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Abstract: In this paper, a novel hybrid Taguchi-vortex search algorithm (HTVS) is proposed for solving global
optimization problems. Taguchi orthogonal approximation and vortex search algorithm (VS) are hybridized in presenting
method. In HTVS, orthogonal arrays in the Taguchi method are trained and obtained better solutions are used to find
global optima in VS. Thus, HTVS has better relation between exploration and exploitation, and it exhibits more powerful
approximation to find global optimum value. Proposed HTVS algorithm is applied to sixteen well-known benchmark
optimization test functions with different dimensions. The results are compared with the Taguchi orthogonal array
approximation (TOAA), vortex search algorithm, grey wolf optimizer (GWO), sine cosine algorithm (SCA), moth-flame
optimization algorithm (MFO), whale optimization algorithm (WOA) and salp swarm algorithm (SSA). In order to
compare the effectiveness of HTVS statistically, Wilcoxon signed-rank test (WSRT) is used in this study. Furthermore,
HTVS is applied to two different real engineering problems having some constraints (tension/compression spring design
and pressure vessel design). All obtained results suggested that HTVS can find optimal or very close to optimal results.
Moreover, it has good computational ability and fast convergence behavior as well.

Key words: Hybrid Taguchi-vortex search algorithm, Taguchi orthogonal arrays, vortex search algorithm, global
optimization, engineering design problems with constraints

1. Introduction
Global optimization techniques have been very important in engineering applications such as electrical, me-
chanical engineering and also robotic etc. In the globalizing and modernizing world, engineering systems and
their problems have become more complex. To solve complicated problems, many researchers have searched
and developed a lot of metaheuristic optimization methods in the literature.

Metaheuristic algorithms mostly gained inspiration from the nature. If these are wanted to be categorized,
they can be considered in three main groups. First group can be classified as population based. The interactions
of individuals in the community with each other are modeled in population based algorithms. These algorithms
have different search strategies, for example hunting, seeking food etc. [1]. Grey wolf optimizer (GWO) [2],
particle swarm optimization (PSO) [3], salp swarm algorithm (SSA) [4], krill herd algorithm (KH) [5], whale
optimization algorithm (WOA) [6], artificial bee colony (ABC) [7] are some of developed algorithms in this
∗Correspondence: msaka@gazi.edu.tr
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group. Second group is classified as physical action based. While developing these algorithms, nature and
physical events are taken into account and modeled. Gravitational search algorithm (GSA) [8], big bang-big
crunch algorithm (BBBC) [9], water wave optimization (WWO) [10], black hole (BH) [11] are some of second
group algorithms. Third group can be classified as evolution based. Genetic algorithm (GA) [12] may be
well known and most popular algorithm of this group. Apart from GA, differential evolution (DE) [13] and
biogeography based optimizer (BBO) [14] are other algorithms in this group. Mathematical based analytical
methods are classified as fourth group. Dynamic programming [15] and others [16–19] can be categorized in this
group. Artificial intelligence based techiques can be classified as fifth group. These methods such as artificial
neural network [20] and artificial immune system [21] etc. are applied to different problems.

Metaheuristic optimization algorithms have exhibited good exploration and good exploitation. However,
the convergence performances and systematic search states of these algorithms may be insufficient. Additionally,
balance of exploration-exploitation may be disrupted for complicated problems. In such cases, these algorithms
can be plugged into local optimum points instead of global optimum points. For this reason, different meta-
heuristic algorithms have been combined with each other or different reinforcement techniques are added to
metaheuristic algorithms. Thus, various advantages of algorithms are combined and their various disadvantages
are eliminated. Opposition based learning (OBL) and adaptive differential evolution (ADE) were combined and
partial opposition based learning-adaptive differential evolution (POBL-ADE) was developed in [22], genetic
algorithm and big bang-big crunch were hybridized and hybrid genetic algorithm big bang-big crunch algorithm
(HGAB3C) was developed in [23], sine cosine algorithm (SCA) and multiorthogonal search strategy (MOSS)
were hybridized and multiorthogonal sine cosine algorithm (MOSCA) was developed in [24], particle swarm
optimization and grey wolf optimizer were hybridized and hybrid particle swarm optimization-grey wolf op-
timizer (HPSOGWO) was developed in [25], mean variance mapping optimization was combined with swarm
intelligence (MVMOSH) in [26], self-adaptive search equation-based artificial bee colony (SSEABC) in [27] and
others [28–30] are some hybridized and strengthened algorithms.

In this study, two different methods are combined. First is Taguchi orthogonal array approximation
(TOAA) [32]. This method is an experimental method and based on orthogonal arrays (OAs). The biggest
advantage of OAs is that they can obtain good solutions with less numerical operations. But this method
is not guaranteed the best results. Second is vortex search algorithm1SA (2020). Vortex Search (VS) Al-
gorithm for Numerical Optimization Problems: Matlab Code [online]. Website https://web.itu.edu.tr/ bdo-
gan/VortexSearch/VS.htm [accessed 14 October 2020]. [33] and this algorithm can be thought in second group
algorithms. VS has strong capability for numerical optimization problems and it needs to few user defined
parameters. However, if the parameters are not selected properly, this algorithm can exhibit nonoptimal con-
vergences. Additionally, if the problem to be solved is too complex, this algorithm can become trapped to
local minimum values like other metaheuristic algorithms. For this reasons, HTVS has been developed to elim-
inate the disadvantages of both TOAA and VS methods and creates a more powerful and superior algorithm.
Proposed HTVS algorithm shows better performance with lower initial candidate solutions and lower iteration
number for all global optimization problems.

This paper is organized as follows: In Section 2, Taguchi orthogonal approximation, vortex search
algorithm and proposed hybrid Taguchi-vortex search algorithm are explained. In Section 3, sixteen optimization
test function are defined and comparative results are given. Furthermore, WSRT statistics that confirm the
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effectiveness of HTVS are proved. Moreover, the results obtained with HTVS are given for two different real
engineering problems. The conclusion is given in Section 4.

2. Hybrid Taguchi–vortex search algorithm

In this section, hybridized Taguchi orthogonal array approach and vortex search algorithm is defined. After
than proposed HTVS algorithm is explained.

2.1. Taguchi orthogonal arrays

The Taguchi orthogonal arrays approximation method was developed by Genichi Taguchi [31]. Orthogonal
arrays offer many advantages. First, OAs have fractional factorial characteristics [32]. It means that desirable
solutions can be obtained with fewer probability situation. For example, a set of ten parameters (considering
that each parameter has 3 levels) problem, there are 310 probability situations. However, with the use of OA,
the probability situations are reduced to 27 [32]. Second, all possible states up to variable k are distributed
equally in OAs [32]. Thus, the levels of these variables are analyzed equally. Finally, if some columns are
removed from the OA, then the property of the OA is not disrupted [32]. In this way, instead of using too many
columns, up to k columns can be used. An example of OA is shown in Table 1.

OAs can be symbolized as OA(N, k, s, t). In this form, N represents row, k represents column (also
optimized parameters number), s represents level and t represents strengt of an OA.

In Table 1, s and t are selected 3 and 2, respectively. This means that, every parameter has three level
(s=3) values (1, 2, 3) and selected any two column (t=2) have different double combinations as row for example
(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) [32].

While determining the level values, initial solution of problem x i=1 may be chosen as midpoint of upper
limit and lower limit. This midpoint is selected as center of level value. For example, if s=3, this point is equal
to level 2. The other level values are determined by adding or subtracting LD i (level difference) to level 2 [32].
LD is found from Equation 1 [32]:

LDi=1 =
maximum limit − minimum limit

level + 1
(1)

Here; i is iteration number (i=1, 2, 3, ...), x is candidate solution, maximum and minimum limits are
boundary of problem. After defining of parameter level values, all probability situations are tried and results
are calculated as in [32]. Optimal level values are found for every parameters and chosen center level values
for next iterations. Every iteration LD value is decreased by reduced rate coefficient (RR) and this equation is
given as follows [32]:

LDi+1 = LDi×RR (2)

This period is maintained until the finish conditions are met. This criteria is defined below [32]:

LDi

LDi=1
< target error value (3)
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Table 1. An orthogonal array OA (27,10,3,2).

Probability situation Parameters
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 3 2
5 1 2 2 2 2 2 2 3 1 3
6 1 2 2 2 3 3 3 1 2 1
7 1 3 3 3 1 1 1 3 2 3
8 1 3 3 3 2 2 2 1 3 1
9 1 3 3 3 3 3 3 2 1 2
10 2 1 2 3 1 2 3 1 1 2
11 2 1 2 3 2 3 1 2 2 3
12 2 1 2 3 3 1 2 3 3 1
13 2 2 3 1 1 2 3 2 3 3
14 2 2 3 1 2 3 1 3 1 1
15 2 2 3 1 3 1 2 1 2 2
16 2 3 1 2 1 2 3 3 2 1
17 2 3 1 2 2 3 1 1 3 2
18 2 3 1 2 3 1 2 2 1 3
19 3 1 3 2 1 3 2 1 1 3
20 3 1 3 2 2 1 3 2 2 1
21 3 1 3 2 3 2 1 3 3 2
22 3 2 1 3 1 3 2 2 3 1
23 3 2 1 3 2 1 3 3 1 2
24 3 2 1 3 3 2 1 1 2 3
25 3 3 2 1 1 3 2 3 2 2
26 3 3 2 1 2 1 3 1 3 3
27 3 3 2 1 3 2 1 2 1 1

2.2. VS algorithm

This algorithm was developed based on the sample shape of the mixed liquids by Doğan and Ölmez [33]. This
algorithm resembles nested circles in a 2D space when viewed from above [33]. The working system of the
algorithm is depicted in Figure 1. In this figure, green point represents circle center, blue point represents best
candidate solution and red points represent candidate solutions. The best solution in outer circle is memorized
and it is placed to the center of the next inner circle for the next iteration.

The center of outermost circle (µ0 ) is:

µ0 =
maximum limit + minimum limit

2
(4)
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Figure 1. Systematic running of VS algorithm.

The radius of this circle (σ0 ) is:

σ0 =
max(maximum limit) − min(minimum limit)

2
(5)

Every candidate solutions boundaries are checked in every iteration. If they are not within boundaries,
they are relocated into the boundaries using following equation [33]:

csk = minimum limit + (maximum limit − minimum limit)×rand (6)

In here, k represents number of candidate solutions and rand is a random variable interval 0 and 1.
Radius of circles (ri ) are decreased every iteration with inverse gamma function (gammaincinv) [33]:

ri = σ0×
1

x
×gammaincinv(x, ai) (7)

In here a is shape parameter and x is constant value. ai is reduced every iteration and given in as follows
[33]:

ai = a0 −
i

MaxItr
(8)

In here, i and MaxItr represent iteration number and maximum iteration respectively. For contained all
search area, a0 is chosen 0 [33].

2.3. Proposed HTVS algorithm

The proposed hybrid Taguchi-vortex search (HTVS) algorithm is formed by hybridizing with Taguchi orthogonal
array approximation and vortex search algorithm. Orthogonal arrays may be preferred in population initial-
ization stage [34]. OAs drastically reduce the number of probability situation during the process and therefore
better results are achieved with fewer operations. Randomly generated initial candidate solutions are scattered
using TOAA. Thus, TOAA is used in training of generating a candidate solution in proposed algorithm. Each
candidate solution is distributed at certain equal intervals in the search space with TOAA. Thus, exploration
phase of HTVS is enhanced. These candidate solutions are evaluated according to the probability situations of
OA and therefore reinforced candidate solutions are found. These redefined and improved candidate solutions
are used in VS algorithm. Thus, exploitation phase and the convergence behaviour of HTVS are enhanced with
good approximation features of VS. Thanks to these improvements, much better results can be obtained from
HTVS using fewer solutions and less iterations. Moreover, since the trained parameters are used in the VS
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during the entire iteration period, optimal or very close to optimal results are achieved with a fast convergence
in HTVS.

The process of the HTVS algorithm is simply listed below:
(a) Randomly generated initial design parameters are scattered using TOAA,
(b) Probability situations are evaluated,
(c) Trained new design parameters are generated,
(d) These parameters are used in VS,
(e) Updating the parameters for next iterations.

Step1: initializing of HTVS Necessary definitions are made for using in the problem and algorithm
such as problem boundaries, dimension, iteration number, reduce rate etc. The desired OA is constituted
according to the problem dimensions. If the problem dimension is lower than OA columns, OA columns are
selected as many as problem dimension. Thus, the number of OA columns are synchronized with the problem
dimension. After than, candidate solutions are formed and controlled whether they are within limits.

Step2: training of OA Every level value is determined for each candidate solution. These level values
are associated with OA. Objective values of probability situations in OA are calculated. Optimal level values
are determined for every parameters. These values are chosen as best values for training of OA. After than, the
level difference is decreased by reduce rate coefficient and this process is continued until it reaches the target
error value. Thus, candidate solutions are improved.

Figure 2 shows an example of the training of OA. In this example, OA (9,4,3,2) is chosen to make it
easier to understand. Red points show the candidate solution being trained. Other hollow points indicate
the placement of this candidate solution in the OA. The optimum levels of the parameters are determined by
controlling the entire probability situation in the OA. These determined levels are analyzed again with trained
OA and an improved candidate solution is found.
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Figure 2. Illustration of training OA.

Step3: evaluation and iteration Improved candidate solutions are sent into the circle for evaluation.
The best solution among them is determined as the best solution of the iteration. If the best solution of the
iteration is better than the global best solution, the best solution of the iteration is selected as the global best
solution and memorized. After than, this solution is shifted to the center of the next circle. Then the radius
of the circle is reduced. All these processes are continued until the number of iterations is equal to defined
maximum iteration number. Detailed steps of HTVS algorithm are delineated in Figure 3.
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Figure 3. Flow diagram of HTVS.

Algorithm 1: Pseudo-code for HTVS Algorithm
Begin Procedure HTVS Algorithm
Set parameters;
Generate Orthogonal Array related with the problem dimension;
for Up to maximum iteration do

Check solutions boundary;
for Each solutions do

Defined Level Difference;
while Target error value do

Designate solutions level;
Correlate levels to Orthogonal Array;
Evaluate probability situations;
Describe optimal level values;
Find improved new solutions;

end
end
Determine iteration best;
if iteration best value < global best value then

global best value = iteration best value;
end
Reduce radius;

end
End Procedure
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3. Experimental study

In this part, two different experiments have been carried out to examine the performance of optimization
algorithms. The first experiment has been realized on benchmark functions (BFs), the second experiment on
real engineering problems in the literature.

3.1. Experimental test 1

In this part, 16 BFs have been utilized to examine the performance and efficiency of the improved HTVS
algorithm. BFs have been selected from [34]. Six optimization algorithms (GWO [2], SSA [4], WOA [6],VS [33],
SCA [35] and MFO [36]) used in the literature have been utilized to affirm the validity and performance of the
proposed HTVS algorithm.

3.1.1. Benchmark functions and algorithm settings

The BFs utilized in the first experiment are listed in Table 2. In this table, the limits of the variables used
for each function, the equations used in the calculation, the type of the function and the size information are
given. Additional information and parameters for Penalized, Penalized2 u(xi, 10, 100, 4) and Foxholes (aij)

functions in Table 2 are as defined in [33]. If a function has a single optimum point in a certain range,
it is called the unimodal function. If a function has many local optimum points, it is called a multimodal
function. Separability is associated with the concept of mutual relationship between the variables of the
function. Nonseparable functions cannot be expressed in this way because there is a relationship between
variables. Optimizing nonseparable functions is harder than optimizing separable functions [37].

Table 2. Chosen BFs (n: ddimension, T: type, U: unimodal, M: multimodal, S: separable, N: nonseparable).

Function
No. Range n T Name Formulation
Fnc1 [-100, 100] 30 US Sphere f(y) =

∑n
j=1(yj)

2

Fnc2 [-10, 10] 30 UN Schwefel 2.22 f(y) =
∑n

j=1 |yj |+
∏n

j=1 |yj |
Fnc3 [-100, 100] 30 UN Schwefel 1.2 f(y) =

∑n
j=1(

∑j
k=1 yk)

2

Fnc4 [-30, 30] 30 UN Rosenbrock f(y) =
∑n

j=1[100(yj+1 − y2j )
2 + (yj − 1)2]

Fnc5 [-100, 100] 30 US Step f(y) =
∑n

j=1(|yj + 0.5|)2

Fnc6 [-1.28, 1.28] 30 US Quartic f(y) =
∑n

j=1(jyj)
4 + random[0, 1)

Fnc7 [-500, 500] 30 MS Schwefel f(y) =
∑n

j=1 −yj sin(
√
yj)

Fnc8 [-5.12, 5.12] 30 MS Rastrigin f(y) =
∑n

j=1[(yj)
2 − 10 cos(2πyj) + 10]

Fnc9 [-32, 32] 30 MN Ackley f(y) = −20 exp
(
− 0.2

√
1
n

∑n
j=1 y

2
j

)
− exp

(
1
n

∑n
j=1 cos(2πyj)

)
+ 20 + exp (1)

Fnc10 [-600, 600] 30 MN Griewank f(y) = 1
4000

∑n
j=1(yj)

2 −
∏n

j=1 cos(
yj√
j
) + 1

Fnc11 [-50, 50] 30 MN Penalized f(y) = π
n{10 sin(πz1)

2 +
∑n−1

j=1 (zj − 1)2[1 + 10 sin(πzj+1)
2]}

+
∑n

j=1 u(yj , 10, 100, 4), zj = 1 + 1
4 (yj + 1)

Fnc12 [-50, 50] 30 MN Penalized2 f(y) = 0.1{sin(πy1)2 +
∑n−1

j=1 (yj − 1)2[1 + sin(3πyj+1)
2]

+(yn − 1)2[1 + sin(2πyn)
2]}+

∑n
j=1 u(yj , 10, 100, 4)

Fnc13 [-65.536, 65.536] 2 MS Foxholes f(y) =
[

1
500 +

∑25
k=1

1
k+

∑2
j=1(yj−ajk)6

]
Fnc14 [-5, 5] 2 MN Six Hump f(y) = 4y21 − 2.1y41 +

1
3y

6
1 + y1y2 − 4y22 + y42

Camel Back
Fnc15 [-5, 10]&[0, 15] 2 MS Branin f(y) =

(
y2 − 5.1

4π2 y
2
1 +

5
πy1 − 6

)2
+ 10(1− 1

8π ) cos(y1) + 10

Fnc16 [-2, 2] 2 MN GoldStein-Price f(y) = [1 + (y1 + y2 + 1)2(19− 14y1 + 3y21 − 14y2

+6y1y2 + 3y22)][30 + 3(2y1 − 3y2)
2(18− 32y1 + 12y21

+48y2 − 36y1y2 + 27y22)]
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Population size has been determined as 50 and iteration number is 1000 for each compared algorithm.
Thirty independent runs have been executed each test function. The best, worst, mean and standard deviation
(SD) parameters have been obtained from these runs.

3.1.2. Statistical analysis
In the first experiment, proposed HTVS algorithm is compared to TOAA, VS, GWO, SCA, MFO, WOA and
SSA algorithms. Statistical values of TOAA, VS and GWO are listed in Table 3. Also, statistical values of
SCA, MFO, WOA and SSA are given in Table 4. It can be clearly seen that from this table, HTVS algorithm
obtained better mean value and lower standard deviation value in other comparison functions except Fnc1, Fnc2
and Fnc4. Mean and standard deviation (SD) values can be used as an indicator about the robustness of the
algorithm. By examining the best and worst values, an idea about the quality of the optimization algorithm
can be obtained [34]. Although these values provide a rough idea, pairwise statistical test is often used for a
stronger comparison. Therefore, WSRT has been chosen to perform a pairwise statistical test. HTVS and other
selected algorithms have been run different 30 times for each function. WSRT has been performed using the
results obtained from this process. The obtained statistical pairwise results are illustrated in Table 5.

Table 3. Statistical results for 30 runs.
No. Min. HTVS TOAA VS GWO
Fnc1 0 Mean 3.0368E-147 0 8.7754E-68 3.2601E-70

SD 1.8419E-147 0 4.7513E-67 7.4302E-70
Best 4.4734E-157 0 3.1944E-90 1.2881E-72
Worst 7.0213E-147 0 2.6033E-66 3.9161E-69

Fnc2 0 Mean 5.8818E-74 0 2.7291E-36 3.9362E-41 7
SD 1.9096E-74 0 1.3341E-35 5.8096E-41
Best 1.7604E-74 0 3.0048E-47 3.7870E-42
Worst 8.1700E-74 0 7.3306E-35 3.1475E-40

Fnc3 0 Mean 0 0 9.7719E+03 3.4143E+03
SD 0 0 2.3343E+04 3.1775E+03
Best 0 0 1.8897E-90 2.3814E+02
Worst 0 0 8.2809E+04 3.1775E+03

Fnc4 0 Mean 12.409 3758.975 1.5679E-33 26.4631
SD 10.4425 3758.975 2.0959E-33 0.8077 5
Best 7.6498E-31 3758.975 0 25.1885
Worst 21.9412 3758.975 4.2762E-33 28.51

Fnc5 0 Mean 0 0 0 0.3583
SD 0 0 0 0.2907
Best 0 0 0 9.3673E-06
Worst 0 0 0 1.0043

Fnc6 0 Mean 8.8371E-07 0.08 1.6124E-04 4.1014E-04
SD 8.5843E-07 0.064 1.5318E-04 2.1143E-04
Best 7.8925E-08 6.5572E-04 1.7327E-05 6.6443E-05
Worst 4.2453E-06 0.2567 5.3662E-04 0.0011
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Table 3. (Continued).
No. Min. HTVS TOAA VS GWO
Fnc7 -12569.5 Mean -1.2569E+04 -3686.29 -1.2569E+04 -6.3757E+03

SD 2.5502E-12 -3686.29 1.8501E-12 8.6519E+02
Best -1.2569E+04 -3686.29 -1.2569E+04 -7.6185E+03
Worst -1.2569E+04 -3686.29 -1.2569E+04 -3.2684E+03

Fnc8 0 Mean 0 0 0 0.1504
SD 0 0 0 0.8235
Best 0 0 0 0
Worst 0 0 0 4.5107

Fnc9 0 Mean 4.4409E-15 8.88E-16 8.8818E-16 1.3204E-14
SD 0 8.88E-16 0 3.1959E-15
Best 4.4409E-15 8.88E-16 8.8818E-16 7.9936E-15
Worst 4.4409E-15 8.88E-16 8.8818E-16 2.2204E-14

Fnc10 0 Mean 0 2.82E-144 0 0.002
SD 0 2.82E-144 0 0.0048
Best 0 2.82E-144 0 0
Worst 0 2.82E-144 0 0.0157

Fnc11 0 Mean 1.5705E-32 0.7519 1.5705E-32 0.0284
SD 5.5674E-48 0.7519 5.5674E-48 0.0154
Best 1.5705E-32 0.7519 1.5705E-32 0.0065
Worst 1.5705E-32 0.7519 1.5705E-32 0.072

Fnc12 0 Mean 1.3498E-31 0.0443 1.3498E-31 0.3097
SD 6.6809E-47 0.0443 6.6809E-47 0.1715
Best 1.3498E-31 0.0443 1.3498E-31 2.1270E-05
Worst 1.3498E-31 0.0443 1.3498E-31 0.7138

Fnc13 1 Mean 0.998 0.998604 0.9991 2.8953
SD 1.1292E-16 0.998604 0.0054 3.2636
Best 0.998 0.998604 0.998 0.998
Worst 0.998 0.998604 1.0273 10.7632

Fnc14 -1.0316 Mean -1.0316 -1.03163 -1.0035 -1.0316
SD 6.7752E-16 -1.03163 0.0335 2.3754E-09
Best -1.0316 -1.03163 -1.0316 -1.0316
Worst -1.0316 -1.03163 -0.9108 -1.0316

Fnc15 0.398 Mean 0.3979 0.397887 0.4028 0.3979
SD 0 0.397887 0.0093 4.4472E-05
Best 0.3979 0.397887 0.3979 0.3979
Worst 0.3979 0.397887 0.4472 0.3981
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Table 3. (Continued).
No. Min. HTVS TOAA VS GWO
Fnc16 3 Mean 3 99 3.4535 3

SD 3.1939E-16 99 0.5875 2.1318E-06
Best 3 99 3.0003 3
Worst 3 99 5.6076 3

Table 4. Statistical results for 30 runs.
No. Min. SCA MFO WOA SSA
Fnc1 0 Mean 3.0000E-03 2.0000E+03 1.2955E-173 8.8119E-09

SD 5.5000E-03 4.0684E+03 0 1.8119E-09
Best 1.0119E-07 2.2826E-06 1.1802E-187 6.1125E-09
Worst 2.0600E-02 1.0000E+04 1.7212E-172 1.3440E-08

Fnc2 0 Mean 6.1720E-06 27.3334 2.1033E-108 0.5467
SD 1.5267E-05 17.7983 1.0678E-107 0.7322
Best 7.5984E-10 2.1225E-04 5.4601E-120 5.0879E-04
Worst 7.6365E-05 70.0000 5.8555E-107 3.4807

Fnc3 0 Mean 3.4143E+03 1.6118E+04 1.0251E+04 35.2190
SD 3.1775E+03 1.0657E+04 6.5943E+03 22.5824
Best 2.3814E+02 273.8736 725.1963 9.2185
Worst 1.2813E+04 4.5013E+04 2.7663E+04 106.1447

Fnc4 0 Mean 66.7187 1.2820E+04 26.5654 49.1718
SD 80.2239 3.0839E+04 0.2899 45.3955
Best 28.0344 7.3142 26.0486 19.9603
Worst 327.5366 9.0081E+04 27.0279 200.2024

Fnc5 0 Mean 4.2785 1.3267E+03 0.0044 8.8659E-09
SD 0.4562 4.3123E+03 0.0022 1.8151E-09
Best 3.6326 2.6010E-06 8.9371E-04 5.6152E-09
Worst 5.8445 1.9801E+04 0.0117 1.1868E-08

Fnc6 0 Mean 0.0264 3.8282 8.5780E-04 0.0585
SD 0.0197 8.0671 9.1209E-04 0.0289
Best 0.0046 0.0301 1.5986E-05 0.0183
Worst 0.0731 40.3245 0.0040 0.1494

Fnc7 -12569.5 Mean 3 -3.9844E+03 -
8.6512E+03

-1.1384E+04 -7.4102E+03

SD 2.7826E+02 861.1861 1.4685E+03 835.0389
Best -4.6838E+03 -

1.0571E+04
-1.2569E+04 -9.0163E+03

Worst -3.6256E+03 -
6.8511E+03

-8.2506E+03 -5.9019E+03
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Table 4. (Continued).
No. Min. SCA MFO WOA SSA
Fnc8 0 Mean 16.8594 137.2066 1.8948E-15 43.9440

SD 20.7797 36.3597 1.0378E-14 13.4026
Best 8.1685E-06 73.6266 0 19.8992
Worst 72.3418 205.2448 5.6843E-14 76.6117

Fnc9 0 Mean 1.2487E+01 11.6837 3.0198E-15 1.6068
SD 9.4183 8.4275 2.5721E-15 1.1970
Best 3.5559E-04 6.7085E-04 8.8818E-16 1.9931E-05
Worst 2.0311E+01 19.9630 7.9936E-15 3.6819

Fnc10 0 Mean 0.2481 18.0233 0.0026 0.0090
SD 0.2188 36.6376 0.0143 0.0093
Best 3.8536E-06 7.7973E-06 0 1.9672E-08
Worst 0.5971 90.1836 0.0783 0.0344

Fnc11 0 Mean 1.6176 0.4448 0.0014 2.9985
SD 2.877 1.2554 0.0029 2.1077
Best 0.362 1.6537E-05 1.7603E-04 0.1086
Worst 10.9041 6.7120 0.0149 9.8207

Fnc12 0 Mean 3.8187 1.3669E+07 0.0589 0.0069
SD 4.1862 7.4867E+07 0.0706 0.0076
Best 2.1981 2.4950E-05 0.0030 3.4119E-10
Worst 19.1298 4.1006E+08 0.2875 0.0308

Fnc13 1 Mean 1.1965 1.6238 2.1729 1.0311
SD 0.6054 1.4774 2.9739 0.1815
Best 0.998 0.9980 0.9980 0.9980
Worst 2.9821 5.9288 10.7632 1.9920

Fnc14 -1.0316 Mean -1.0316 -1.0316 -1.0316 -1.0316
SD 9.6489E-06 0 7.1907E-12 6.7921E-15
Best -1.0316 -1.0316 -1.0316 -1.0316
Worst -1.0317 -1.0316 -1.0316 -1.0316

Fnc15 0.398 Mean 0.399 0.3979 0.3979 0.3979
SD 0.0015 1.1292E-16 2.0882E-07 1.2085E-14
Best 0.3979 0.3979 0.3979 0.3979
Worst 0.4036 0.3979 0.3979 0.3979

Fnc16 3 Mean 3 3.0000 3.0000 3.0000
SD 1.9622E-05 2.5657E-15 2.9100E-06 6.9564E-14
Best 3 3.0000 3.0000 3.0000
Worst 3.0001 3.0000 3.0000 3.0000
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In the WSRT, it can be understood which of the two algorithms compared using the hypothesis test is
superior. Two hypotheses can be determined as (H0 ) and (H1 ). The (H0 ) hypothesis means that there is no
difference between the compared pairs. Unlike (H0 ), the (H1 ) hypothesis means that there is a difference. In
Table 5, when the h value is equal to 0, it is seen that there is no critical contrast between the compared two
algorithms. When h = 1 , a major difference is observed between the two compared algorithms. In addition, as
p − value which is the probability of observing a test statistic decreases, the similarity of the two algorithms
decreases. In WSRT, statistical significance value is determined as a = 0.05 . When p−value used to determine
whether algorithms have superiority to each other is less than a , it can be said that two compared algorithms are
statistically distinctive from each other at 95% confidence level. In this table, ’h=1+’ indicates situations where
the zero hypothesis is refused and the HTVS performs statistically predominant in the WSRT at 95% significance
level; ’h=1-’ denotes states where the (H0 ) is refused and the HTVS algorithm performed lower performance;
and ’h = 0 ’ denotes states that are not critical contrast between the two algorithms. The nineteenth line
and last line of Table 5 demonstrate the total number of three statistically major states (+/ = /−) in the
comparison between pairs. The + sign demonstrates that the HTVS algorithm is superior to the compared
algorithm, the = sign demonstrates that the HTVS algorithm draws with the compared algorithm, the − sign
demonstrates that the HTVS algorithm is worse than the compared algorithm. In each comparison, the HVTS
algorithm outperformed all the compared algorithms because the number of + signs is greater than the = and
− sign. The superiority of the HVTS algorithm is more dominant when it is compared to GWO, SCA, MFO,
SSA algorithms and less dominant when it is compared to VS and WOA algorithms.

3.1.3. Convergence analysis
Convergence analysis has been performed to illustrated how the proposed HTVS algorithm converges to the
solution. A total of 4 convergence graphics have been obtained from each function type (MS, US, MN, UN).
The graphics have been drawn using information about average solutions 30 different runs for 1000 iterations.
As seen in Figure 4, convergence graph is drawn for each function type. It has been viewed that the HTVS
algorithm is more competitive than other algorithms. HTVS algorithm presents one convergence behavior while
optimizing test functions. HTVS is generally very close to optimum value in the first few iterations.

3.2. Experimental test 2 (real engineering problems)

In this part, tension/compression spring design (T/CSD) and pressure vessel design (PVD) problems have been
solved with proposed HTVS algorithm. HTVS has been run with population sizes 20 and 500 iterations in
two problems. The performance and applicability of the proposed HTVS algorithm has been compared with
the solutions of other algorithms in the literature. The results of the compared algorithms have been taken
directly from the literature. As a result of the comparison, the feasibility of the HTVS algorithm has been
confirmed.The setting parameters of the algorithms have been found from the studies in the literature and have
been expressed in Appendix section.

3.2.1. Tension/compression spring design

The constrained design problem shown in Figure 5 has been solved and the minimum weight of the ten-
sion/compression spring has been tried to be found [38, 42]. The optimum design should provide restrictions
on shear stress, ripple frequency and deviation. Three design parameters are wire diameter (d), average coil
diameter (D), and active coil number (N).
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Figure 4. Convergence curve.

Figure 5. Schematic of T/CSD problem [38, 42].

The equations of constrained design problem are defined as follows [38, 42]:
Consider Y = [y1 y2 y3] = [d D N ]

Minimize f(Y ) = (y3 + 2)y2y
2
1

Subject to h1(Y ) = 1 − y3
2y3

71785y4
1

≤ 0

h2(Y ) =
4y2

2−y1y2

12566(y2y3
1−y4

1)
+ 1

5108y2
1

− 1 ≤ 0

h3(Y ) = 1 − 140.45y1

y2
2y3

≤ 0

h4(Y ) = y1 + y2

1.5 − 1 ≤ 0

1923



SAKA et al./Turk J Elec Eng & Comp Sci

where 0.05 ≤ y1 ≤ 2.00, 0.25 ≤ y2 ≤ 1.30, 2.00 ≤ y3 ≤ 15.00

The results obtained with HTVS algorithm are compared with various techniques applied to this design
problem in the literature. Founded values and comparative cost are shown in Table 6 and it shows that the
optimum cost parameter obtained with the proposed HTVS algorithm is the same as the optimum cost value
obtained with the HEAA and WCA algorithm in the literature. The optimum cost value found with the proposed
HTVS, WCA and the HEAA algorithm is better than the optimum cost values found by other algorithms in
Table 6. It is also worth noting here that although optimum costs value found by proposed HTVS, HEAA and
WCA are equal, the obtained optimal design parameters are different. Therefore, HTVS finds a new optimal
design for this problem. Also, the proposed HTVS algorithm shows that it can compete with other algorithms
in the literature with the optimal cost result for the T/CSD design problem.

Table 6. Experimental results for T/CSD problem.

Algorithms Optimum parameters Optimum cost
d D N

HTVS 0.05176 0.35845 11.18786 0.012665
WOA [6] 0.05127 0.34521 12.00402 0.01267
HEAA [39] 0.05168 0.35672 11.28829 0.012665
CPSO [40] 0.05172 0.35764 11.24454 0.012674
WCA [41] 0.05168 0.35637 11.30922 0.012665
GA [42] 0.05148 0.35166 11.63220 0.012704
AIS-GA [43] 0.051660 0.35603 11.32955 0.012666
CDE [44] 0.05160 0.35471 11.41083 0.012670

3.2.2. Pressure vessel design

The main purpose of this section is to optimize the overall cost function of PVD problem under the different
constraints. PVD schematic is illustrated in Figure 6 [38, 42]. Whereas the head is semispherical in shape, both
ends of the container are covered. It has four design parameter: the thickness (Ts ), the thickness of the head
(Th ), the inner radius (R), the length, regardless of the head (L).

Figure 6. Schematic of PVD problem [38, 42].
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The equations and constraints of this problem can be written as follows [38, 42]:
Consider Y = [y1, y2, y3, y4] = [Ts, Th, R, L]

Minimize f(Y ) = 0.6224y1y3y4 + 1.7781y2y
2
3 + 3.1661y21y4 + 19.84y21y3

Subject to h1(Y ) = −y1 + 0.0193y3 ≤ 0

h2(Y ) = −y2 + 0.00954y3 ≤ 0

h3(Y ) = −πy23y4 − 4
3πy

3
3 + 1296000 ≤ 0

h4(Y ) = y4 − 240.0 ≤ 0

where 0 ≤ y1 ≤ 99, 0 ≤ y2 ≤ 99, 10 ≤ y3 ≤ 200, 10 ≤ y4 ≤ 200− 240∗ .
There are some studies in the literature with a maximum y4 value of 200 [6, 40, 42] and 240 [47]. The

results obtained in both cases are given in Table 7. Also, results where y4 is a maximum of 240 are marked with
∗ . This problem is frequently used by researchers in optimization applications. According to this table, HTVS
algorithm has found better optimum cost than other algorithms. Setting parameters of compared algorithms
are given in Table 8.

Table 7. Experimental results for PVD problem.

Algorithms Optimum parameters Optimum cost
Ts Th R L

HTVS 0.7828 0.3869 40.5575 196.7148 5893.2314
WOA [6] 0.81250 0.43750 42.09826 176.63899 6059.7410
CPSO [40] 0.8125 0.4375 42.091266 176.7465 6061.0777
GA [42] 0.8125 0.4345 40.3239 200.00 6288.7445
CDE [44] 0.81250 0.43750 42.09841 176.63769 6059.7340
DELC [45] 0.8125 0.4375 42.09844 176.63659 6059.7143
G-QPSO [46] 0.8125 0.4375 42.0984 176.6372 6059.7208
HTVS∗ 0.7455 0.3685 38.62635 224.9935 5831.7849
BGRA∗ [47] 0.75 0.375 38.8601 221.36547 5850.383061
IHSA∗[48] 0.75 0.375 38.86010 221.36553 5850.38363
DSO∗[49] 0.75 0.375 38.86010 221.36547 5850.38309

4. Conclusion
In this article, vortex search, a single-solution based metaheuristic algorithm, is explored and adjusted by
means of the orthogonal array concept. Taguchi orthogonal approximation and VS algorithm are hybridized in
proposed hybrid Taguchi-vortex search algorithm. Thus, more powerful and more reliable HTVS is developed.

In this paper, two experiments to examine the success of the HTVS algorithm in solving optimization
problems are presented. In the first experiment, the proposed method has been applied on 16 benchmark
functions and performance comparison with TOAA, VS, GWO, SCA, MFO, WOA, and SSA algorithms.
The success of HTVS in solving numerical optimization problems has been expressed using the Wilcoxon
signed-rank test. In the second experiment, two real engineering problems with constraints (i.e. design of a
tension/compression spring and design of a pressure vessel) have been solved to learn more about the proposed
algorithm. When analyzed all obtained results, HTVS is extremely competitive with the other optimization
algorithms used in this study.
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Appendix

Table 8. Setting parameters of compared algorithms.
Algorithms Parameters Values
WOA for
T/CSD[6]

Search agents 10
Iteration number 500

WOA for
PVD[6]

Search agents 20
Iteration number 500

HEAA[39]

N 60
Q1, Q2 200, 60
Simplex crossover parameters 10, 5, 10
Fitness function evaluations 200,000

CPSO[40]

Size of swarms M1, M2 50, 20
Number of generations G1, G2 25, 8
Acceleration coefficients c1, c2 2, 2
Maximum particles position w1,max, w2,max 1000,

1000
Minimum particles positionw1,min, w2,min 0, 0

WCA[41]
Ntotal 50
Nsr 8
dmax 1-03

GA[42]

populationsize1 60
populationsize2 30
Gmax1 25
Gmax2 20

AIS-GA[43]

Population size 20
Binary gray code 50 bits
Crossover probability 1
Mutation ratio 0.02
Elitism 2
Maximum iteration 20
Cumber of clones 3
Critical distance 10%

CDE[44]

M1, M2 32, 8
G1, G2 10, 10
F1, F2 0.6, 0.8
CR1 , CR2 0.2, 0.1

DELC[45]

Decision variable n 4
Population size N 80
Level parameter 0.1
Total number of function evaluation TNFE 30,000

G-QPSO[46] Population size 20
Iteration number 400

1
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Table 8. (Continued).
Algorithms Parameters Values

BGRA[47]

Population size 200
Iteration number 2000
level with sr 0.6
count with r 0.1

IHSA[48]

Harmony memory considering rate 0.95
Pitch adjusting rate PARmax, PARmin 0.99, 0.45
Harmony memory size 6
Arbitrary distance bandwidth bwmin, bwmax 5e-4, 0.05
NI (stopping criterion) 200,000

DSO[49]

Population size 40
Forward probability 0.8
Forward coefficient 1
Backward coefficient 10
Genetic mutation probability 0.01
Iteration number 1000
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