned} & \hline 0.72 \pm \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 0.71 \pm \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.70 \pm \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.74 \pm \\ & 0.01 \end{aligned}$	0.72 ± 0.02	0.75 ± 0.01		
Dental size	6.14 ± 0.03	$\begin{aligned} & 6.13 \pm \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.17 \pm \\ 0.06 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.06 \pm \\ 0.06 \\ \hline \end{array}$	$\begin{aligned} & 6.35 \pm \\ & 0.04 \\ & \hline \end{aligned}$	6.28 ± 0.04	6.3 ± 0.08	$\mathrm{C}>\mathrm{El}, \mathrm{Ke}<\mathrm{C}, \mathrm{Gr}<\mathrm{C}$	
Skull size	$\begin{aligned} & \hline 45.86 \pm \\ & 0.16 \end{aligned}$	$\begin{aligned} & \hline 47.72 \pm \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45.03 \pm \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 48 \pm \\ 0.32 \\ \hline \end{array}$	$\begin{aligned} & 47.83 \pm \\ & 0.16 \\ & \hline \end{aligned}$	47.22 ± 0.28	48.13 ± 0.42	$\mathrm{C}>\mathrm{El}, \mathrm{C}>\mathrm{Ho}$	

