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1. Introduction
Donor-π-acceptor (D-π-A)-type push–pull chromophores, are well-known for their desirable features, such as tunable 
strong intramolecular charge-transfer bands that absorb light in a wide range of area including visible and near-IR 
regions, spectacular nonlinear optical properties, excellent solubility, and high thermal stabilities [1–3]. With these 
desired properties, push-pull chromophores have already been employed in a series of advanced applications such as 
photovoltaics, [4,5] light-emitting diodes, [6,7] sensors, [1,8,9] and NLO devices [1,10,11]. The successful integration of 
push–pull systems in high technology areas makes it necessary to design and synthesize new molecular structures with 
enhanced optoelectronic properties. However, synthetic strategies to access these entities are arguably limited and require 
multi-step protocols. The formal [2+2] cycloaddition-retroelectrocyclization (CA-RE) is one of the promising reaction 
candidates to circumvent these synthetic problems [1]. With its high-yielding nature and broad substrate scope, [2+2] 
CA-RE transformation occurs under very mild conditions without requiring a catalyst and fulfills all the requirements 
to be referred as a “click-type reaction” [12,13] [2+2] CA-RE transformation requires electron-rich alkynes and electron-
deficient alkenes to synthesize nonplanar D-π-A systems [1]. Bruce and co-workers reported the first example of [2+2] 
CA-RE reactions between ruthenium-substituted acetylides and tetracyanoethylene (TCNE) in 1981 [14]. Later, metal-
free substrates have also been employed in CA-RE reactions for the synthesis of structurally demanding push-pull 
chromophores by Diederich and co-workers [11]. The short and easy-to-perform CA-RE method has increased the variety 
in the design of the target push–pull chromophores. When the structures of push-pull chromophores obtained by CA-RE 
reactions are examined in detail, derivatization is mostly made in two main parts (donor groups and acceptor groups). 

Abstract: A series of new push–pull chromophores were synthesized in moderate to very high yields (65%–97%) by treating TCNE 
and TCNQ with alkynes substituted by electron-rich diethylaniline and polycyclic aromatic hydrocarbons. Some of the chromophores 
exhibit strong intramolecular charge-transfer bands in the near-IR region with λmax values between 695 and 749 nm. With the help 
of experimental and theoretical analysis, it is concluded that the trend in λmax values is affected by PAH substituents sterically, not 
electronically. Steric constraints led to the increased dihedral angles, reducing conjugation efficiencies. The absorption properties 
of push-pull compounds have been investigated in solvents possessing different polarities. All chromophores exhibited positive 
solvatochromism. As an additional proof of efficient charge-transfer in push–pull chromophores, quinoid character (dr) values were 
predicted using calculated bond lengths. Remarkably, substantial dr values (0.045–0.049) were predicted for donor diethylaniline rings 
in all compounds. The effects of various polycyclic aromatic hydrocarbons on optical and nonlinear optical properties were also studied 
by computational methods. Several parameters, such as band gaps, Mulliken electronegativity, chemical hardness and softness, dipole 
moments, average polarizability, first hyperpolarizability, were predicted for chromophores at the B3LYP/6-31++G(d,p) level of theory. 
The predicted first hyperpolarizability β(tot) values vary between 198 to 538 × 10–30 esu for the reported push–pull chromophores in this 
study. The highest predicted β(tot) value in this study is 537.842 × 10–30 esu, 8150 times larger than the predicted β(tot) value of benchmark 
NLO material urea, suggests possible utilization of these chromophores in NLO devices. The charge-transfer character of the synthesized 
structures was further confirmed by HOMO-LUMO depictions and electrostatic potential maps.
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The typical electron donors used in CA-RE can be listed as azulenes, [15–17] tetrathiafulvalenes, [18] methoxy groups, 
[19] dialkyl amines [20], ferrocenes, [21] triazenes, [22] thiophenes, [19] ureas, [8] heteroazulenes, [23] ynamines [24], and 
ynamides [24]. As mentioned earlier, another way to diversify the products obtained by click-type [2+2] CA-RE reactions is 
to change acceptor units. Similar to the donor groups, successful utilization of many acceptor units such as TCNE [21,25], 
7,7,8,8-tetracyanoquinodimethane (TCNQ), [26] 6,6-dicyanopentafulvenes (DCFs),[27] N,N’-dicyanoquinonediimides 
(DCNQIs), [28] and 2-(dicyanomethylene)indan-1,3-dione (DCID)[29] have been demonstrated in the literature [1]. Apart 
from studies on donor and acceptor groups, a significant amount of research has also been conducted on π-linkers [1,20,21]. 
More recently, Diederich and co-workers reported Aviram–Ratner-type dyads with rigid σ-linkers obtained by CA-RE 
cascade [30]. Due to the nature of the [2+2] CA-RE transformations, substituents have often been used to improve solubility 
and stability, to increase the electron-acceptor properties, or to incorporate a second donor group into the structure. Trolez 
and co-workers recently reported ynamide-based push–pull systems with pyrene and perylene substituent units as near-
infrared emitters [25]. Another study from the Diederich Group involved the synthesis of corannulene-based push-pull 
chromophores [31]. Historically, polycyclic aromatic hydrocarbons (PAHs) have been key building blocks for constructing 
complex π-conjugated systems [32]. Among various PAH molecules, complex push–pull systems having core PAH structures 
have always been very attractive targets [1,33–36]. Synthetic challenges and characterization issues associated with the 
solubility of the polycyclic aromatic hydrocarbons are the main barriers complicating the research into these structurally 
exciting molecules. In this study, we present a detailed systematic survey on structure-property relationships of naphthalene 
and phenanthrene-substituted push–pull chromophores. The flexibility of the CA-RE reactions allowed us to use both 
TCNQ and TCNE at the final stage of the synthesis to implement cyano-based acceptor groups. Optoelectronic properties 
of the synthesized push-pull chromophores have been investigated both experimentally (UV/vis, solvatochromism studies) 
and theoretically (TD-DFT studies, NLO analysis, HOMO-LUMO visualizations, electrostatic potential maps).

2. Experimental section
2.1. General information
All reagents were purchased as reagent grade and used without further purification. Compounds 2 [37], 3 [37], 6 [38], 7 [38], 
10 [39], and 11 [39] were prepared according to literature procedures. Solvents for extraction or column chromatography were 
distilled before usage. Reactions under exclusion of air or water were performed in oven-dried glassware and under argon or 
N2 atmosphere. Column chromatography (CC) was carried out using SiO2-60 mesh. Analytical thin-layer chromatography 
(TLC) was performed on aluminum sheets or glass plates coated with 0.2 mm silica gel 60 F254; visualization with a 
UV lamp (254 or 366 nm). Evaporation in vacuo was performed at 25–60 °C and 900–10 mbar. Reported yields refer to 
spectroscopically and chromatographically pure compounds that were dried under a high vacuum (0.1–0.05 mbar) before 
analytical characterization. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded at 400 MHz (1H) and 
100 MHz (13C), respectively. Chemical shifts d are reported in ppm downfield from tetramethylsilane using the residual 
deuterated solvent signal as an internal reference (CDCl3: dH = 7.26 ppm, dC = 77.0 ppm). For 1H NMR, coupling constants 
J are given in Hz, and the resonance multiplicity is described as s (singlet), d (doublet), t (triplet), q (quartet), and m 
(multiplet). All spectra were recorded at 298 K. High-resolution mass spectrometry (HR-MS) was performed by the MS-
service of the Central Laboratory at Middle East Technical University, Turkey. Masses are reported in m/z units as the 
molecule ion as [M + H]+.
2.2. General procedure A: synthesis of TMS-protected alkynes 2, 6, and 10
In a 25 mL round bottom flask aryl bromide (1.00 mmol, 1 equiv.), bis (triphenylphosphine) palladium (II) chloride (0.09 
mmol, 0.09 equiv.) and copper iodide (0.09 mmol, 0.09 equiv.) were added. The flask was flushed with nitrogen for 30 
min, toluene (6 mL) and diisopropylamine (3 mL) were added via syringe into the flask and flushed with nitrogen for an 
additional 15 min, followed by the addition of trimethylsilylacetylene (3.00 mmol, 3 equiv.). After stirring overnight at 60 
°C, the solvents were removed under reduced pressure, target TMS-protected alkynes 2, 6, and 10 were isolated in 78%–92% 
yields by performing column chromatography (CC) (SiO2; c-hexane). 

Compound 2: colorless oil; 175mg, 78%; CC: (SiO2; c-hexane); Rf = 0.33 (SiO2; c-hexane); 1H NMR (400 MHz, CDCl3, 
298 K): δ = 0.29 (s, 9 H), 7.44–7.54 (m, 3 H), 7.74–7.84 (m, 3 H), 8.00 ppm (s, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ 
= 133.02, 132.99, 132.1, 128.7, 128.0, 127.92, 127.87, 126.8, 126.6, 120.5, 105.6, 94.7, 0.17 ppm. Spectral data was consistent 
with literature [37].

Compound 6: colorless oil; 202 mg, 90%; CC: (SiO2; c-hexane); Rf = 0.40 (SiO2; c-hexane); 1H NMR (400 MHz, CDCl3, 
298 K): δ = 0.33 (s, 9 H), 7.41 (t, J = 7.7 Hz, 1 H), 7.52 (t, J = 7.5 Hz, 1 H), 7.58 (t, J = 7.6 Hz, 1 H), 7.70 (d, J = 7.1 Hz, 1 H), 
7.83 (t, J = 7.5 Hz, 2 H), 8.33 ppm (d, J = 8.2 Hz, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 133.5, 133.2, 131.0, 129.1, 
128.4, 127.0, 126.5, 126.3, 125.3, 120.9, 103.2, 99.6, 0.26 ppm. Spectral data was consistent with literature [38].
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Compound 10: pale yellow oil; 253 mg, 92%; CC: (SiO2; c-hexane); Rf = 0.37 (SiO2; c-hexane); 1H NMR (400 MHz, 
CDCl3, 298 K): δ = 0.41 (s, 9 H), 7.56–7.63 (m, 1 H), 7.64–7.77 (m, 3 H), 7.85 (d, J = 7.9 Hz, 1 H), 8.06 (s, 1 H), 8.44–8.54 
(m, 1 H), 8.60–8.74 ppm (m, 2 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 132.6, 131.24, 131.22, 130.5, 130.1, 128.7, 127.7, 
127.21, 127.17, 127.08, 127.05, 122.9, 122.7, 119.6, 103.4, 99.3, 0.28 ppm. Spectral data was consistent with literature [39].
2.3. General procedure B: synthesis of terminal alkynes 3, 7, and 11 via TMS-deprotection
TMS-protected alkynes (1.00 mmol, 1 equiv.) were dissolved in methanol (10 mL) and THF (10 mL) mixture. Then, 
potassium carbonate (5.00 mmol, 5 equiv.) was added to this solution. After filtration, evaporation, and column 
chromatography (CC) (SiO2; c-hexanes), terminal alkynes 3, 7, and 11 were obtained in 73%–95% yields.

Compound 3: grey solid; 131 mg, 86%; CC: (SiO2; c-hexane); Rf = 0.59 (SiO2; DCM/c-hexane 1:4); 1H NMR (400 
MHz, CDCl3, 298 K): δ = 3.16 (s, 1 H), 7.45–7.60 (m, 3 H), 7.75–7.90 (m, 3 H), 8.04 ppm (s, 1 H); 13C NMR (100 MHz, 
CDCl3, 298 K): δ = 133.1, 132.9, 132.4, 128.7, 128.2, 127.91, 127.90, 127.0, 126.8, 119.5, 84.1, 77.6 ppm. Spectral data was 
consistent with literature [37].

Compound 7: pale yellow solid; 111 mg, 73%; CC: (SiO2; c-hexane); Rf = 0.55 (SiO2; DCM/c-hexane 1:4); 1H NMR 
(400 MHz, CDCl3, 298 K): δ = 3.49 (s, 1 H), 7.44 (t, J = 7.7 Hz, 1 H), 7.54 (t, J = 6.9 Hz, 1 H), 7.60 (t, J = 6.9 Hz, 1 H), 7.75 
(d, J = 7.1 Hz, 1 H), 7.87 (d, J = 8.3 Hz, 2 H), 8.37 ppm (d, J = 8.3 Hz, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 133.6, 
133.2, 131.4, 129.4, 128.4, 127.1, 126.6, 126.2, 125.2, 119.9, 82.1, 81.9 ppm. Spectral data was consistent with literature [38].

Compound 11: grey solid; 192 mg, 95%; CC: (SiO2; c-hexane); Rf = 0.56 (SiO2; DCM/c-hexane 1:4); 1H NMR (400 
MHz, CDCl3, 298 K): δ = 3.48 (s, 1 H), 7.58–7.64 (m, 1 H), 7.65–7.74 (m, 3 H), 7.86 (d, J = 7.9 Hz, 1 H), 8.07 (s, 1 H), 
8.42–8.52 (m, 1 H), 8.64–8.74 ppm (m, 2 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 132.8, 131.0, 130.9, 130.4, 129.9, 
128.5, 127.6, 127.0, 126.9, 126.7, 122.7, 122.5, 118.4, 81.8, 81.5 ppm (15 out of 16 signals expected). Spectral data was 
consistent with literature [39].
2.4. General procedure C: synthesis of diethylaniline-substituted alkynes 4, 8, and 12
In a 25 mL round bottom flask N,N-diethyl-4-iodoaniline (1.00 mmol, 1 equiv.), bis (triphenylphosphine) palladium 
(II) chloride (0.09 mmol, 0.09 equiv.) and copper iodide (0.09 mmol, 0.09 equiv.) were added. The flask was flushed 
with nitrogen for 30 min, toluene (6 mL) and diisopropylamine (3 mL) were added via syringe into the flask and flushed 
with nitrogen for an additional 15 min, followed by the addition of terminal alkyne (2.00 mmol, 2 equiv.). After stirring 
overnight at 60 °C, the solvents were removed under reduced pressure, target alkynes 4, 8, and 12 were isolated in 64%–
90% yields by performing column chromatography (CC) (SiO2; DCM/c-hexane 1:4). 

Compound 4: pale yellow solid; 213 mg, 71%; CC: (SiO2; DCM/c-hexane 1:4); m.p. 133–135 °C; Rf = 0.28 (SiO2; 
DCM/c-hexane 1:4); 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.19 (t, J = 7.1 Hz, 6 H), 3.39 (q, J = 7.1 Hz, 4 H), 6.64 (d, J = 
8.8 Hz, 2 H), 7.40–7.52 (m, 4 H), 7.57 (dd, J = 8.4, 1.3 Hz, 1 H), 7.75–7.85 (m, 3 H), 8.01 ppm (s, 1 H); 13C NMR (100 MHz, 
CDCl3, 298 K): δ = 147.7, 133.3, 133.2, 132.5, 130.7, 128.7, 127.92, 127.85, 127.8, 126.5, 126.3, 121.8, 111.3, 109.0, 91.5, 
87.7, 44.5, 12.7 ppm; HRMS: m/z calcd for C22H22N

+: 300.1752; found: 300.1754 [M + H]+.
Compound 8: pale yellow solid; 270 mg, 90%; CC: (SiO2; DCM/c-hexane 1:4); m.p. 81–83 °C; Rf = 0.42 (SiO2; DCM/c-

hexane 1:4); 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.20 (t, J = 7.1 Hz, 6 H), 3.40 (q, J = 7.1 Hz, 4 H), 6.67 (d, J = 8.7 Hz, 
2 H), 7.45 (t, J = 7.7 Hz, 1 H), 7.48–7.56 (m, 3 H), 7.59 (t, J = 7.6 Hz, 1 H), 7.72 (d, J = 7.1 Hz, 1 H), 7.79 (d, J = 7.1 Hz, 1 
H), 7.86 (d, J = 8.1 Hz, 1 H), 8.48 ppm (d, J = 8.3 Hz, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 147.8, 133.39, 133.37, 
133.2, 129.7, 128.3, 127.9, 126.62, 126.57, 126.4, 125.5, 122.1, 111.4, 109.1, 96.1, 85.4, 44.5, 12.7 ppm; HRMS: m/z calcd for 
C22H22N

+: 300.1752; found: 300.1744 [M + H]+.
Compound 12: pale yellow solid; 225 mg, 64%; CC: (SiO2; DCM/c-hexane 1:4); m.p. 138–140 °C; Rf = 0.25 (SiO2; 

DCM/c-hexane 1:4); 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.21 (t, J = 7.1 Hz, 6 H), 3.41 (q, J = 7.1 Hz, 4 H), 6.68 (d, J = 
8.9 Hz, 2 H), 7.54 (d, J = 8.9 Hz, 2 H), 7.56–7.74 (m, 4 H), 7.80–7.90 (m, 1 H), 8.05 (s, 1 H), 8.55–8.75 ppm (m, 3 H); 13C 
NMR (100 MHz, CDCl3, 298 K): δ = 147.8, 133.2, 131.7, 131.5, 130.8, 130.3, 130.1, 128.5, 127.3, 127.1, 127.04, 126.98, 
122.8, 122.7, 120.8, 111.4, 109.0, 95.8, 85.6, 44.5, 12.7 ppm (21 out of 22 signals expected); HRMS: m/z calcd. for C26H24N

+: 
350.1909; found: 350.1909 [M + H]+.
2.5. General procedure D: synthesis of 13, 15, and 17
A solution of the diethylaniline-substituted alkyne (0.15 mmol, 1 equiv.) and TCNQ (0.15 mmol, 1 equiv.) in 
1,2-dichloroethane (20 mL) was stirred at 25 °C until complete consumption of starting material. After evaporation of 
the solvent, target chromophores 13, 15, and 17 were isolated in 65%–83% yields by performing column chromatography 
(CC) (SiO2; DCM).

Compound 13: A dark-green solid; 327 mg, 65%; CC: (SiO2; DCM); m.p. 165–167 °C; Rf = 0.27 (SiO2; CHCl3); 1H 
NMR (400 MHz, CDCl3, 298 K): δ = 1.23 (t, J = 7.1 Hz, 6 H), 3.45 (q, J = 7.1 Hz , 4 H), 6.69 (d, J = 9.1 Hz , 2 H), 7.03 (dd, 
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J = 9.5, 1.9 Hz, 1 H), 7.14 (dd, J = 9.5, 1.9 Hz, 1 H), 7.25–7.35 (m, 3 H), 7.58 (t, J = 7.7 Hz , 2 H), 7.64 (t, J = 7.0 Hz , 1 H), 
7.72 (dd, J = 8.7, 1.9 Hz, 1 H), 7.84–7.95 (m, 3 H), 8.16 (s, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 172.9, 154.3, 152.1, 
151.3, 135.9, 135.3, 135.1, 134.5, 132.7, 132.3, 131.8, 131.5, 129.8, 129.7, 128.1, 127.8, 125.3, 124.9, 124.7, 123.4, 115.2, 
115.0, 113.4, 113.3, 112.6, 112.5, 87.3, 70.9, 45.1, 12.7 ppm; HRMS: m/z calcd for C34H26N5

+: 504.2188; found: 504.2192 
[M + H]+.

Compound 15: A dark-green solid; 418 mg, 83%; CC: (SiO2; DCM); m.p. 174–176 °C; Rf = 0.23 (SiO2; CHCl3); 1H 
NMR (400 MHz, CDCl3, 298 K): δ = 1.24 (t, J = 7.1 Hz, 6 H), 3.46 (q, J = 7.1 Hz, 4 H), 6.67 (d, J = 9.1 Hz, 2 H), 7.13 (d, J = 
10.7 Hz, 1 H), 7.17–7.35 (m, 4 H), 7.40 (d, J = 9.5 Hz, 1 H), 7.54 (t, J = 7.7 Hz, 1 H), 7.59–7.66 (m, 2 H), 7.69 (t, J = 7.7 Hz, 
1 H), 7.96 (d, J = 8.0 Hz, 1 H), 8.04 ppm (d, J = 8.3 Hz, 2 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 172.4, 153.9, 153.2, 
151.3, 136.8, 135.5, 134.4, 133.92, 133.90, 133.8, 130.4, 129.7, 129.6, 128.6, 127.3, 125.2, 125.1, 124.5, 124.0, 115.1, 113.1, 
112.4, 112.2, 91.9, 71.1, 45.0, 12.7 ppm (27 out of 30 signals expected); HRMS: m/z calcd for C34H26N5

+: 504.2188; found: 
504.2188 [M + H]+.

Compound 17: A dark-green solid; 449 mg, 81%; CC: (SiO2; DCM); m.p. 191–193 °C; Rf = 0.20 (SiO2; CHCl3); 1H 
NMR (400 MHz, CDCl3, 298 K): δ = 1.20 (t, J = 7.1 Hz, 6 H), 3.42 (q, J = 7.1 Hz, 4 H), 6.64 (d, J = 9.1 Hz, 2 H), 7.13 (d, J = 
10.4 Hz, 1 H), 7.22–7.36 (m, 4 H), 7.40 (dd, J = 9.5, 1.6 Hz, 1 H), 7.62–7.84 (m, 4 H), 7.87 (s, 1 H), 7.92 (d, J = 7.9 Hz, 1 H), 
8.09 (d, J = 8.1 Hz, 1 H), 8.68 (d, J = 8.3 Hz, 1 H), 8.76 ppm (d, J = 7.8 Hz, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 
172.3, 153.9, 153.0, 151.2, 136.8, 135.6, 134.4, 134.3, 133.4, 132.9, 132.1, 131.0, 130.3, 130.0, 128.2, 128.0, 127.82, 127.80, 
125.5, 125.4, 125.1, 124.7, 124.1, 123.0, 115.0, 114.9, 113.2, 112.5, 112.2, 92.1, 72.0, 45.1, 12.7 ppm (33 out of 34 signals 
expected); HRMS: m/z calcd for C38H28N5

+: 554.2345; found: 554.2344 [M + H]+.
2.6. General procedure E: synthesis of 14, 16, and 18
A solution of the diethylaniline-substituted alkyne (0.15 mmol, 1 equiv.) and TCNE (0.15 mmol, 1 equiv.) in 
1,2-dichloroethane (20 mL) was stirred at 25 oC until complete consumption of starting material. After evaporation of 
the solvent, target chromophores 14, 16, and 18 were isolated in 95%–97% yields by performing column chromatography 
(CC) (SiO2; DCM).

Compound 14: A dark-purple solid; 415 mg, 97%; CC: (SiO2; DCM); m.p. 196–198 °C; Rf = 0.27 (SiO2; CHCl3); 1H 
NMR (400 MHz, CDCl3, 298 K): δ = 1.26 (t, J = 7.1 Hz, 6 H), 3.49 (q, J = 7.1 Hz, 4 H), 6.71 (d, J = 9.5 Hz, 2 H), 7.60 (t, J 
= 7.5 Hz, 1 H), 7.68 (t, J = 7.5 Hz, 1 H), 7.80–8.00 (m, 6 H), 8.23 (s, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 169.3, 
163.0, 152.8, 135.7, 133.1, 132.7, 132.0, 130.1, 129.93, 129.92, 129.4, 128.9, 128.1, 127.9, 124.3, 117.7, 114.8, 113.9, 112.6, 
112.2, 111.7, 86.6, 45.3, 12.6 ppm; HRMS: m/z calcd for C28H22N5

+: 428.1875; found: 428.1875 [M + H]+.
Compound 16: A dark-purple solid; 415 mg, 97%; CC: (SiO2; DCM); m.p. 204–206 °C; Rf = 0.30 (SiO2; CHCl3); 1H 

NMR (400 MHz, CDCl3, 298 K): δ = 1.25 (t, J = 7.1 Hz, 6 H), 3.48 (q, J = 7.1 Hz, 4 H), 6.71 (d, J = 9.4 Hz, 2 H), 7.50–7.62 
(m, 2 H), 7.65 (t, J = 8.0 Hz, 1 H), 7.70–7.86 (m, 3 H), 7.98 (d, J = 8.0 Hz, 1 H), 8.07 (d, J = 8.7 Hz, 1 H), 8.10 ppm (d, J = 8.0 
Hz, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 168.5, 164.1, 152.7, 134.8, 134.0, 133.0, 130.4, 129.9, 129.7, 129.3, 128.6, 
127.6, 124.92, 124.85, 118.4, 114.8, 114.0, 112.1, 111.8, 111.5, 91.9, 75.1, 45.1, 12.6 ppm; HRMS: m/z calcd for C28H22N5

+: 
428.1875; found: 428.1876 [M + H]+.

Compound 18: A dark-purple solid; 454 mg, 95%; CC: (SiO2; DCM); m.p.157–159 °C; Rf = 0.33 (SiO2; CHCl3); 1H 
NMR (400 MHz, CDCl3, 298 K): δ = 1.24 (t, J = 7.1 Hz, 6 H), 3.47 (q, J = 7.1 Hz, 4 H), 6.71 (d, J = 9.3 Hz, 2 H), 7.67 (t, J 
= 7.5 Hz, 1 H), 7.75–7.85 (m, 5 H), 7.90, (s, 1 H), 7.94 (d, J = 7.9 Hz, 1 H), 8.12–8.18 (m, 1 H), 8.71 (d, J = 8.4 Hz, 1 H), 
8.75–8.85 (m, 1 H); 13C NMR (100 MHz, CDCl3, 298 K): δ = 168.5, 164.3, 152.7, 133.3, 132.9, 132.6, 131.1, 130.7, 130.5, 
130.1, 129.7, 128.5, 127.88, 127.87, 127.1, 126.0, 124.0, 123.0, 119.0, 114.9, 114.0, 112.1, 111.9, 111.6, 92.2, 75.9, 45.2, 12.7 
ppm; HRMS: m/z calcd for C32H24N5

+: 478.2032; found: 478.2032 [M + H]+.

3. Results and discussion
3.1. Synthesis of donor-substituted substrates  
It was the initial goal of the project to prepare PAH-substituted alkynes by considering several key points such as solubility 
of the substrates, sufficient donor-activation for the subsequent CA-RE transformations, and commercial availability of the 
reagents. The reaction sequence to access substrates 4, 8, and 12, required for the synthesis of target push–pull structures 
initiated with the conversion of the aryl bromides 1, 5, and 9 to TMS-protected alkynes 2, 6, and 10 via Sonogashira cross-
coupling reactions (Scheme 1). All three compounds 2, 6, and 10 were successfully synthesized according to the literature 
procedure reported by Ouyang and co-workers [39]. Upon subsequent deprotection using K2CO3 in MeOH/THF mixture, 
aryl alkynes 3, 7, and 11 were obtained in 86, 73, and 93 yields, respectively [39]. The final Sonogashira cross-coupling of 
PAH-substituted alkynes 3, 7, and 11 and N,N-diethyl-4-iodoaniline provided target donor-substituted substrates 4, 8, and 
12 in 71, 90, and 64 yields, respectively. The reported synthesis could also be carried out between aryl halides 1, 5, 9, and 
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N,N-diethyl-4-ethynylaniline. However, the stability of all three PAH-substituted alkynes under ambient conditions, in 
contrast to N,N-diethyl-4-ethynylaniline, guided us to follow the proposed synthetic strategy.

PAH (naphthene and phenanthrene) and donor group (diethylaniline)-substituted acetylenes 4, 8, and 12 were 
treated with strong acceptors TCNE/TCNQ for the final [2+2] CA-RE step under ambient conditions, which successfully 
afforded target push-pull chromophores in high yields. Even with the bulky TCNQ, reactions proceeded smoothly at room 
temperature (Scheme 2). No significant difference was observed regarding the effect of substituent positions on isolated 
yields. The yields were slightly lower in CA-RE transformations of TCNQ compared to that of TCNE, mainly due to 
solubility and purification difficulties that were encountered during column chromatography.

Although there are two possible regioisomers 13 and 19 that can be formed theoretically during the reaction of TCNQ 
and alkyne 4, the reaction was fully regioselective and afforded only 13 (Scheme 3). The reason behind this well-studied 

selectivity can easily be deducted from resonance structures of 13 and 19. Intramolecular charge transfer breaks the 
aromaticity of the diethylaniline ring (I) while forming a new one (II), as in the case of 13 [1,26].
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Scheme 1. Synthesis of donor-activated alkyne substrates 4, 8, and 12. 
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3.2. UV/vis absorption spectra
The formal [2+2] CA-RE of 4, 8, 12 with TCNE/TCNQ provided dark green and dark orange chromophores, respectively. 
The UV/vis absorption data was in full agreement with this observation (Figure 1a and b). While dark orange-colored 
compounds 14, 16, 18 possess intramolecular charge transfer (ICT) bands with λmax values between 408 and 475 nm, ICT 
bands of dark-green chromophores 13, 15, 17 are significantly shifted to longer wavelengths and are located between 695 and 
749 nm. This substantial difference in λmax values can be explained by the extended π-conjugation pathways in compounds 
13, 15, 17, which decreases HOMO-LUMO band gaps [40]. The introduction of different PAH (phenanthrene, 1-naphthyl, 
and 2-naphthyl) substituents in 14, 16, 18 leads to important differences in λmax values. 1-naphthyl and phenanthrene-
substituted chromophores 16 and 18 display a similar ICT bands at 408 and 411 nm, respectively (ε = 18600 M–1 cm–1 
for 16; ε = 22,800 M–1 cm–1 for 18). On the other hand, 2-naphthyl-substituted product 14 showed a bathochromically 
shifted band (λmax = 474 nm, ε = 22,300 M–1 cm–1). The opposite trend was observed for the chromophores 13, 15, 17. 
Compounds 15 and 17 have ICT bands at 739 and 749 nm, respectively (ε = 28,700 M–1 cm–1 for 15; ε = 21,500 M–1 cm–1 for 
17). 2-naphthyl-substituted product 13 exhibited hypsochromically shifted ICT band (λmax = 695 nm, ε = 26200 M–1 cm–1). 
As it will be discussed in more detail in the theoretical section, the trend in λmax values is affected by PAH substituents 
sterically, not electronically. The steric restrictions from the substitution pattern of the PAHs 15 and 17 lead to a substantial 
deconjugation, as indicated by the large dihedral angle between the acceptor and the donor groups (15: 33 ° and 17: 34 °). 
The dihedral angle in chromophore 13 was relatively smaller (28 °) compared to that of 15 and 17. The large dihedral angle 
between the diethyl aniline donor and the cyano-based acceptor moiety prevents efficient linear π-conjugation in 15 and 
17, which leads to a bathochromic shift [41,42]. A similar but completely opposite trend was observed for the compounds 
14 (18 o), 16 (31 o), and 18 (33.2 o). Despite the hypsochromic shift seen in λmax values, chromophores 16 and 18 also 
possess CT bands at around 474 nm with relatively smaller extinction coefficients compared to that of 14. The decrease in 
these extinction coefficients can simply be explained by the observed deviation from planarity due to increase in dihedral 
angles of compounds 16 and 18.

Scheme 2. [2+2] CA–RE transformations between 4, 8, and 12 and TCNE/TCNQ.
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All push-pull systems 13–18 feature strong CT bands that are assigned to intramolecular charge transfer from the 
donor diethylaniline group to acceptor polycyano units accessed by the CA–RE of TCNE and TCNQ. To further support 
this claim, protonation-reneutralization experiments were conducted by using CF3COOH (TFA) and NEt3 (Figure 2a and 
b). Treatment of selected chromophores with TFA resulted in the disappearance of the CT bands via protonation of the 
diethylaniline unit. Upon treatment with NEt3, re-neutralization occurred, and CT bands were successfully recovered. 
With these experiments, the CT nature of the low energy bands has been confirmed [40,43,44]. 

All push-pull systems 13–18 feature strong CT bands that are assigned to intramolecular charge transfer from the 
donor diethylaniline group to acceptor polycyano units accessed by the CA–RE of TCNE and TCNQ. To further support 
this claim, protonation-reneutralization experiments were conducted by using CF3COOH (TFA) and NEt3 (Figure 2a and 
b). Treatment of selected chromophores with TFA resulted in the disappearance of the CT bands via protonation of the 
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Scheme 3. Regioselective CA-RE reaction between TCNQ and alkyne 4.
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Figure 1. UV/vis spectra (CH2Cl2, 25 oC) of chromophores a) 14, 16, 18 and b) 13, 15, 17. 
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diethylaniline unit. Upon treatment with NEt3, re-neutralization occurred, and CT bands were successfully recovered. 
With these experiments, the CT nature of the low energy bands has been confirmed [40,43,44]. 
3.3. Theoretical studies
All calculations (DFT and TD-DFT) were performed using Gaussian 09 program package [45]. The effect of different 
functionals and basis sets on chromophore 14 has been evaluated. Since optimization results were obtained for B3LYP/6-
31G(d), B3LYP/6-31++G(d,p), and CAM-B3LYP/6-31G(d), CAM-B3LYP/6-31++G(d,p) were very similar; further 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

230 330 430 530 630 730 830 930
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

230 330 430 530 630 730 830 930

Wavelength (nm) Wavelength (nm)

/ M
–1

cm
–1

/ M
–1

cm
–1

TFA NEt3

neat

acidified (TFA)

neutralized (NEt3)

TFA NEt3

neat

acidified (TFA)

neutralized (NEt3)

a) b)

Figure 2. UV/vis spectrum of selected chromophores a) 14 and b) 13. The charge transfer band disappeared when acidifying the 
solution with trifluoroacetic acid and reappeared when neutralizing the solution with triethylamine. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

350 400 450 500 550 600 650 700 750

Wavelength (nm)

no
rm

al
iz

ed
 a

bs
or

ba
nc

e

Pure hexane
75% hexane in CH2Cl2

50% hexane in CH2Cl2

25% hexane in CH2Cl2

Pure CH2Cl2

100% hexane100% CH2Cl2

Figure 3. UV/vis spectra of chromophore 14 in CH2Cl2/hexane mixtures at 25 oC



1383

DENGİZ / Turk J Chem

optimizations were obtained at the functional using basis set B3LYP/6-31G(d). As a solvation model, a conductor-like 
polarizable continuum model (CPCM) in CH2Cl2 was utilized. Initially, the highest occupied molecular orbital (HOMO) 
– lowest unoccupied molecular orbital (LUMO) and electrostatic potential (ESP) map analyses were used to explain ICT 
behavior in push-pull systems 13–18. As can be seen in Table 1, HOMO is mainly located on the diethylaniline region 
of the molecules in all chromophores 13–18. On the other hand, LUMO covers the area where cyano groups are present. 
Together with the partial overlap of HOMO and LUMO frontier orbitals, CT from diethylaniline groups to cyano groups 
can be claimed for the designed push-pull systems. In addition to FMO analysis, electrostatic potential maps were also 
analyzed to further evaluate CT interactions in push–pull chromophores. ESP representations describe the total charge 
density and the molecular polarity in push–pull systems [46]. Red and blue color codes have been used to identify the most 
negative and positive areas, respectively. As expected, red regions were located around cyano groups; on the other hand, 
blue regions were identified around the donor diethylaniline donor group.

The energy level diagrams of push–pull dyes are depicted in Figure 5. The estimated frontier orbital energy levels 
showed that there is a substantial increase in the HOMO–LUMO band-gap of TCNE adducts 14, 16, and 18 compared 
to TCNQ adducts 13, 15, and 17 due to the shortened π-conjugation pathway in the former case. The theoretical band 
gaps for push–pull dyes are 1.87, 2.57, 1.72, 2.30, 1.73, 2.28 eV, respectively. The theoretically obtained band gap values 
are slightly higher compared to the optical band gaps 1.44, 2.28, 1.31, 1.82, 1.31 1.77 eV [47]. No significant improvement 
in band gaps were obtained from the TD-DFT band gaps 2.01, 2.77, 1.88, 2.52, 1.89, 2.51 eV for compounds 13, 14, 15, 
16, 17, and 18 respectively. However, the trend in theoretical band-gap values can also be seen in experimental band-gap 
values for both TCNE and TCNQ adducts. Ered,1 values were reported for the benchmark cyano acceptors, such as TCNE 
(–0.32 V), and TCNQ (–0.25 V). A key property of this class of compounds is their electron-accepting power increasing 
from TCNE to TCNQ. It is also well-known that CA-RE products from TCNQ possess smaller band-gap compared to 
the products from TCNE. This can also be explained by the increased conjugation length in between donor and acceptor 
cyano groups in TCNQ products [1].

Figure 6 shows both theoretical and experimental UV/vis spectra for the selected compounds 13 and 14. Time-
dependent density theory calculations (CAM-B3LYP/6-31G(d)) were applied on optimized push-pull structures of 13–18 
with CPCM solvation in CH2Cl2. In order to match the theoretical UV/vis spectra with the corresponding theoretical 
spectra, wavelengths were red-shifted by 0.2 eV and 0.6 eV for compounds 13 and 14, respectively. Scaling of extinction 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

350 450 550 650 750 850 950

Wavelength (nm)

no
rm

al
iz

ed
 a

bs
or

ba
nc

e
Pure hexane
75% hexane in CH2Cl2

50% hexane in CH2Cl2

25% hexane in CH2Cl2

Pure CH2Cl2

100% hexane100% CH2Cl2

Figure 4. UV/vis spectra of chromophore 13 in CH2Cl2/hexane mixtures at 25 oC.



1384

DENGİZ / Turk J Chem

coefficients was also required (scaled by 2.29 for 13 and by 1.87 for 14) since these values are slightly overestimated by TD-
DFT calculations. However, the overall shapes of the theoretical spectra are relatively well-estimated (see Figures 6a and 
b). Although the reason for the overestimation in molar absorption coefficients in TD-DFT calculations is still unclear, the 
choice of basis set and solvation method may be responsible from a slight inaccuracy in dihedral angles that may facilitate 
donor-acceptor conjugation efficiency and increase the molar absorption coefficients. All push–pull chromophores 13–
18 possess charge-transfer bands originated from HOMO to LUMO transitions. The observed error in the calculated 
transitions are in the expected range for similar push–pull systems reported in the literature [48].

Quinoid character values (dr) are commonly used to predict the amount of charge transferred in push-pull systems 
[11,19]. If there is no charge-transfer, dr value equals 0 and represent a perfect benzene structure. On the other hand, fully 
quinoidal structures possess dr values in between 0.08–0.1. Bond lengths from optimized geometries of compounds 13–18 
have been used for the dr value calculations (Table 2). A substantial quinoid character values (dr = 0.045–0.049) were 
predicted for diethylaniline donor groups in all chromophores. A slight increase in dr values of TCNQ adducts was observed 
compared to TCNE adducts. The predicted quinoid characters were comparable to earlier reports on CA-RE products 
[11,19]. Inspired by the literature on strong D-A systems [49,50] these results were further confirmed by total average 
atomic charges (δ) by ESP fitting on donor, acceptor and PAH parts of push–pull chromophores. Atomic charges were 

Table 1. Molecular structures, HOMO and LUMO depictions, and ESP maps of 13–18. While the most negative areas are 
represented by red, the most positive areas are represented by blue color. ESP is mapped over the range –0.03 a.u (red). to 
0.03 a.u (blue). B3LYP/6-31G(d) level of theory was used for DFT calculations.
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calculated based on the ESP fitting scheme of Merz–Singh–Kollman (MK) [51]. All chromophores were divided into three 
parts: diethylaniline donor, PAH substituents, and cyano-based acceptor groups (Table 2). Accordingly, all chromophores 
possess charge-transfer from donor to acceptor units. The total average charge differences between donor and acceptor 
units are significantly higher in quinone based structures 13, 15, and 17. The most enhanced charge-transfer capacity 
were predicted for compound 13 with δ donor = 0.487 eV and δ acceptor = –0.614 eV. This result is fully consistent with 
the highest quinoidal character value calculated for chromophore 13 (dr = 0.049). In summary, chromophores obtained 
by [2+2] CA–RE of TCNQ are better chromophores in terms of charge-transfer interactions compared to chromophores 
obtained by [2+2] CA–RE of TCNE. Additionally, chromophores-substituted with 2-naphthyl group enhance donor-
acceptor properties compared to chromophores substituted with phenanthrene and 1-naphthyl. Presumably, deviation 
from planarity is the main reason behind this observation due to bulky phenantrene and geometrically constrained 
1-naphthyl substitutents. 

The successful utilization of organic molecules in nonlinear optics motivates researchers to develop rational design 
strategies [52,53]. The fast and inexpensive theoretical calculations compared to experimental measurements provide a 
great advantage for the design of NLOphores with tailor-made properties. The most common NLOphore structures are 
generally containing D-π-A-type molecular frameworks [54,55]. Strong charge-transfer interactions in push-pull systems 
13–18 motivated us to evaluate NLO properties using computational tools. To predict the NLO properties, DFT calculations 
have been applied on compounds 13–18 using basis set CAM-B3LYP/6-31++G(d,p) level of theory. The electronegativity 
(χ), global chemical hardness (η), global softness (σ), electric dipole moment μ (D), average polarizability [α(tot)], and first 
hyperpolarizability [β(tot)] values were calculated according to the equations (1–6) shown below. 
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Figure 6. a) Calculated (red-shifted by 0.6 eV, scaled by 1.87, red line) TD-DFT:CAM-B3LYP/6–31G(d) level of theory in CH2Cl2 
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Table 2. Calculated quinoidal character values (δr) and total average atomic charges (δ) by ESP fitting on 
donor, acceptor and PAH parts of push–pull chromophores 13–18.

Compound (δr) (Å) δ donor (eV) δ acceptor (eV) δ PAH (eV)
13 Ring I = 0.049, Ring II = 0.072 0.487 –0.614 0.124
14 Ring III = 0.048 0.388 –0.573 0.188
15 Ring I = 0.048, Ring II = 0.071 0.463 –0.476 0.012
16 Ring III =0.045 0.362 –0.456 0.094
17 Ring I = 0.047, Ring II = 0.071 0.494 –0.434 –0.071
18 Ring III = 0.045 0.360 –0.452 0.094



1386

DENGİZ / Turk J Chem

β = [(βxxx + βxyy + βxzz)2 + (βyyy + βxxy + βyzz)2 + (βzzz + βxxz + βyyz)2]1/2 	 (1)
α = 1/3 (αxx+ αyy + αzz)							       (2)
μ = [(μx)

2 + (μy)
2 +( μz)

2]1/2 							       (3)
χ = –1/2 (EHOMO + ELUMO)							       (4)
η = –1/2 (EHOMO–ELUMO)							       (5)
σ = 1/ η									         (6)
Overall results are summarized in Table 3. Molecular geometry is crucial as it dictates the NLO properties of the 

compounds. There are several strategies to modulate NLO responses, such as changing solvent choice, altering donor-
acceptor strength, or π-linker length. In this study, we mainly focused on the effect of PAH rings on average polarizability 
[α(tot)] and first hyperpolarizability [β(tot)] values. When we compare TCNE and TCNQ adducts, the lowest [α(tot)] and 
[β(tot)] values were predicted for chromophores 13 and 14, which possess naphthalene groups substituted at two positions. 
For the rest of the compounds, differences in [α(tot)] and [β(tot)] values are not very significant. Compounds with the bulky 
phenanthrene or naphthene group substituted at one position exhibited almost similar NLO responses. This prediction 
can be supported by the calculated and optically measured band gaps for 13 and 14. The HOMO-LUMO energy gap 
for 13 is significantly larger compared to 15 and 17. A similar trend can also be seen in TCNQ adducts. We found a 
general trend by which β(tot) increases with the size of the spacer between donor and acceptor groups as can be seen by 
higher β(tot) values in TCNQ products compared to those of TCNE products. We presume that smaller band-gap results in 
more efficient charge transfer and, as a result, larger NLO responses, as can be seen in Table 2. Optimized structures also 
displayed significant deviation from planarity in the case of compounds 15 (33 o), 17 (34 o), 16 (31 o), 18 (33.2 o) compared 
to 13 (28 o), and 14 (18 o). Accordingly, we have shown that substituent groups can play an important role in modulating 
NLO properties of push-pull type chromophores, although they are mainly utilized as solubilizing groups or side groups 
to improve the physical properties of chromophores. The highest predicted β(tot) value in this study is 537.842 × 10–30 esu 
for chromophore 17. That value is 8150 times larger than the benchmark NLO material urea, β(tot) value of 0.066 × 10–30 
esu, calculated at the CAM-B3LYP/6-31++G(d,p) [22]. In the final part, the chemical properties of chromophores will be 
discussed using equations (4–6). The results are very promising when compared with the literature. For example, push-
pull system, p-nitroaniline, possesses β(tot) value of 9.2 × 10–30 esu [56]. Similarly, [60] fullerene-fused dihydrocarboline 
derivative is calculated to have β(tot) value of 54 x 10–30 esu [57]. In another study, β(tot) values of 21 – 286 × 10–30 esu are 
reported for push-pull 1,3-thiazolium-5-thiolates [58].

Koopmans’ theorem states that HOMO and LUMO energies are related to ionization potential and electron affinity, 
respectively. Accordingly, the Mulliken electronegativity (χ) can be estimated by equation 4. Besides electronegativity, 
chemical hardness (η) is another term to be used for chemical behavior predictions of materials. Global hardness is directly 
related to the HOMO-LUMO gap and can be defined as the resistance of an atom to charge-transfer. Equations 4 and 5 
show that larger HOMO-LUMO gaps are required to improve hardness values. Compounds 14, 16, 18 are predicted to 
have higher global hardness values with their larger band gaps compared to 13, 15, and 17. An opposite trend can be seen 
in global softness (σ), values as expected from Equation 6. In summary, compounds 13, 15, and 17 are expected to be more 
reactive compared to 14, 16, and 18.

Table 3. The electric dipole moment μ (D), EHOMO, ELUMO, ∆E (EHOMO–ELUMO), electronegativity (χ), global 
chemical hardness (η), global softness (σ), average polarizability [α(tot)], first hyperpolarizability [β(tot)] at the 
CAM-B3LYP/6-31++G(d,p) level of theory in CH2Cl2.

13 14 15 16 17 18

μ (D) 27.9240 19.8620 27.8594 19.9083 26.5140 20.3709
EHOMO (eV) –5.38 –5.72 –5.41 –5.70 –5.41 –5.69
ELUMO (eV) –3.51 –3.15 –3.69 –3.40 –3.68 –3.41
∆E (eV) 1.87 2.57 1.72 2.30 1.73 2.28
χ (eV) 4.445 4.435 4.550 4.550 4.545 4.550
η (eV) 0.935 1.285 0.860 1.150 0.865 1.140
σ (eV–) 1.0695 0.7782 1.1627 0.8695 1.1560 0.8771
α(tot) (×10–24 esu) 135.891 85.746 136.768 83.060 148.505 94.295
β(tot) (×10–30 esu) 451.403 198.435 536.872 228.638 537.842 239.935
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4. Conclusions
In this study, 6 new polycyclic aromatic hydrocarbon-substituted push–pull chromophores have been synthesized using 
click-type [2+2] cycloaddition-retroelectrocyclization. The synthetic approach worked smoothly under ambient laboratory 
conditions without requiring heat or catalyst. Optoelectronic properties of the highly-colored chromophores were 
investigated by using both experimental (UV/vis spectroscopy) and computational methods. Solvatochromism and pH 
studies were performed for all 6 chromophores. Computational studies (TD-DFT, electrostatic potential maps, HOMO-
LUMO orbital depictions) were further confirmed that all chromophores undergo intramolecular charge transfer. The 
HOMO-LUMO energy gap of dye 13 is found to have the largest energy gap resulting in worse charge-transfer properties 
as compared to 15 and 17. A similar trend was also observed for chromophores 14, 16, and 18. PAH-substituted push-pull 
chromophores are predicted to have significant NLO properties, and these properties can simply be tuned by changing 
substituent PAH structures. The present study provides valuable knowledge for the design and synthesis of new NLOphore 
systems in the near future.
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Supporting Materials 
 

 

1. Theoretical calculations 
 

All structures are confirmed ground-state minima according to the analysis of their 

analytical frequencies computed at the same level, which show no imaginary frequencies. 

All reported energies are zero-point corrected free enthalpies ΔG (sum of electronic and 

thermal free enthalpies) at 298 K. On the optimized molecular structures of 13–18 at the 

B3LYP/6-31G(d) level of theory with the CPCM solvation model in CH2Cl2, the vertical 

optical transitions were calculated by time-dependent density functional theory (TD-DFT) 

at the CAM-B3LYP/6–31G(d) level of theory, again with the CPCM solvation model in 

CH2Cl2 using the software package Gaussian 09 [1]. 
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Table S1. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 13.  

 

 

Exptl.: λ = 695 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.01 618 1.1233 H!L 
2 3.00 414 0.3493 H!L+1, H–1!L 
3 3.02 411 0.2294 H–1!L, H!L+1 
4 3.29 377 0.2333 H–2!L 

 
Orbital  E (eV) 

HOMO–1 

 

–6.26 

HOMO 

 
 
 
 
 

–5.38 

LUMO 

 

–3.51 

LUMO+1 

 

–2.59 

CN

CN

N
CN

NC
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Table S2. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 14.  

 

Exptl.: λ = 474 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.77 447 0.3766 H!L 
2 3.32 373 0.5636 H!L+1, H–1!L 
3 3.39 366 0.3593 H–1!L, H!L+1 
4 3.83 323 0.2033 H–2!L 

 
Orbital  E (eV) 

HOMO–1 

 

–6.34 

HOMO 

 
 
 
 
 

–5.72 

LUMO 

 

–3.15 

LUMO+1 

 

–2.51 

 

NC

CN

CN

CN

N
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Table S3. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 15.  

 

Exptl.: λ = 739 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 1.88 661 0.9645 H!L 
2 2.74 452 0.1042 H–1!L 
3 2.94 421 0.3718 H–1!L, H–2!L 
4 3.21 386 0.4657 H!L+1 

 
Orbital  E (eV) 

HOMO–1 

 

–6.30 

HOMO 

 
 
 

–5.41 

LUMO 

 

–3.69 

LUMO+1 

 

–2.39 

CN

CN

N
CN

NC
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Table S4. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 16.  

 

Exptl.: λ = 408 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.44 509 0.3635 H!L 
2 2.90 428 0.2082 H–1!L 
3 3.65 339 0.4943 H!L+1, H!L+2 
4 3.78 328 0.0347 H–2!L+1 

 
Orbital  E (eV) 

HOMO–1 

 

–6.33 

HOMO 

 
 
 

–5.70 

LUMO 

 

–3.40 

LUMO+1 

 

–2.27 

NC

CN

CN

CN

N
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Table S5. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 17.  

 

Exptl.: λ = 749 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 1.89 657 0.9861 H!L 
2 2.71 458 0.1315 H–1!L 
3 2.95 420 0.3857 H–2!L 
4 3.21 386 0.4136 H!L+1 

 
Orbital  E (eV) 

HOMO–1 

 

–6.24 

HOMO 

 
 
 

–5.41 

LUMO 

 

–3.68 

LUMO+1 

 

–2.41 

CN

CN

N
CN

NC
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Table S6. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 18.  

 

Exptl.: λ = 411 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.51 495 0.3356 H!L 
2 2.96 420 0.1807 H–1!L 
3 3.50 354 0.0298 H–2!L 
4 3.62 342 0.4891 H!L+1 

 
Orbital  E (eV) 

HOMO–1 

 

–6.27 

HOMO 

 
 
 

–5.69 

LUMO 

 

–3.41 

LUMO+1 

 

–2.28 

NC

CN

CN

CN

N
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Cartesian coordinates and structural parameters.  
 
Cartesian coordinates of the selected compounds are listed below: Atom type, (x,y,z) 
coordinates. 
 
13 

B3LYP/6-31G(d) (CPCM solvation in DCM) 

 C                  1.84069800   -2.60164900   -0.85563000 
 C                  0.72832600   -1.81826400   -0.64710200 
 C                  0.63186000   -0.91327100    0.44591300 
 C                  1.76868600   -0.83774400    1.29662900 
 C                  2.87779500   -1.63141200    1.11584200 
 C                  2.95823200   -2.55864400    0.03215300 
 C                 -0.52442900   -0.08496600    0.67388000 
 C                 -0.28365700    1.22988900    1.35152600 
 C                 -1.83989200   -0.41712400    0.28272300 
 C                 -0.88381600    1.46094300    2.57053400 
 C                  0.58908500    2.20661200    0.68034500 
 N                  4.05160100   -3.34687600   -0.15566700 
 C                 -0.86124400    2.71947600    3.25591200 
 N                 -0.89907300    3.72218500    3.84579800 
 N                 -2.20272200   -0.34835300    3.88699600 
 C                  4.09899600   -4.38177400   -1.19878700 
 C                  5.25586800   -3.22736400    0.67902600 
 C                  4.62183300   -3.86743000   -2.54421000 
 C                  5.20307600   -4.08404000    1.94837300 
 C                 -1.61679300    0.44309600    3.26652900 
 C                  0.56375300    2.28575700   -0.70864100 
 C                  1.34651400    3.23154000   -1.41120600 
 C                  2.21232600    4.10355200   -0.67252800 
 C                  2.25058600    3.98418600    0.74447700 
 C                  1.46315100    3.07499500    1.40521700 
 C                  1.30271200    3.33622100   -2.82952400 
 C                  2.08280200    4.26110900   -3.48603100 
 C                  2.94108100    5.12060300   -2.75471800 
 C                  3.00575800    5.04323600   -1.37972200 
 C                 -2.24590000   -1.77259000    0.01943500 
 C                 -3.51288500   -2.08246300   -0.38435700 
 C                 -4.50311400   -1.06492200   -0.58876300 
 C                 -4.11691500    0.28669800   -0.30386800 
 C                 -2.85754400    0.58980000    0.12750500 
 C                 -5.80561500   -1.38270700   -1.02847000 
 C                 -6.79837800   -0.38458500   -1.20938500 
 N                 -7.61181000    0.44004500   -1.35877200 
 C                 -6.19249000   -2.71780800   -1.31536900 
 N                 -6.50611900   -3.81791100   -1.55090400 
 H                  1.86842000   -3.22674700   -1.73859000 
 H                 -0.06789000   -1.85040400   -1.38275200 
 H                  1.75204100   -0.16890100    2.15143600 
 H                  3.68604700   -1.55565600    1.83137300 
 H                  4.75004000   -5.17873800   -0.82698200 
 H                  3.10679600   -4.82662300   -1.30856900 
 H                  6.10420500   -3.53218200    0.05896300 
 H                  5.42213000   -2.17524900    0.92388100 
 H                  4.66194800   -4.69024300   -3.26615800 
 H                  3.97512500   -3.08393000   -2.95176800 
 H                  5.63145700   -3.45560800   -2.44100600 
 H                  6.13676000   -3.97367000    2.51038100 
 H                  4.37361100   -3.78585000    2.59738700 
 H                  5.07763200   -5.14356800    1.70107800 
 H                 -0.08526600    1.62737700   -1.27844200 
 H                  2.92660400    4.62311900    1.30622600 
 H                  1.53834200    2.98939800    2.48289900 
 H                  0.64332200    2.67418800   -3.38458200 
 H                  2.04417200    4.33642700   -4.56873000 
 H                  3.55085900    5.84556700   -3.28622100 
 H                  3.66408600    5.70251800   -0.82021600 
 H                 -1.54686100   -2.57775600    0.21246400 
 H                 -3.78973900   -3.12185900   -0.52922500 
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 H                 -4.84272200    1.08171400   -0.44125500 
 H                 -2.60703600    1.62930400    0.31000200 

14 
B3LYP/6-31G(d) (CPCM solvation in DCM) 

C                 -2.52901600    0.19202600   -1.16339900 
 C                 -1.31318100   -0.40197900   -0.91415700 
 C                 -0.92954400   -0.83980100    0.38248800 
 C                 -1.86268200   -0.59363900    1.42546100 
 C                 -3.07575500    0.01305600    1.19393900 
 C                 -3.47142300    0.41947300   -0.11661600 
 C                  0.34579000   -1.47946200    0.58360800 
 C                  0.73920600   -2.24867200    1.67589800 
 C                  1.38878600   -1.28473600   -0.48958800 
 C                  1.65826900   -2.34845500   -1.31849900 
 C                  2.03527200    0.03020000   -0.57286100 
 C                  2.50443100    0.56973000   -1.81214300 
 C                  3.11403900    1.79778300   -1.85395000 
 C                  3.30929200    2.56799800   -0.67385300 
 C                  2.82950500    2.04566800    0.57191900 
 C                  2.18554500    0.78712200    0.58671600 
 C                  3.94686300    3.83468000   -0.68732300 
 C                  4.10652100    4.55009400    0.48065100 
 C                  3.63431200    4.03398300    1.71375100 
 C                  3.00870700    2.80865000    1.75958300 
 C                  2.71076000   -2.37934100   -2.29052700 
 N                  3.56182900   -2.47559100   -3.07826600 
 N                 -4.67738100    1.00314600   -0.35202600 
 C                 -0.11942100   -2.67032200    2.73500700 
 C                  0.90655200   -3.56841200   -1.24717400 
 C                 -5.04439900    1.53198900   -1.67380000 
 C                 -5.70232600    1.13272100    0.69376000 
 C                 -5.58730000    2.42815500    1.50371000 
 C                 -5.68084600    0.48465500   -2.59323700 
 C                  2.08316300   -2.71678800    1.81642500 
 N                  0.31281300   -4.56903800   -1.23343400 
 N                 -0.77638800   -3.06149500    3.61472300 
 N                  3.17002900   -3.10763400    1.97220400 
 H                 -2.76559700    0.46527600   -2.18330100 
 H                 -0.64834900   -0.56182300   -1.75627700 
 H                 -1.61491300   -0.84222900    2.44921300 
 H                 -3.71833200    0.20611200    2.04306700 
 H                  2.34246200    0.02759000   -2.73557500 
 H                  3.44750000    2.20261200   -2.80557000 
 H                  1.82656700    0.40699900    1.53784000 
 H                  4.30860200    4.23200100   -1.63187800 
 H                  4.59846900    5.51829700    0.46018400 
 H                  3.76927300    4.61147400    2.62346200 
 H                  2.64434700    2.40746300    2.70155300 
 H                 -5.74589900    2.35410100   -1.50351600 
 H                 -4.16231500    1.97830500   -2.14052100 
 H                 -6.67447900    1.09212300    0.19297700 
 H                 -5.66223400    0.25783000    1.34753600 
 H                 -6.39666100    2.47949100    2.24006100 
 H                 -4.63325600    2.48296400    2.03768000 
 H                 -5.66351700    3.30553100    0.85250500 
 H                 -5.95603000    0.94526900   -3.54822400 
 H                 -4.99092800   -0.34060800   -2.79566600 
 H                 -6.58773600    0.06724700   -2.14268100 
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15 
B3LYP/6-31G(d) (CPCM solvation in DCM) 

 C                 -3.00480600   -1.08568000   -1.24582400 
 C                 -1.86786900   -0.31303900   -1.31604600 
 C                 -0.74206100   -0.54291400   -0.48090400 
 C                 -0.86817100   -1.59626800    0.46509700 
 C                 -2.00973900   -2.35945500    0.56777900 
 C                 -3.12587000   -2.14506000   -0.29561400 
 C                  0.45716800    0.25739900   -0.58252300 
 C                  0.30314700    1.68824900   -0.95010400 
 C                  1.74732600   -0.27344600   -0.32795200 
 C                  1.11061700    2.23809500   -1.92805600 
 C                 -0.76694500    2.51062700   -0.33317700 
 N                 -4.25376900   -2.90304100   -0.20990200 
 C                  1.15053900    3.64321900   -2.21185300 
 N                  1.25299100    4.77362200   -2.47075700 
 N                  2.66339900    0.89573500   -3.51850800 
 C                 -5.45714100   -2.60807700   -1.00061200 
 C                 -4.34664000   -4.06804700    0.68126800 
 C                 -5.46376300   -3.28530900   -2.37513600 
 C                 -4.83913000   -3.72018200    2.09010100 
 C                 -1.62055800    3.21508200   -1.17642700 
 C                 -2.70203600    3.96776200   -0.67753600 
 C                 -2.92804400    4.02688400    0.67816900 
 C                 -2.07755500    3.34506100    1.58838900 
 C                 -0.97277200    2.57248000    1.09237800 
 C                 -2.30038300    3.42957300    2.98922700 
 C                 -1.46607600    2.79218500    3.87907200 
 C                 -0.36484800    2.04901200    3.39638800 
 C                 -0.12191500    1.94703400    2.04254000 
 C                  1.97043000    1.46319300   -2.77501500 
 C                  2.01688800   -1.68157800   -0.44263400 
 C                  2.85545700    0.55152300    0.07651200 
 C                  4.07970100    0.02548500    0.37423100 
 C                  5.86019200   -3.31788800    0.45582000 
 C                  6.68962300   -1.11081900    0.96938700 
 C                  4.33516300   -1.38145900    0.26204100 
 C                  5.60307500   -1.92551200    0.55627300 
 C                  3.24920000   -2.20794200   -0.17775200 
 N                  6.06692900   -4.46419900    0.37214100 
 N                  7.58053700   -0.43746300    1.31082600 
 H                 -3.80304100   -0.88830000   -1.94950700 
 H                 -1.81942400    0.45795400   -2.07737500 
 H                 -0.06619600   -1.76884400    1.17529800 
 H                 -2.05982500   -3.10442800    1.35121700 
 H                 -6.31514400   -2.94953700   -0.41369900 
 H                 -5.56808300   -1.52504600   -1.09753900 
 H                 -5.03648100   -4.77507000    0.21041000 
 H                 -3.37670700   -4.57042200    0.71930300 
 H                 -6.39670100   -3.05296800   -2.90015500 
 H                 -4.62734300   -2.94369500   -2.99321600 
 H                 -5.39128000   -4.37370500   -2.27604700 
 H                 -4.91193900   -4.63115200    2.69407800 
 H                 -4.15615400   -3.02813200    2.59296200 
 H                 -5.83027200   -3.25520000    2.05580500 
 H                 -1.48416800    3.14900000   -2.25093300 
 H                 -3.35692100    4.48512200   -1.37151300 
 H                 -3.76277800    4.59960900    1.07369100 
 H                 -3.14320200    4.01670800    3.34440000 
 H                 -1.64416300    2.86498100    4.94787200 
 H                  0.30273900    1.55800000    4.09854000 
 H                  0.74102200    1.38564900    1.70725100 
 H                  1.23603900   -2.33420000   -0.81513700 
 H                  2.70712100    1.61890800    0.19709700 
 H                  4.87709300    0.68030700    0.71040000 
 H                  3.42195900   -3.26924300   -0.32483200 
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16 
B3LYP/6-31G(d) (CPCM solvation in DCM) 

 C                  2.40424000   -0.28976600    1.23400300 
 C                  1.06730700   -0.56966200    1.05691000 
 C                  0.52218900   -0.87332700   -0.21654900 
 C                  1.41817200   -0.83086900   -1.31472000 
 C                  2.75141600   -0.52354400   -1.15740300 
 C                  3.30732500   -0.25713900    0.12995600 
 C                 -0.87584200   -1.21307500   -0.36363100 
 C                 -1.85035300   -0.58694000    0.59034700 
 C                 -1.36413900   -2.08512900   -1.33406100 
 C                 -2.66345900   -1.39170500    1.35296900 
 C                 -1.84856700    0.88282000    0.77583700 
 N                  4.62959500    0.02587200    0.29369000 
 C                 -3.71671000   -0.87665400    2.18088200 
 N                 -4.60332000   -0.52581300    2.84754700 
 N                 -2.46403700   -3.97676200    1.51551200 
 N                  0.09746200   -3.63990400   -2.80657500 
 C                  5.18937800    0.42349600    1.59280800 
 C                  5.58809300   -0.05002300   -0.81782700 
 C                  5.63173700   -0.76295000    2.45571100 
 C                  5.71687200    1.25927800   -1.60331600 
 C                 -1.72720000    1.36940800    2.07423400 
 C                 -1.61902100    2.74819300    2.34199000 
 C                 -1.63627600    3.65083800    1.30406800 
 C                 -1.78204800    3.21357700   -0.03912600 
 C                 -1.90150100    1.81105600   -0.32546500 
 C                 -1.82918200    4.15197500   -1.10473400 
 C                 -2.00447700    3.73808200   -2.40574800 
 C                 -2.15599400    2.36163300   -2.68776500 
 C                 -2.11288800    1.42554500   -1.67551500 
 C                 -2.53492900   -2.82039700    1.41086400 
 C                 -0.52923500   -2.91620800   -2.14208300 
 C                 -2.75748300   -2.23483500   -1.61725100 
 N                 -3.88112600   -2.37398300   -1.89336300 
 H                  2.76239100   -0.11578800    2.24020400 
 H                  0.43310700   -0.60671800    1.93593100 
 H                  1.04602300   -0.98390400   -2.32110500 
 H                  3.36702700   -0.45302200   -2.04457600 
 H                  6.04627100    1.07155100    1.38534900 
 H                  4.46293800    1.04384600    2.12425600 
 H                  6.55620300   -0.32135000   -0.38572000 
 H                  5.30936600   -0.87594800   -1.47715700 
 H                  6.06944300   -0.39999000    3.39205700 
 H                  4.78818700   -1.41598400    2.70143800 
 H                  6.38691900   -1.36350700    1.93737700 
 H                  6.46295200    1.14573000   -2.39736600 
 H                  4.76557100    1.54430300   -2.06395900 
 H                  6.03724400    2.07828700   -0.95036700 
 H                 -1.66158700    0.67260600    2.90323300 
 H                 -1.50482100    3.08429200    3.36761900 
 H                 -1.54141900    4.71592800    1.49801400 
 H                 -1.73285400    5.20841700   -0.86861200 
 H                 -2.04112700    4.46383300   -3.21270100 
 H                 -2.31873100    2.03593000   -3.71099700 
 H                 -2.26767500    0.38356100   -1.92291100 

 
 
 
 

 
 
 

 

17 
B3LYP/6-31G(d) (CPCM solvation in DCM) 

 C                  1.94429200    2.31609500   -1.22784900 
 C                  1.13722700    1.20267900   -1.28941000 
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 C                 -0.00392100    1.04618700   -0.45842900 
 C                 -0.24836100    2.09052000    0.47398400 
 C                  0.56688600    3.19643100    0.56912200 
 C                  1.69395000    3.36382900   -0.29044000 
 C                 -0.86178000   -0.11366100   -0.55570300 
 C                 -0.22530500   -1.41309900   -0.89313000 
 C                 -2.25909600   -0.04653500   -0.32583200 
 C                 -0.77738600   -2.22043300   -1.86933000 
 N                  2.49742100    4.46066700   -0.21327600 
 C                 -0.32816600   -3.55814200   -2.12569700 
 N                 -0.03258900   -4.65852700   -2.36474300 
 N                 -2.66344900   -1.51038000   -3.50702400 
 C                  3.73205100    4.58254600   -1.00117900 
 C                  2.18782500    5.59669700    0.66609300 
 C                  3.51223800    5.20061800   -2.38598700 
 C                  2.76641300    5.44908000    2.07746400 
 C                 -1.83303800   -1.79758600   -2.74361600 
 C                 -2.98474400    1.18838200   -0.46062800 
 C                 -3.03361300   -1.19379200    0.07016700 
 C                 -4.36909600   -1.10899400    0.34029100 
 C                 -7.17144400    1.44082300    0.35667000 
 C                 -7.22028500   -0.91456900    0.87826100 
 C                 -5.08074900    0.12946400    0.20819600 
 C                 -6.46298900    0.21640200    0.47505200 
 C                 -4.32713600    1.27090700   -0.22218800 
 N                 -7.75004500    2.45042200    0.25856200 
 N                 -7.84005200   -1.84651500    1.21144000 
 H                  2.76492500    2.39397100   -1.92920200 
 H                  1.35642600    0.45300500   -2.04170300 
 H                 -1.06633600    1.98938400    1.17969100 
 H                  0.35640900    3.92380200    1.34239900 
 H                  4.41986000    5.20515000   -0.42114000 
 H                  4.20650200    3.60115400   -1.08178200 
 H                  2.59804500    6.49109900    0.18731700 
 H                  1.10498500    5.74064400    0.70028000 
 H                  4.47001700    5.29007600   -2.91001700 
 H                  2.84276500    4.58592700   -2.99605700 
 H                  3.07457300    6.20131600   -2.30381800 
 H                  2.52946600    6.33819000    2.67183500 
 H                  2.35372500    4.57361800    2.58880600 
 H                  3.85595000    5.34176300    2.04510300 
 H                 -2.46220700    2.06438200   -0.82658300 
 H                 -2.53896300   -2.14927400    0.20519200 
 H                 -4.90604400   -1.99257700    0.66988200 
 H                 -4.84336200    2.21181200   -0.38372900 
 C                  1.05249600   -1.81139300   -0.25094700 
 C                  2.10045500   -2.16173800   -1.06762800 
 C                  1.24237100   -1.79828300    1.19197800 
 C                  3.39771300   -2.47607500   -0.56497700 
 H                  1.97130200   -2.15200200   -2.14582300 
 C                  2.53061200   -2.11010100    1.73074700 
 C                  0.17883000   -1.53139900    2.08587000 
 C                  4.44745600   -2.80234800   -1.45798200 
 C                  3.63524600   -2.44353300    0.83903100 
 C                  2.68893500   -2.10208400    3.13647000 
 H                 -0.81095100   -1.33178900    1.69614900 
 C                  0.36702500   -1.53098300    3.45538600 
 C                  5.70969300   -3.09714900   -0.98333900 
 H                  4.24030100   -2.81831000   -2.52477700 
 C                  4.94022700   -2.74464600    1.29258500 
 C                  1.63634500   -1.81364100    3.98548700 
 H                  3.65431100   -2.33490300    3.57043900 
 H                 -0.46888700   -1.32100700    4.11607700 
 C                  5.95253100   -3.06502100    0.40363400 
 H                  6.51066600   -3.34963100   -1.67164300 
 H                  5.16901900   -2.72814900    2.35178200 
 H                  1.79157700   -1.81788200    5.06037400 
 H                  6.94469700   -3.29215400    0.78305100 

18 
B3LYP/6-31G(d) (CPCM solvation in DCM) 

 C                 -2.49863300    0.19868900   -1.22121900 
 C                 -1.27088200   -0.42055600   -1.13788700 
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 C                 -0.93548700   -1.28868100   -0.06815600 
 C                 -1.91788900   -1.46012900    0.93947600 
 C                 -3.13838000   -0.82407700    0.88523200 
 C                 -3.48794500    0.02365400   -0.20829600 
 N                 -4.69932000    0.64353300   -0.27453400 
 C                 -5.02304500    1.61656100   -1.32678200 
 C                 -5.76566100    0.38182700    0.70216100 
 C                 -5.70509500    1.29538300    1.93096200 
 C                 -5.60918300    0.97694900   -2.58974700 
 C                  0.34543100   -1.96030700   -0.02456700 
 C                  0.53250000   -3.22365900    0.53147000 
 C                  1.52917900   -1.24898000   -0.60966400 
 C                 -0.54270800   -4.09090500    0.89628300 
 C                  1.91512900   -3.10154600   -2.20720000 
 C                  1.80407700    0.15119900   -0.21102700 
 C                  2.28256900   -1.86231500   -1.58265500 
 C                  3.50673800   -1.30704300   -2.08562300 
 N                  4.51858700   -0.92546300   -2.51493900 
 C                  1.90532900    1.08864200   -1.21120900 
 C                  2.02883300    2.48450500   -0.94582600 
 C                  2.05144200    2.94603100    0.40165100 
 C                  1.98957800    1.96720400    1.48088000 
 C                  1.88299300    0.57327000    1.17854000 
 C                  2.05694400    2.35369000    2.83968400 
 C                  2.04118400    1.42233500    3.86201900 
 C                  1.97746200    0.05237300    3.56065400 
 C                  1.90736000   -0.35802600    2.24231500 
 C                  2.10039200    3.40824700   -2.01697500 
 C                  2.19692900    4.76336700   -1.77248700 
 C                  2.21604300    5.22720500   -0.44281500 
 C                  2.14319500    4.34002700    0.61803200 
 C                  1.82366300   -3.77781100    0.79509800 
 N                  1.65797800   -4.08986800   -2.76423000 
 N                 -1.37598300   -4.85393800    1.18162400 
 N                  2.85582600   -4.25793900    1.04471100 
 H                 -2.70606300    0.80898600   -2.09050200 
 H                 -0.56784400   -0.27093500   -1.95013600 
 H                 -1.69317500   -2.05746000    1.81575500 
 H                 -3.81888800   -0.95433900    1.71657200 
 H                 -5.74216600    2.32146900   -0.89845400 
 H                 -4.13059000    2.20190100   -1.56365800 
 H                 -6.71728700    0.52307500    0.18062700 
 H                 -5.73492300   -0.67064700    0.99567600 
 H                 -6.54055500    1.07178000    2.60325500 
 H                 -4.77139400    1.15746600    2.48541800 
 H                 -5.77514100    2.34891200    1.63958300 
 H                 -5.85737800    1.75420800   -3.32074800 
 H                 -4.89966600    0.28380200   -3.05280100 
 H                 -6.52491700    0.42203400   -2.35900400 
 H                  1.82787100    0.78315600   -2.25024400 
 H                  2.13363600    3.40351200    3.09759700 
 H                  2.09606200    1.75266900    4.89512500 
 H                  1.99433800   -0.68603200    4.35665200 
 H                  1.89781100   -1.41866700    2.02743800 
 H                  2.07876600    3.03031800   -3.03568500 
 H                  2.25438200    5.46781200   -2.59678600 
 H                  2.28704000    6.29273400   -0.24419200 
 H                  2.15810500    4.73722500    1.62614800 
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2. 1H and 13C NMR Spectra 

 
Figure S1. 1H NMR spectrum of 2 in CDCl3 solution (400 MHz). 

 
Figure S2. 13C NMR spectrum of 2 in CDCl3 solution (100 MHz). 
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Figure S3. 1H NMR spectrum of 3 in CDCl3 solution (400 MHz). 

 
Figure S4. 13C NMR spectrum of 3 in CDCl3 solution (100 MHz). 
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Figure S5. 1H NMR spectrum of 4 in CDCl3 solution (400 MHz). 

 
Figure S6. 13C NMR spectrum of 4 in CDCl3 solution (100 MHz). 
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Figure S7. 1H NMR spectrum of 6 in CDCl3 solution (400 MHz). 

 
Figure S8. 13C NMR spectrum of 6 in CDCl3 solution (100 MHz). 
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Figure S9. 1H NMR spectrum of 7 in CDCl3 solution (400 MHz). 

 
Figure S10. 13C NMR spectrum of 7 in CDCl3 solution (100 MHz). 
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Figure S11. 1H NMR spectrum of 8 in CDCl3 solution (400 MHz). 

 
Figure S12. 13C NMR spectrum of 8 in CDCl3 solution (100 MHz). 
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Figure S13. 1H NMR spectrum of 10 in CDCl3 solution (400 MHz). 

 
Figure S14. 1H NMR spectrum of 10 in CDCl3 solution (100 MHz). 
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Figure S15. 1H NMR spectrum of 11 in CDCl3 solution (400 MHz). 

 
Figure S16. 1H NMR spectrum of 11 in CDCl3 solution (100 MHz). 



22 
 

 
Figure S17. 1H NMR spectrum of 12 in CDCl3 solution (400 MHz). 

 
Figure S18. 1H NMR spectrum of 12 in CDCl3 solution (100 MHz). 



23 
 

 

 
Figure S19. 1H NMR spectrum of 13 in CDCl3 solution (400 MHz). 

 
Figure S20. 13C NMR spectrum of 13 in CDCl3 solution (100 MHz). 
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Figure S21. 1H NMR spectrum of 14 in CDCl3 solution (400 MHz). 

 
Figure S22. 13C NMR spectrum of 14 in CDCl3 solution (100 MHz). 
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Figure S23. 1H NMR spectrum of 15 in CDCl3 solution (400 MHz). 

 
Figure S24. 13C NMR spectrum of 15 in CDCl3 solution (100 MHz). 
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Figure S25. 1H NMR spectrum of 16 in CDCl3 solution (400 MHz). 

 
Figure S26. 13C NMR spectrum of 16 in CDCl3 solution (100 MHz). 
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Figure S27. 1H NMR spectrum of 17 in CDCl3 solution (400 MHz). 

 
Figure S28. 13C NMR spectrum of 17 in CDCl3 solution (100 MHz). 
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Figure S29. 1H NMR spectrum of 18 in CDCl3 solution (400 MHz). 

 
Figure S30. 1H NMR spectrum of 18 in CDCl3 solution (100 MHz). 
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3. HR-MS spectra 
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