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1. Introduction
Earth observation with remote sensing (RS) techniques has 
major practical significance in establishing the interaction 
between terrestrial ecosystems and global environmental 
change. 

Recent climate change has had a significant impact 
on both ecosystem structure and distribution of plant 
species (Dobrota et al., 2020). At this moment, 12% of 
the global land area is used for cultivation of agricultural 
crops, 28% is considered forestland, and 35% comprises 
grasslands and woodland ecosystems. Low and erratic 
precipitation and global warming often make soil 
inadequate for cultivation. Current trends and simulated 
models indicate that a 70% increase in global demand of 
agricultural production is expected by 2050. Meanwhile, 
many challenges concerning the exploitation of land and 
water resources have been identified. In the last 30 years, 
a decline has been recorded of about 3.3% in forested 
areas, suggesting that the expansion in the cultivated area 
could have been partly achieved through the conversion of 
previously forested areas (FAO, 2011). Rainfed agriculture 
as well as  irrigated farming systems are performing well 
below their potential. A ‘yield gap’ affecting many zones 

of the globe was calculated by FAO by comparing current 
productivity with potentially achievable productivity. In 
this context, a global need to obtain stable and reliable 
supplies of food by improving land and water productivity 
has been identified.

Vegetation, which is the major target of earth 
observation with RS techniques, is an essential indicator 
of the change of the land ecological environment. 
Advances in remote sensing technology link leaf and 
canopy biochemical characteristics to remote sensing 
measurements in reliable and operational ways (Yu et 
al., 2014). In precision agriculture, the assessment and 
monitoring of plant parameters are made for addressing 
crucial issues, such as crop growth, vegetation stress, 
forecasting, and management practices (Haboudane 
et al., 2002). Several remote sensing (RS) approaches 
are available to quantify plant physiological variables. 
Photosynthesis, transpiration, and growth have indirect 
measurable biophysical and biochemical parameters 
that can be remotely recorded and estimated (Zhou et 
al., 2020). Chlorophyll is used as an important index of 
crop growth conditions (Haboudane et al., 2002), stress 
detection, nutritional state diagnosis, yield prediction (Yu 
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et al., 2014), and for assisting field precision fertilization 
and pesticide application (Cao et al., 2020).

In this review, we propose an approach suitable for 
complex systems, which accounts for the complexity of 
both agricultural ecosystems (Khumairoh et al., 2012) and 
the current working methodology. RS approaches must 
be able to address a complex array of variables. Research 
in the field of RS is thus characterized by a high diversity 
of methodological frameworks, measuring approaches, 
instrumentation, and experimental setups. Even if lab 
measurements can be reduced to simple systems in which 
environmental factors are strictly controlled, any RS 
approach must be applicable to complex systems. Each 
individual plant interacts through allelopathic signals 
with other plants as well as with microorganisms from the 
rhizosphere or leaves and is, thus, subjected to uncontrolled 
environmental factors that can influence the radiance or 
reflectance emitted by the plant’s leaves. Ground validation 
methods through lab measurements, in which plants are 
extracted from their natural environment, are the initial 
sources of error in RS research. Modifications to the core 
methods that address key ecosystem attributes, including 
soil and site stability, watershed function, and biotic 
integrity, limit the ability of researchers to combine and 
compare datasets and to properly describe ecosystem 
attributes on varying scales (Herrick et. al., 2017). A 
scientific gap exists due to the fragmentary knowledge 
of crops in agricultural conditions (Lew et al., 2020). The 
existing standard methods require improvements to adapt 
to real-world complexity and to enhance measurement 
accuracy (Lang, 2008).

No matter how complex a system is, the research 
process follows a general sequence of steps which consist 
of establishing goals, identifying problems, identifying 
and refining objectives, designing research, collecting, 
analyzing, and interpreting data, and setting further 
prospects. When designing a monitoring plan, several 
specific steps should be considered, including establishing 
management objectives and selecting additional ecosystem 
indicators to monitor, setting the study area, establishing 
sample size and frequency, collecting and evaluating data, 
selecting and applying appropriate statistical methodology, 
and creating a management plan (Herrick et. al., 2017). 
Collected data are calibrated to provide evidence that is 
consistent and trustworthy. The integrity of the collected 
data is ensured through quality assurance and control 
methods to minimize errors. There are diverse methods 
for calibration, such as line-point intercept, canopy gap 
intercept, vegetation height, species inventory, and soil 
texture. After calibration, the data can be organized and 
analyzed prior to initiating a robust data management plan 
(Herrick et al., 2017). Observations of the system can lead 
to new theories and hypotheses (Montgomery, 2017), but 

adequate validation processes are ultimately needed to 
assess whether these theories are correct.

This review identifies and discusses factors, which need 
to be addressed in order to improve RS research on growth 
monitoring of crops. It identifies theoretical assumptions, 
research gaps in working methodology, advantages and 
drawbacks of certain methods, and perspectives for future 
research. The effective use of well-designed research 
benefits not only researchers in the field of crop science, 
but also the farmers who gain reliable information for use 
in their daily activities.

2. Goals in remote sensing research
Research designs, which properly incorporate key 
technologies, can lead to both breakthrough and 
incremental innovations. In monitoring studies, a design 
is selected according to the aims of the research. Trend 
monitoring design identifies large-scale changes and 
uses descriptive, correlative, and causal comparative 
research. Effect-oriented monitoring design identifies 
changes in plants in response to certain environmental 
conditions or after a specific treatment at levels ranging 
from individual plants to whole communities. Predictive-
oriented monitoring design is used in conditions in which 
the cause-effect relationship is known to ascertain an effect 
at an early stage when a given cause is detected.

Considering the goals of the research, one may have 
exploratory research in which researchers are establishing 
what method to use in collecting data and which is the best 
approach to be deployed. RS exploratory investigations 
are used to establish priorities among several alternatives 
or to improve the working methodology. In descriptive 
research,  a particular phenomenon or pattern is defined 
and described. Descriptive studies in the remote sensing 
field are focused on the collection of data, establishing 
correlation between variables, and categorizing the data. 
In explanatory studies, the researcher is trying to identify 
the causes and effects (Blackstone, 2020) and in predictive 
research, future events are anticipated. RS explanatory 
studies attempt to elucidate causitive relationships between 
variables, while predictive research seeks to provide 
predictive theories for specific events or situations based 
on existing and similar situations.

Regarding the depth of a research project, idiographic 
research describes a phenomenon exhaustively, while 
nomothetic research provides a more general explanation 
or description of a topic (Blackstone, 2020). Regardless of 
research type, good research design begins by defining a 
set of goals. High-quality research has its purposes clearly 
defined and unambiguously formulated, providing a focus 
for the study. After defining the research goals, the specific 
problems and an appropriate study design should be 
identified.
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In RS crop growth investigations, research objectives 
involve scientific, technical, methodological, economic, 
and practical concerns. Objectives of RS research can 
therefore be very diverse and may consist of the followings: 
developing spectral indices (Yu et al., 2014), detecting and 
characterizing specific features of plants, such as spatial 
heterogeneity of pigment and chlorophyll concentration 
in canopies (Haboudane et al., 2008) and screening the 
adaxial and abaxial reflectance of leaf surfaces (Lu et al., 
2015). Another class of objectives focuses on establishing 
causal relationships between plants and stress factors or 
environmental conditions such as agricultural drought 
(Zhang et.al., 2020; Sun et al., 2015; Maes and Steppe, 
2018), water stress (Gerhards et al., 2018), heat stress (Song 
et al., 2018), infectious disease (Calderón et al., 2013), 
sunlight conditions (He et al., 2017), surface temperatures, 
and meteorological recordings (Dabrowska-Zielinska 
et al., 2020). Causal relationships are not only limited to 
simple plant-environment interactions but also involve 
relationships among leaf, canopy, and soil parameters (Yue 
et al., 2020) or between vegetation indices and grain yield 
(Shafian et al., 2018). Finally, objectives in the field of RS 
can also focus on assessing signal quality, evaluating, for 
instance, the variability of remote sensing signals related 
to plant communities (Bandopadhyay et al., 2019), seasons 
(Zarco-Tejada et al., 2016), or vegetation type (Rascher et 
al., 2015).

Various approaches have been proposed to address the 
systematic differences in RS research design with regards 
to methods, systems, approaches, and models (Ludbroock, 
1997). Differences exist concerning issues such as 
data acquisition, spatial resolution, retrieval precision, 
accuracy, performance, and cost. Several recent studies 
have sought to compare and evaluate RS-related questions, 
including the utility of two optical imaging approaches, 
namely, LiDAR and surface motion photogrammetry 
(Sofonia et al., 2019); the performance of these two systems 
(Maimaitijiang et al., 2020); the potential of GOME-2 
SIF data to estimate gross primary productivity (GPP) 
with other model-derived outcomes such as the light use 
efficiency (LUE)-based vegetation photosynthesis model 
(VPM) and the process-based SCOPE model (Wagle et 
al., 2016); solar-induced chlorophyll fluorescence (SIF) 
detectable satellite products, such as the GOSAT, the 
GOME-2, and the newer OCO-2 SIF products (Sun et al., 
2017), partial least squares regression (PLSR) methods 
with stepwise regression (SWR) (Tao et al., 2020), and the 
differences between OCO-2 and GOME-2 SIF products 
and how these impact GPP model optimization (Bacour 
et al., 2019).

Studies on technical issues in RS have focused on 
objectives that include providing a basis for technique 
development (Haboudane et al., 2008; Urschel and 

Pocock, 2018), implementing instruments for monitoring 
plant growth (Cogliati et al., 2015; Pacheco-Labrador et 
al., 2019), using the hyperspectral Unmanned Aircraft 
System (HyUAS) for measuring visible and near-infrared 
(VNIR) spectral reflectance and SIF signals (Garzonio et 
al., 2017), investigating the potential of Remotely Piloted 
Aircraft Systems (RPAS) to facilitate rapid and flexible 
chlorophyll monitoring (Vanbrabant et al., 2019), reporting 
instrumental descriptions, calibration procedures, and 
uncertainties related to the application of the PICCOLO-
DOPPIO system for SIF measurements (Mac Arthur 
et al., 2014), investigating laser-induced fluorescence 
(LIF) technology applied to monitor vegetation growth 
status (Yang et al., 2019), documenting details of system 
components, instrument installation and calibration, data 
collection and processing using the SIFSpec system (Du 
et al., 2019), and estimating the chlorophyll content from 
3D images using a photogrammetric approach called 
“structure from motion” (Itakura et al., 2019).

Another group of objectives involves seeking to 
improve estimation and retrieval methods and to develop 
predictive models. Studies related to these objectives have 
focused on, in part, the followings: increasing estimation 
accuracy through modified vegetation indices (VIs), 
such as the modified triangular VI (MTVI2) for leaf 
chlorophyll content (LCC) retrieval (Zhou et al., 2020), 
establishing accurate predictive models through model 
simulations and ground-measured data (Haboudane et 
al., 2008), establishing the advantages of using correlative 
relationships to assess plant growth stage (Miao et al., 
2009), assessing the impact of spectral resolution and 
signal-to-noise ratio (SNR) when used to retrieve signals 
from spaceborne sensors (Liu et al., 2015), and reviewing 
the OCO-2 SIF product, retrieval process, cross-mission 
comparison, and GPP estimation potential (Sun et al., 
2017). Other general objectives involve identifying 
potential problems and suggesting practical solutions 
(Haboudane et al., 2008), obtaining economic advantages 
using remotely measured proxies for plant growth without 
computationally expensive data processing (Urschel and 
Pocock, 2018), and converting multispectral imagery into 
maps of plants (Shafian et al., 2018; Tao et al., 2020).

3. Independent and dependent variables
Independent variables are the presumed cause of an 
experiment, systematically manipulated by an investigator. 
In RS research, there are only few examples in which the 
entire protocol is designed as an experiment. Most studies 
are comprised of several stages with differing research 
designs. Independent variables in RS studies are usually 
related to varying levels of spatial scales (e.g., leaf-canopy, 
ground, airborne, or spaceborne). For example, one study 
assessed flying altitude at various levels from 300 to 3000 
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m as an independent variable (Moya et al., 2006). In 
other studies, independent variables included factors on 
temporal scales, such as plant growth stage, time of day, 
season, and treatment dosage for fertilizer, herbicides or 
water.

A dependent variable is the outcome of what is 
measured in an experiment or evaluated in a mathematical 
equation. Measurements of dependent variables can be 
made on different time scales, that is, on a continuous time 
scale, a growth cycle stage scale, a seasonal scale, or a scale 
related to time-of-day. Measurements can also occur on 
various horizontal spatial scales, including local, regional, 
global, and on vertical scales as well as at the ground, 
airborne, or spaceborne level. In designed experiments in 
which dependent variables have a nonconstant variance, 
transformation of the variables to stabilize the variance of 
the response should be considered (Montgomery, 2017).

Traditional optical RS-based vegetation monitoring 
approaches consist of measuring radiance, reflectance, 
or apparent reflectance of vegetation with different 
spectrometers at varying wavelengths. These three 
parameters can be used interchangeably, but because 
reflectance is a property of the vegetation itself, the most 
reliable vegetation index (VI) values can be obtained using 
reflectance (Terill, 1994). VIs are derived from ground 
and airborne-based spectrometer measurements and 
are designed to provide information about the quality 
of photosynthetic pigments in vegetation (Dobrota et 
al., 2015), chlorophyll content (Baret et al., 2002), water 
content (Penuelas et al., 1993), plant biomass (Huete et al., 
2002), and many other variables. Several of these indices 
are susceptible to error and uncertainty due to variable 
atmospheric, canopy, and soil background conditions 
(Liu and Huete, 1995). Further, calculation errors can 
result from indices involving mathematical operations. 
Thus, attempts to develop new indices seek to improve 
or combine existing VIs in order to increase estimation 
and predictive accuracy. For example, Lu et al. (2015) 
introduced a modified Datt index to improve assessments 
of LCC regardless of phenotypic differences in leaves 
when the reflectance comes from both adaxial and abaxial 
surfaces. Yu et al. (2014) proposed the ratio of reflectance 
difference index (RRDI), which significantly improves 
the estimation of chlorophyll content by reducing noise 
from soil background, canopy structure, and multiple 
scattering. Additionally, a visible and near-infrared (NIR) 
angle index (VNAI) was proposed as a method for the 
multi-stage estimation of chlorophyll content of soybean 
canopy by Yue et al. (2020). Finally, Piegari et al. (2020) 
studied the performance of several VIs using simulated 
and modelled reflectance values, such as the MERIS 
terrestrial chlorophyll index (MTCI), the Macc index, and 
the modified chlorophyll absorption reflectance index/
optimized soil-adjusted index (MCARI/OSAVI).

Combinations of VIs are frequently used to provide 
better crop yield estimates. For example, Tao et al. (2020) 
used a combination of vegetation indices and red-edge 
parameters to estimate and map the distributions of above-
ground biomass (AGB) and leaf area index (LAI) values 
for various growth stages of winter wheat. Further, Fu et 
al. (2020) reported that a VI obtained from combining the 
red edge band and near-infrared band from unmanned 
aerial vehical (UAV) data was significantly correlated with 
LAI and leaf dry matter index values in wheat. 

An alternative to VIs is solar-induced chlorophyll 
fluorescence (SIF), which is a relatively novel remote sensing 
parameter that is used to estimate actual photosynthetic 
rate (Schikling et al., 2016). SIF represents a small fraction 
of the solar radiance reflected by plants and measured 
through high-resolution spectrometers (Cendrero-Mateo 
et al., 2019). Many studies have attempted to underline the 
advantages of using SIF instead of VIs, arguing that SIF 
reflects more physiological information than various VIs 
(Yang et al., 2015) and is more sensitive to environmental 
factors. Because SIF signal is much weaker than reflected 
solar radiation, the use of spaceborne sensors and SIF 
signal quantification require significant improvements 
(Frankernberg et al., 2013).

A trend in developing new indices is to consider 
specific features of plants and/or environmental 
conditions. Starting with a study by Guanter et al. (2007) 
that reported the first space-based SIF observations on 
board the ENVIronmental SATellite (ENVISAT) and 
continuing with SIF measurements acquired by the 
Japanese GOSAT mission launched in 2009 (Frankenberg 
et al., 2018), indices related to SIF have been evolved and 
refined in order to better manage environmental factors, 
such as soil moisture. For instance, SIF has been reported 
to show a significant reduction under serious drought 
(Liu et al., 2018), and the resulting downscaled SIF value 
combined with land surface temperature (LST) data was 
used to develop the temperature fluorescence dryness 
index (TFDI), which is able to show enhanced spatial 
details and is suitable to be used in agricultural drought 
condition studies (Zhang et al., 2020).

Assessing a given VI can be performed continuously 
using signals received from the canopy level and spanning 
from seeding to maturity (Daumard et al., 2012). 
Assessments can also be made based on the monitoring of 
certain growing season stages or environmental conditions. 
The Normalized Difference Vegetation Index (NDVI), 
which is one of the most widely used VIs to predict LAI, 
fractional vegetation cover (fc), and grain yield, is suitable 
for use from early- to mid-growing season (Shafian et al., 
2018). Several other measurements are related to specific 
times of the day. For example, thermal infrared (TIR)-
based indices proposed by Gerhards et al. (2018) show 
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significant sensitivity when using data collected during 
early morning and noontime. Using GOME-2 data, Joiner 
et al. (2013) proposed a simplified radiative transfer model 
based on fluorescence retrieval techniques, providing 
global coverage for SIF estimation during short days. In 
subsequent works, the same group tracked the seasonal 
cycle of photosynthesis (Joiner et al., 2014) and mapped 
the reliable values of global monthly SIF anomalies (Joiner 
et al., 2016). Diurnal and seasonal variations in canopy SIF 
and its yield (SIFyield) have also been analyzed to show 
that growth stage can influence the SIF-GPP relationship 
(Li et al., 2020).

Other measurements are conditioned by environmental 
factors. For example, one study tracked the canopy 
photosynthesis process in a stable atmospheric condition 
only (Zarco-Tejada et al., 2013). Another study that 
explored the differences between SIF and NDVI values in 
response to drought reported that average SIF values were 
significantly reduced under relatively serious drought, 
while NDVI values were affected only by extreme drought 
(Liu et al., 2018).
3.1 Ground measurements
The functional activity of plants and stress level changes 
induced by environmental factors can be detected through 
radiance signals emitted by the leaves using ground-based 
instruments. Several spectrometers and sensors of varying 
resolutions have been developed to measure fluorescence 
signals from the leaf to the canopy level. The complexity 
and performance of these ground instruments vary from 
lab-developed prototypes and commercial products to 
standardized platforms for automated measurement of 
canopies. Some examples of this equipment being used 
in recent literature include the followings: a passive 
multiparameter sensor that was employed to assess the 
yield of maize plants in water stress conditions (Evain et 
al., 2002), a TriFLEX passive fluorosensor that was able 
to calculate the SIF emission of a crop field during the 
growing period (Daumard et al., 2012), a field spectrometer 
(HR4000) with SPECFull and SPECFluo modules that 
was employed for collecting continuous and long-term 
SIF measurements (Cogliati et al., 2015), an automated 
system that was used for collecting irradiance and canopy 
radiance (FluoSpec2) and for measuring diurnal and 
seasonal SIF variations from various ecosystems (Yang et 
al., 2015), a QE Pro spectrometer component of the FloX 
box that provided continuous SIF observation (Magney 
et.al, 2017), and, lastly, a dual-field-of-view spectrometer 
system, PICCOLO-DOPPIO, that was used to measure 
fluorescence under natural light conditions (Mac Arthur 
et al., 2014). One important advantage of using ground-
based instruments is that the spectra are not influenced 
by atmospheric disturbances such as water vapor, dust 
particles, or aerosols (Meroni et al., 2009).

Importantly, fluorescence ground measurements can 
be scaled up from the leaf to the canopy level (Moya et 
al., 2004), and the resulting measurements can be used 
to obtain chlorophyll fluorescence values and to correlate 
these with environmental conditions (for example, 
photosynthetic active radiation, or gas exchange) (Moya 
et al., 2006) as well as to detect plant stress. Several 
studies have established the existence of a significant 
relationship between SIF and various environmental 
stressors, including plant water stress (Evain et al., 2002), 
extreme temperature (Ac et al., 2015), nitrogen (N) and 
phosphorous (P) treatments (Kebanian et al., 1999; Martini 
et al., 2019; Migliavaca et al., 2017), ozone stress (Meroni 
et al., 2008), and stress induced by herbicide treatment 
(Van Rensen, 1989). Ground measurements are also able 
to estimate GPP (Yang et al., 2015; Wolfhart et al., 2018).

Ground data are necessary for performing retrieval 
method estimations and for the calibration and 
validation of airborne, unmanned aerial vehicle (UAV), 
and spaceborne fluorescence signals. For instance, SIF 
datasets collected during the ongoing FLuorescence 
EXplorer (FLEX) Earth Explorer 8 Mission of ESA have 
used ground measurements for calibration and validation 
(Bandopadhyay et al., 2020).
3.2 Airborne measurements
Research studies at both the local and regional scale have 
sought to deploy airborne platforms that can capture 
surface-reflected radiance and to assess the validity of 
data obtained from various spectrometers. Fluorescence 
signals reflected by vegetation are captured by airborne 
sensors, which may or may not be coupled to imaging 
spectrometers. Nonimaging data are mostly reliant on the 
spectral properties of the sensor. The florescence of the 
vegetation captured in images offers information related to 
the characteristics of a given ecosystem. In both data types, 
data validation using ground measurements is required 
before further processing can be performed.

UAVs are also widely employed at both the local and 
regional scale. These vehicles fly slowly at low altitudes 
and, thus, can obtain images with high spatial resolution 
and long integration times (Mohammed et al., 2019). 
UAV-based SIF measurements offer a compromise 
between temporally continuous ground measurements 
and spatially coarse satellite retrievals (Atherton et al., 
2018).

One disadvantage of airborne data collection is 
the uncertainty induced by atmospheric noise. Several 
atmospheric correction models are required to eliminate 
noise. Other disadvantages of airborne observation 
include the limited geometric accuracy of the obtained 
images, which frequently require correction and the need 
for proper instrument calibration (Meroni et al., 2009).
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In a series of recent studies, Zarco-Tejada et al. used 
a variety of retrieval methods and fluorescence indices to 
track the canopy photosynthesis process (Zarco-Tejada et 
al., 2016), detect water stress (Zarco-Tejada et al., 2013), 
and investigate seasonal stomatal conductance (Zarco-
Tejeda et al., 2003). Additionally, Rossini et al. (2015) 
used thermal and optical airborne data to discriminate 
between irrigated and rainfed maize plants, and Gerhards 
et al. (2018) analyzed water stress symptoms using high-
resolution airborne thermal infrared (TIR) images in 
combination with sun-induced fluorescence (SIF) images.
3.3 Spaceborne measurements
On a global scale, researchers have been deploying satellites 
operated by space agencies and designed for dedicated 
missions. The FLORIS satellite under the ESA FLEX 
mission was explicitly designed to monitor and to assess 
the photosynthetic activity of terrestrial vegetation using 
SIF signals (Drusch et al., 2017). As fluorescence signals 
cannot be measured independently from vegetation, 
they must be retrieved thorough specific methods and 
require validation (Zhou et al., 2020). Accurate validation 
is made by using ground measurements and involves 
sensor and instrument calibration, troubleshooting of any 
uncertainties, and correct interpretation of reflectance 
values (Meroni et al., 2009).

Among SIF retrieval methods, several multispectral, 
hyperspectral, radiance- and reflectance-based methods 
have been documented, establishing the reflectance ratio, 
the derivative index, and the infilling index (Meroni et al., 
2009). Along with retrieval algorithms, numerous models 
have been developed to overcome technical limitations and 
increase estimation accuracy, including radiative transfer 
models (RTMs), the SCOPE model, and the fluorescence–
reflectance–transmittance (FRT) model (Mohammed et 
al., 2019). Hybrid regression methods using active learning 
techniques together with Gaussian process regression for 
LCC modeling have also been applied (Zhou et al., 2020). 
Further, radiometric and biological data have been used 
to set up an inversion procedure based on the radiative 
transfer model PROSAIL followed by theoretical canopy 
reflectance data set modeling (Piegari et al., 2020). Sonobe 
et al. (2021) applied preprocessing techniques used in 
conjunction with machine learning algorithms to estimate 
chlorophyll content and reported that the kernel-based 
extreme learning machine (KELM) and Cubist algorithms 
were the best performers. Finally, Li et al. (2018) 
constructed an estimation model based on remote sensing 
imaging using the back-propagation neural network 
(BPNN) and support vector machine regression (SVMR).

When comparing spaceborne values recorded by 
satellites with ground-based fluorescence values, errors 
between 5 and 35% have been reported (Liu et al., 2015). 
However, previous studies have indicated that spaceborne 

SIF signals along with calibration validation through 
airborne and ground systems are adequate estimators of 
crop photosynthetic capacity (Zhang et al., 2014).

4. Errors and limitations
Many types of errors have been identified in RS research. 
These errors are usually related to the methods used to 
obtain measurements, variability induced by environmental 
factors, vegetation characteristics, or shortcomings of 
the applied mathematical operations. RS measurement 
errors often occur due to environmental factors such as 
changes in solar zenith angle, subpixel contamination of 
clouds, and variation in local topography (Chen, 1996). 
Some VIs are susceptible to errors and uncertainty over 
variable atmospheric and canopy background conditions 
(Liu et Huete, 1995). Another source of error is related 
to mathematical operations other than ratio calculation, 
which can retain and even amplify these errors (Chen, 
1996). All error sources should be carefully considered 
and minimized to reduce these limitations and improve 
the feasibility of RS studies.

The limitations of a study are usually, but not always, 
characteristics of the study design or methodology. When 
analyzing the limitations of a study, problem identification 
should be restricted to the objectives proposed at the 
beginning of the research project. Each limitation should 
be explained in detail followed by a description of how the 
limitation impacts the results. Normal methodological 
limitations consist of factors related to small sample size, 
lack of reliable data, lack of prior research on a given topic, 
and measurement reliability (Brutus et al., 2013).

In RS research in particular, many common limitations 
occur because of the dynamic nature of the results and 
the rapid development of technology, leading to multiple 
issues or events being simultaneously investigated. Due to 
limited access and expertise of cutting-edge technology, 
the reproducibility of RS investigations is low. Usually, 
each new study introduces a different system and new 
variables to expand on the findings of a previous work.

Within the category of limitations related to research 
design, different studies have reported the following 
problems: a limited availability of plant biophysical data 
during the growth season (Molijn et al., 2018), a low number 
of variables included in the modeling of plant growth 
(Sofonia et al., 2019), a lack of specificity for detection 
methods that rely on phenotypic changes following 
decreases in chlorophyll concentrations and plant water 
potential, which can be caused by manifold stress types 
(Mahlein, 2016), uncertainties and error propagation 
associated with data processing due to a general lack of 
systematic analysis and calibration (Bandopadhyay et al., 
2019), a lack of atmospheric data corrections, particularly 
for aerosol optical thickness and terrain altitude 
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corrections (Davidson et al., 2006), the use of chemical 
and chlorophyll meter methods, which do not provide 
real-time measurements on a regional or global scale (Yu 
et al., 2014), the limited specificity of wavelengths related 
to crop/species that have been optimized for RRDIs, which 
cannot be extrapolated to other crops under different 
conditions (Yu et al., 2014), and the practice of attributing 
large changes in spectral shape to a given variable when 
data acquisition is temporally sparse (Magney et al., 2017).

Another group of limitations are related to the 
reductionist approach that is used to simplify models. 
These limitations can include the following: simplification 
and idealization of processes during radiative transfer 
modeling, which may introduce inaccuracies regarding 
canopy reflectance (Dorigo et al., 2012; Damm et al., 2010), 
failure to consider N fertilization in conjunction with other 
nutrients (especially K) to obtain an accurate assessment 
of crop yield (Ingram and Hilton, 1986), the need for a 
comprehensive simulation comprising a broader crop-
soil management system for assessing production systems 
(Keating et al., 1999), the fact that results obtained at 
smaller scales cannot be easily applied to larger scales (Yu 
et al., 2014), the need to incorporate leaf parameters such 
as stomatal conductance as references for comparison with 
soil moisture, leaf water content, and SIF (Liu et al., 2018), 
the fact that the use of certain spectral indices to calibrate 
general purpose models for the entire growing season 
can neglect to account for chlorophyll variation during 
individual critical stages (Yu et al., 2014),  and, lastly, a lack 
of consideration for the effects of soil background  (Yue et 
al.,  2020).

The next group of limitations is related to technical 
shortcomings. These can include imaging difficulties 
related to complex data processing and low spatial 
resolution (Tao et al., 2020).  Additionally, airborne and 
UAV systems with low speeds and short flight ranges limit 
the area that can be covered (Bandopadhyay et al., 2020). 
Other limitations in the literature include the following 
facts: the calculation method for the VNAI is relatively 
complicated compared to that of band-operation-based 
chlorophyll VIs limiting the application of the VNAI (Yue 
et al.,  2020), satellite or aircraft remote sensing systems 
produce coarse resolution images that are not suitable for 
small plot research studies (Shafian et al., 2018), satellite 
hyperspectral sensors cannot provide spatial distributions 
of crop Chl content over large areas with high temporal 
and spatial resolution (Yue et al., 2020).

The last group of limitations which frequently occur 
in RS research is related to resource availability. High 
costs per campaign and considerable data processing 
costs (including time) are disadvantages of airborne SIF 
measurements (Bandopadhyay et al., 2020), direct field 
measurements of chlorophyll content over large areas 

require a tremendous commitment of labor and are thereby 
expensive (Haboudane et al., 2008), traditional methods 
used in ground measurements limit the timeliness and 
effectiveness of crop growth monitoring (Cao et al., 2020), 
plant sampling and analysis used as calibration data are 
time consuming, labor intensive, and expensive if enough 
representative samples are to be collected for large fields 
(Miao et al., 2009), traditional manual methods for the 
measurement of crop chlorophyll content are inefficient, 
costly, and cannot provide crop chlorophyll maps over 
large areas (Yue et al.,  2020), LiDAR photogrammetry 
is less cost-efficient than RGB and is complex in terms of 
operation and data processing (Maimaitijiang et al., 2020) 
(although it does provide higher penetration capability 
into the canopy than RGB), and satellite hyperspectral 
sensors are expensive and scarce (Yue et al., 2020).

It is absolutely necessary to understand and 
troubleshoot the limitations associated with RS research 
in order to reduce knowledge gaps and to improve study 
design, instrument performance, algorithm retrieval, 
and the applied models. RS research allows scientists 
to better understand plant physiological processes at 
different scales while allowing stakeholders interested 
in crop yield to access better methods and data for more 
effective management of crop cultures. Limitations require 
a critical overall appraisal and interpretation of their 
impact. Acknowledging limitations offers the opportunity 
to reframe the design and make suggestions for further 
research.

5. Challenges and prospects in RS monitoring of crop 
growth
Short- and long-term prospects have been outlined in 
studies on crop remote monitoring concerning plant 
systems, methodologies, optics, and hardware. In the 
context of forthcoming large-scale remote sensing 
applications, new methods and models to quantify crop 
growth are needed. These have the potential to be useful 
tools in precision agriculture and to provide reference and 
technical support for management decisions.

Although many different species have been subject 
to RS monitoring, there still exists a need to extend the 
number of species and to assess the performance of new 
cultivars. Furthermore, plant leaf features (e.g., waxy 
cuticle or hairy leaves) (Haboudane et al., 2008), plant 
density (Maimaitijiang et al., 2020), environmental 
stressors (e.g., drought, nutrient limitation, temperature, 
or disease) (Miao et al., 2009), and crop development 
stage should each be considered for further investigation. 
Moreover, additional quantitative field measurements 
should be conducted to investigate the feasibility of long-
term canopy chlorophyll estimation (Yue et al., 2020).

Bandopadhyay et al. (2020) identified the need to 
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enlarge the database of measurements, as satellite SIF 
products have a shorter amount of data (GOSAT, GOME-
2, OCO-2) than traditional RS datasets (MODIS and 
LANDSAT). Another research area that can be improved 
is data analyzation and interpretation. This category 
includes improvements in remote signal interpretation 
when the leaf level fluorescence emission is modified 
by the structure of the canopy (Migliavaca et al., 2017, 
Frankenberg et al., 2014) or designing spectral indices 
that can reduce canopy structure effects (Yu et al., 2014). 
Sofonia et al. (2019) suggested further investigations into 
the interactions of signal parameters, such as wavelength 
and incident angle, with biophysical features such as 
texture, geometry, moisture content, and roughness.

Another subject that has been suggested as a topic 
of future research is the improvement of crop growth 
radiative transfer models (i.e., PROSPECT) to reflect 
a more detailed and realistic relationship between RS 
measurements and vegetation parameters (Haboudane et 
al., 2008). Other topics for future research that have been 
suggested in the literature include the introduction of new 
techniques, particularly state-of-the-art deep learning 
algorithms (Maimaitijiang et al., 2020), the optimization 
and improvement of retrieval methods and the application 
of these methods to various new sensors (Maimaitijiang 
et al., 2020), and the combination of pre-existing methods 
with satellite data to enlarge practical application for large 
agricultural areas (Fu et al., 2020).

6. Conclusions 
The preceding review identifies and discusses aspects 
of research design that need to be addressed in order to 
improve RS research concerning growth monitoring of 
crops. It identifies theoretical assumptions, research gaps 
in working methodology, the advantages and drawbacks of 
certain methods, and prospective future research.

Biological systems are nonlinear complex systems 
which are by nature highly dynamic, governed by feedback 
loops rather than by equilibrium, and lack centralized 
control. Due to the complexity of RS research, there 
are only a few examples in which the entire protocol is 
designed as an experiment. In most cases, there are several 
stages with different designs. The designs used for RS 
crop monitoring are trend monitoring, effects-oriented 
monitoring, and predictive-oriented monitoring.

RS research studies seek to advance scientific, technical, 
methodological, economic, and practical questions, such 
as establishing the causal relationships between plants and 
stress factors or environmental conditions, developing 
new techniques, and comparing and improving existing 
methods, systems, approaches, and models.

Considering the goals of the research, one may 
use RS exploratory investigations to improve working 

methodology, descriptive studies focused on collection 
of data and correlation between variables, explanatory 
research where cause and effect are outlined, and predictive 
research where future events are anticipated.

In experimental designs, independent variables are 
related to spatial scales at different levels (leaf-canopy, 
ground-airborne-spaceborne) or to levels of temporal 
scale such as stages of plant growth, time of day, seasons, 
or different doses within an applied treatment. Dependent 
variables are radiance, reflectance, or apparent reflectance 
of the vegetation measured with different spectrometers at 
different wavelengths. Vegetation indices are derived from 
ground and airborne-based spectrometer measurements. 
They are continuously evolving and refined in relation to 
specific features of plants and/or environmental conditions 
to increase their estimation accuracy and prediction 
capability. Solar-induced chlorophyll fluorescence (SIF), 
representing a small fraction of the solar radiance reflected 
by plants, is deployed as a more comprehensive alternative 
to vegetation indices.

Several spectrometers and sensors with different 
resolutions have been developed to measure fluorescence 
signals from leaf to canopy levels. The florescence of the 
vegetation captured in images offers information on the 
characteristics of ecosystems. Research at a global scale is 
deploying satellites operated by space agencies, designed 
for missions dedicated to this. Among SIF retrieval 
methods, multispectral and hyperspectral radiance-based 
methods and reflectance-based methods, such as the 
reflectance ratio, derivative index, and infilling index, have 
been documented.

Some of the problems which have occurred in more 
than one reviewed article are: the availability of plant 
biophysical data in the growth season, the low number of 
variables which were included in the modelling of plant 
growth, the uncertainties and error propagation associated 
with data processing, and errors due to the calibration of 
instruments.

The limitations identified in this review are related to 
research design, the reductionist tendency, introduced 
for simplifying models, technical limitations, and the 
availability of resources.

It is essential to understand and troubleshoot the 
limitations associated with RS research to succeed in 
improving designs, reducing the scientific knowledge gap, 
and improving the performance of instruments, retrieval 
algorithms, and models applied in this field.

The prospects concerning the biological systems are 
considering the need to extend the number of species and 
new cultivars in relation to plant leaf features, plant density, 
and environmental stressors such as drought, nutrient 
limitation, temperature, disease, and development stages. 
The need to enlarge the satellite database to improve data 
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analysis and interpretation, instrument calibration, the 
retrieval process, and modelling has also been identified.

In the context of the forthcoming large-scale remote 
sensing applications, new methods and models to quantify 
crop growth are needed. They can be useful tools in 
precision agriculture, providing reference and technical 
support for managerial decisions. Improvements in RS 
monitoring activities will ensure the successful integration 

of these methods in future farming practices. For these 
methods to be accessible to agricultural stakeholders, 
their utility and economic potential should be advertised 
through outreach activities.
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