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Abstract: Image forgery detection is one of the key challenges in various real time applications, social media and
online information platforms. The conventional methods of detection based on the traces of image manipulations are
limited to the scope of predefined assumptions like hand-crafted features, size and contrast. In this paper, we propose
a fusion based decision approach for image forgery detection. The fusion of decision is based on the lightweight deep
learning models namely SqueezeNet, MobileNetV2 and ShuffleNet. The fusion decision system is implemented in two
phases. First, the pretrained weights of the lightweight deep learning models are used to evaluate the forgery of the
images. Secondly, the fine-tuned weights are used to compare the results of the forgery of the images with the pre-trained
models. The experimental results suggest that the fusion based decision approach achieves better accuracy as compared

to the state-of-the-art approaches.

Key words: Image forensics, image forgery detection, deep learning, convolutional neural network

1. Introduction

In this digital era, images and videos are being used as influential sources of evidence in a variety of contexts
like evidence during trials, insurance fraud, social networking [1], etc. The easy adaptability of editing tools for
digital images, especially without any visual proof of manipulation, give rise to questions about their authenticity
[1]. It is the job of image forensics authorities to develop technological innovations that would detect the
forgeries of images. There are three primary classes of manipulation or forgery detectors studies until now:
those supported features descriptors, those supported inconsistent shadows and eventually those supported
double JPEG compression [1].

With sophisticated software, it is easy to tamper the contents of the image to influence the opinions of
others. Image forgery techniques are broadly classified into two categories namely copy-move and splicing [2].
For copy-move forgery, elements of the image content area are traced and smudge inside a similar image, whereas
for splicing forgery, parts of the image content smudge from alternative pictures. To reconstruct the trust in
pictures, various image forgery detection techniques have been proposed over the past few years. Many previous
studies have tried to extract totally different properties from the image to spot the copy-paste or splicing of
forged areas, such as the lighting, shadows, sensing element noise, and camera reflections [3].

Researchers [4-9] determined the credibility of the image wherever it is known either as authentic or
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forged. Currently, there are many techniques to spot forged regions [7-15] that exploits the artefacts left by
multiple JPEG compression and other techniques of image manipulation to sight the forged regions. Camera
primarily based ways [16] have additionally analyzed where the detection relies on demosaicing regularity or
sensing element pattern noise wherever the irregularities of the sensing element patterns area unit extracted
and compared for anomalies [17].

Forged or manipulated pictures can mislead people and may threaten individuals’ life. This paper [2] aims
to find the manipulated pictures by automating the method of feature extraction instead of feature engineering
or feature extraction through the manual process. Deep learning to make use of highly correlated pixels in a
vicinity, thus taking into account grouped native connections [18].

The motivation to use lightweight models in favour to prevent overfitting of the convolutional neural
network (CNN) architectures and can be easily deployed on resource constrained hardware and can learn enriched
representations [19-23]. ShuffleNet makes more feature map channels for a given computation complexity
budget [24], which helps to encode more information and is especially important to the efficiency of small
networks. MobileNet [21], makes use of deep-separable convolutions and gains state-of-the-art results and [21]
demonstrated the effectiveness of MobileNet when applied to a broad range of tasks. SqueezeNet [25], optimizing
the architecture for fast processing speed CNN system with 50 x , fewer parameters than AlexNet and retains
standard accuracy. The lightweight models can be deployed effectively on resource-restricted hardware and can
learn enriched representation.

In this paper, the decision fusion of lightweight deep learning based models is proposed for the detection
of image forgery. The proposed approach consists of two phases on the pretrained and fine-tuned lightweight
deep learning models namely SqueezeNet [25], MobileNetV2 [22], ShuffleNet [24]. In the first phase, features
from the images are extracted using lightweight deep learning models without regularization. In the second
phase, fine-tuned lightweight deep learning models with fusion and regularization are used to detect image

forgery. The main contributions of this paper are:

¢ An approach of decision fusion based system is proposed using the lightweight for the image forgery detec-
tion. The lightweight models used for the fusion decision are SqueezeNet, MobileNetV2, and ShuffleNet.

e The fusion of the decision system is implemented in two phases. First, the pretrained weights for the
lightweight models are used to evaluate the forgery detection of the images. Second, the fine-tuned weights

are used to compare the results of the forgery detection of the images with the pre-trained models.

e The utilization of the lightweight models leads to the reduction of the number of false matches, thereby
reduce the false positive rate and ultimately increase the accuracy of the approach.

The paper is further organized as follows. In Section 2 the related work is discussed on the image forgery
detection methods and deep learning models that are used for image forgery detection. In Section 3, the fusion
model is proposed and it is followed the regularization applied on the fusion model. In Section 4, the experiments

and results are discussed and Section 5 is followed by the conclusion.

2. Related work
In the current world, digital pictures became an awfully vital supply of information. A widespread and easy
to use sophisticated software packages could be utilized by any novice users to manipulate the digital pictures

in such a way that it does not leave a plain trace. Individuals can share manipulated or forged pictures for
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amusing on social media. However, forged pictures could also be employed in several serious cases, like scientific
publications and media manipulations [26]. Image forgery detection detects whether an image is original or
not, an adequate number of features are needed for the detection. Deep learning models are effective for such
classification as more features can be extracted. In this section first we identify the different methods of image

forgery detection and followed by how the deep learning models can be used to detect it.

There are two primary classes of passive authentication techniques: image-splicing techniques and copy-
move forgery detection techniques [8, 9, 26]. The primary attempt to detect copy move forgery was delineated
in [27]. Deep learning models have shown their capability of extracting the relevant and robust features from
the images to learn their representations, perform computer vision tasks, image classification and recognition.
It is also used by the forensics community for the image and video manipulation detection. In [1], one of the
methods used for image forgery detection is the trigonometric function remodel for discovering the single and
double JPEG compression and manipulated images.

In this way, CNNs are used for the detection of manipulation in the images. The authors [28] used
the splicing detection method that is based on principal component analysis (PCA) and support vector ma-
chine (SVM). The method first converts the RGB image into a grayscale image on the basis of chrominance
components. The features extracted are subsequently used with PCA to increase the efficiency of the image

classification using SVM.

To detect the image forgery, the histogram of orientated gradients [29] based model is used. A CNN model
with a blocking strategy was used in [30] for image forgery detection. In this method, the image is divided into
blocks namely tight blocks and marginal blocks. The blocks were fed into CNN that is recurrent in nature for
the forgery detection with SVM as the classifier model. One more CNN model is used in [31] to detect the
copy and move image forgery. It uses the Siamese neural network for the forgery detection with 3 convolutional
layers, 2 max-pooling layers and 2 fully connected layers. A deep learning model based on Autoencoder is also

used for the detection of the forged images [3]. It uses two stages stacked on top of each other.

A CNN edge response model was used in [32] to detect the forgery. The model was trained on the edge
patches to detect whether the image is authentic or forged. The patches of the edges in the image were used
to localize the spliced region to detect the forgery. A CNN model is proposed in [33] to suppress the image
content and learn the manipulated portions of the images. In this model, the filters are used to suppress the
image content instead of learning the representations of the image. A localization and resampling method was
proposed in [34] for the classification of tampered patches. In [35] authors used VGG-16 based deep learning
model for the detection of image forgery. It used a sliding window mechanism to scan the image and obtain
the fragment of the image to obtain the manipulated region of the image for the detection of the forgery. A
region based CNN (R-CNN) is used for the detection of the image forgery in [36]. It fused the streams of the
images to localize the manipulated portions of the images. A deep learning model was proposed in [23] where
the original image was manipulated in shape and size to detect the forgery. It used the MobileNetV2 model
[22] for the detection of image modification. The extracted features from the model are assembled to conclude

whether the image is forged or not.

In [37] for image forgery detection, the extracted features are assigned to a set of predefined bins called
codewords. These codewords are used to generate the set of feature vectors namely bag of features (BoF). This
is used for the classification as forged or not instead of the fully connected layer. A CNN model is used in [38]

that is based on the semantic segmentation of boundaries in the images. The segmentation is carried out based
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on the semantics of the pixels in the image. It uses nonaligned JPEG forgery methods to detect the semantics
of the pixels and assign a label to it. The semantic based method helps to determine the accurate boundaries
of the image.

A lightweight model is used in [39] to detect the face. The metrics used for the evaluation are based on
image-based and pixel based [26]. In the image based methods, the metric is based on whether the image is
forged or authentic. In the pixel based methods, the pixels of the image are classified as copy-move or authentic.
In this paper, the proposed system uses the image based measures for the evaluation of the accuracy and other
metrics. In the existing methods discussed in this section, the deep learning CNN based models are used for the
extraction of the explicit features of the images including the geometry, wavelet, texture and transformations.
Most of these methods use the pretrained weights and need to be altered every time for a new set of images.
In the proposed system, a fusion of decision making is involved to detect the manipulation in the images. The

proposed fusion model is discussed in the further sections.

3. Proposed fusion system

The architecture of the proposed decision fusion is based on the lightweight deep learning models as shown in
Figure 1. The lightweight deep learning models chosen are SqueezeNet [25], MobileNetV2 [22], and ShuffleNet
[24]. The proposed system is implemented in two phases i.e. with pre-trained and fine-tuned deep learning
models. In the pre-trained models implementation, regularization is not applied and the pre-trained weights
are used and for the fine-tuned implementation, regularization is applied to detect image forgery. Each phase
consists of three stages namely, data pre-processing, classification and fusion. In the data pre-processing stage,
the image in the query is pre-processed based on the dimensions required by the deep learning models. SVM
is used for the classification of the image as forged or non-forged. Initially, we discuss the lightweight deep

learning models and then the strategy used for the regularization is discussed in the further sections.
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Figure 1. Fusion based decision model for forgery detection.

3.1. Data preprocessing

In this stage, the image in a query that needs to be identified whether it is forged or not is subjected to

preprocessing. The height and width of the image required for SqueezeNet is 227 x 227. The height and width
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of the image required for MobileNetV2 is 224 x 224. The height and width of the image required for ShuffleNet
is 224 x 224. The input image is preprocessed first based on the dimensions required for each of the models.

Each model then takes the input image to produce feature vector in further stages.

3.2. Lightweight deep learning models

The different lightweight deep learning models that are considered for fusion are SqueezeNet, MobileNetV2,
and ShuffleNet. These models are used for the image classification problems numerously. In this section, these
models are discussed briefly. The lightweight models' considered are summarized as shown in the Table 1.

It represents the depth, parameters and the image input size required for the lightweight models namely,
SqueezeNet, MobileNetV2, and ShuffieNet.

3.2.1. SqueezeNet

It is a CNN trained on the ImageNet dataset with 18 layers deep and can classify the images up to 1000
categories. The network has learned rich representations of the images with 1.24 million parameters [25]. It

requires only a few floating point operations for the image classification.

3.2.2. MobileNetV2
It is a CNN trained on the ImageNet dataset with 53 layers deep and can classify the images up to 1000 categories

[22]. The performance of the classification is improved based on the learning of the rich representations of the

images.

3.2.3. ShuffleNet

It is a CNN that is also trained on the ImageNet dataset with 50 layers deep and can classify the images up to
1000 categories [24].

Table 1. Parameters of lightweight deep learning models. (Depth represents the largest number of sequential convolu-
tional or fully connected layers on a path from the input layer to the output layer, parameter represents the total number
of learnable parameters in each layers and image input size represents the required input image size).

Models Depth | Parameter (millions) | Image input size
SqueezeNet 18 1.24 227 x 227
MobileNetV2 | 53 3.5 224 x 224
ShuffleNet 50 1.4 224 x 224

3.3. Classifier
SVM is used as a classifier. SVM is popular and efficient [40] for binary classification. The performance of the

proposed approach is evaluated at the image level by calculating the performance metrics like precision, recall

also known as true positive rate (TPR), false positive rate (FPR), F-score and accuracy.

IMathWorks Inc. (2020). MATLAB [online]. Website https://in.mathworks.com/help/deeplearning/ug/pretrained-
convolutional-neural-networks.html [accessed 08 April 2020].
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3.4. Fusion model and regularization

The proposed system is first implemented with lightweight deep learning models using pretrained weights for the
image forgery detection, afterward, the proposed system is implemented as a fusion of the decision of lightweight
models as discussed in the previous section. Initially, the input image is passed to the lightweight models to
obtain their feature maps respectively. The feature map from the SqueezeNet is denoted as f,, the feature map
from the MobileNetV2 is denoted as f,,, the feature map from the ShuffleNet is denoted as fs, . For the fusion
model, the pretrained lightweight deep learning model’s output feature mapping f, is used. This feature map

fp is a combination of the feature maps obtained from the lightweight models as shown in Equation (1).

fp:fs+fm+fsh (1)

The fusion model uses feature map f, as a local descriptor for an input patch to extract the features of
the image. The image for the fusion model is represented as a function Yyysion = f(x) where x is the patch
in the input image. For a test image size m xn, a sliding window of size p xp is used to compute the local
descriptor Yyysion is computed as shown in the equation (2) where Y1,Y5,,Yr represents the descriptors of
the patches of the image obtained from the deep learning models. It is obtained as a concatenation of all the
input patches x; and the new image representation is given by equation (3) where s is the size of the stride
used for transforming the input patch, this new image representation ffyusion is used as the feature map for the

classification by the SVM as forged or nonforged.

qusion = [Yl +Yo 4 ...+ YT] (2>

m—w n—w
Frusion = ——— +1x ——+1 (3)

For fine tuning of the parameters of the fusion model, the initialization of the weight kernels is used as
shown in Equation (4).

In this equation Wy represents the weights of the fusion model, W, represents the weights of the
SqueezeNet model, W,,, represents the weights of the MobileNetV2 model and Wy, represents the weights
of the ShuffleNet model. The weight of the fusion model Wy is initialized as shown in Equation (5). The
initialization of the weights acts as a regularization term and facilitates the fusion model to learn the robust

features of detecting the forgery rather than the complex image representations.

Wy = [VVstijShj]j =1,2,3 (4)
Wy = [WEWoE2 W where k = [[j + 1Jmod11] + 1 (5)

4. Experiments and results

In this section, the experiments and results of the proposed fusion model are discussed. The experiment is
carried out in two stages. In the first stage, the lightweight deep learning models are used with the pretrained
weights, in the second stage, the fusion model with the strategy of weight initialization as discussed in the
previous section is used to detect image forgery. The configuration of the system used for the experiments is as
shown in the Table 2.
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Table 2. System configuration details.

Hardware

Intel(R) Xeon(R) Silver 4110 CPU with 2.10 GHZ, 128 GB RAM

GPU

Tesla P4

Software

Ubuntu 18.04 with MATLAB R2019b

4.1. Dataset

The dataset used for the experiment is benchmark publicly available MICC-F220 [41] of 110 nonforged images
and 110 forged images with 3 channels i.e. color images of size 722 x 480 to 800 x 600 pixels. As shown in
Figure 2, Figures 2a—2j are forged images with 10 different combinations of geometrical and transformations

attacks and Figure 2k is the nonforged image. From the dataset 154 images are chosen randomly for training

purposes and remaining for testing purpose.

Figure 2. Dataset with 10 different combinations of geometrical and transformation attacks; (a—j), forged; (k), nonforged

images.
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4.2. Baseline models and metrics

The baseline models that are used for the comparison of the fusion model are summarized as follows.

SIFT: It uses the forensic method of the image forgery detection using a scale invariant features transform
(SIFT) approach [41].

SURF: It uses a speeded up robust features (SURF) and hierarchical agglomerative clustering (HAC) for
the image forgery detection [42].

DCT: It uses discrete cosine transform (DCT) features for each block and through lexicographical sorting

of block-wise DCT coeflicients for the image forgery detection [43].

PCA: It uses PCA on the image blocks to reduce the dimension space and perform lexicographical sorting

for the image forgery detection [44].

CSLBP: It uses center-symmetric local binary pattern (CSLBP) based on the combined features of Hessian
points for the image forgery detection [45].

SYMMETRY: It uses the local symmetry value of an image to compute the key points for image forgery
detection [46].

CLUSTERING strategy: It uses SIFT features with a clustering strategy to detect image tampering [47].

The basic metrics that are used for the evaluation of the fusion model are recall (R), precision (P), F-

score and accuracy as shown in Equations (egs. (7) to (10)). The confusion matrix is used as the basis for the

evaluation of the forged and nonforged images as shown in the Table 3 and the notations used are:

T Pn: Forged Image detected as forged,
FNn: Forged Image detected as nonforged,
FPn: Nonforged Image detected as forged,

TNn: Nonforged Image detected as nonforged.

FPn

FPR= 5 7 n ©)

TPn
Precision — —— >~
recision = oo (7)

TPn
Recall = 45— FNn ®)

PxR

F- =2 9
score * IR (9)

TPn+TNn
TPn+TNn++FPn+ FNn

Accuracy = (10)

ROC curve is used to estimate the values of the AUC for the pre-trained and also for the fine-tuned

lightweight deep learning models.
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Table 3. Confusion matrix for evaluation of image forgery.

Actual Predicted forged Predicted nonforged
Forged True positive (TPn) | False negative (FNn)

Nonforged | False positive (FPn) | True negative (TNn)

4.3. Pretrained lightweight deep learning models

In this section, the results of the pretrained lightweight models are discussed. The three models SqueezeNet,
MobileNetV2 and ShuffleNet are used with the pretrained weights for the image forgery detection.

The Table 4 shows the confusion matrix and accuracy for the SqueezeNet, MobileNetV2 and ShuffleNet
models. It can be observed that the accuracy of the SqueezeNet model is 89.39% and the percentage of the
prediction of the correct forged is 50% and correct nonforged is 39.39%. However, the wrong forged prediction
is 10.61%. Accuracy of the MobileNetV2 model is 92.42% and the percentage of the prediction of the correct
forged is 50% and correct nonforged is 42.42%. However, the wrong forged prediction is 7.58%. Accuracy of
the ShuffleNet model is 90.90% and the percentage of the prediction of the correct forged is 50% and correct
nonforged is 40.91%. However, the wrong nonforged prediction is 9.09%.

Table 4. Confusion matrix and accuracy for pretrained models.

SqueezeNet MobileNetV2 ShuffleNet

Forged | Nonforged | Accuracy | Forged | Nonforged | Accuracy | Forged | Nonforged | Accuracy
Forged | 33 0 80.03% |0 0 02.42% |2 0 90.90%
Nonforged | 7 26 5 28 6 27

The ROC curve is used to estimate the AUC values for the pretrained lightweight convolutional neural
networks as shown in the Figure 3. Figure 3a represents the ROC curve for the SqueezeNet represents the ROC
with AUC of 90.08%. Figure 3b represents the ROC curve for the MobileNetV2 represents the ROC with AUC
of 91.73%. Figure 3c represents the ROC curve for the ShuffleNet represents the ROC with AUC of 91.36%.

4.4. Fine-tuned lightweight deep learning models

In this section, the results of the fine-tuned lightweight models are discussed. The three models namely
SqueezeNet, MobileNetV2, and ShuffleNet are used with the fine-tuned weights for the image forgery detection.
Table 5 shows the confusion matrix and accuracy for the fine-tuned SqueezeNet, MobileNetV2, and ShuffleNet
models. It can be observed that the accuracy of the SqueezeNet model is 93.93% and the percentage of the
prediction of the correct forged is 50% and correct nonforged is 43.94%. However, the wrong forged prediction
is 6.06%. Accuracy of the MobileNetV2 model is 95.45% and the percentage of the prediction of the correct
forged is 50% and correct nonforged is 45.45%. However, the wrong forged prediction is 4.55%. Accuracy of
the ShuffleNet model is 95.45% and the percentage of the prediction of the correct forged is 50% and correct
nonforged is 45.45%. However, the wrong forged prediction is 4.55%. Figure 4a represents the ROC curve for
the SqueezeNet with AUC of 90.35%. Figure 4b represents the ROC curve for the MobileNetV2 with AUC of
94.12%. Figure 4c represents the ROC curve for the ShuffleNet with AUC of 94.49%.

The ROC curve is used to estimate the AUC values for the fine-tuned lightweight deep learning models

as shown in Figure 4.
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Figure 3. ROC for the pretrained models. (a) SqueezeNet with AUC of 90.08%, (b) MobileNetV2 with AUC of 91.73%,
(c) ShuffleNet with AUC of 91.36%.

Table 5. Confusion matrix and accuracy for fine-tuned models.

SqueezeNet MobileNetV2 ShuffleNet
Forged | Nonforged | Accuracy | Forged | Nonforged | Accuracy | Forged | Nonforged | Accuracy
F d 33 0 33 0 33 0
o8 93.93% 95.45% 95.45%
Nonforged | 4 29 3 30 3 30

4.5. Fusion model

In this section, the results of the fusion models are discussed. Table 6 shows the confusion matrix and accuracy
for the pretrained fusion model and fine-tuned fusion model. It can be observed that the accuracy of the
pretrained fusion model is 93.93% and the percentage of the prediction of the correct forged is 50% and correct
nonforged is 43.94%. However, the wrong forged prediction is 6.06%. It can be clearly observed that the
percentage of wrong nonforged prediction is less as compared to the pretrained lightweight convolutional deep

learning models. The accuracy of the pretrained fusion model is higher than the pretrained lightweight deep
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Figure 4. ROC for the fine-tuned models. (a) SqueezeNet with AUC of 90.35%, (b) MobileNetV2 with AUC of 94.12%,
(c) ShuffleNet with AUC of 94.49%.

learning models.

Table 6. Confusion matrix and accuracy obtained for different fusion models.

Pretrained fusion model Fine-tuned fusion model
Test dataset

Forged | Nonforged | Accuracy | Forged | Nonforged | Accuracy

Forged
Orge 33 0 93.03% |3 0 96.87%
Nonforged 4 29 2 31

It can be observed that the accuracy of the fine-tuned fusion network is 96.87% and the percentage of
the prediction of the correct forged is 50% and the correct nonforged is 46.97%. However, the wrong forged
prediction is 3.03%. It can be clearly observed that the percentage of wrong forged prediction is less as compared
to the fine-tuned lightweight deep learning models. The accuracy of the fine-tuned fusion model is higher than

the fine-tuned lightweight deep learning models.
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4.6. Performance comparison
4.6.1. Performance comparison with pretrained lightweight models

In this section, the performance comparison of the fusion model is carried out with pretrained lightweight
models. The metrics used for the comparison are precision, recall, F-score and accuracy. The results of the

performance comparison are as shown in the Table 7.

Table 7. Performance metrics obtained with pretrained lightweight models.

Model Precision (%) | Recall (%) | F-score(%) | Accuracy (%)
SqueezeNet 82.50 100 90.41 89.39
Mobilenet-v2 | 86.84 100 92.95 92.42
ShuffleNet 84.61 100 91.66 90.90
Fusion model | 89.18 100 94.28 93.93

The precision and recall metrics are important to determine the effectiveness of the deep learning models.
According to Equations (egs. (7) to (10)) the values in the Table 7 were obtained. Table 7 shows values of
precision, recall, F-score and accuracy of the pretrained models. The precision of the SqueezeNet, MobileNetV2,
and ShuffleNet are 82.50, 86.84, and 84.61, respectively. The recall is 100 for all the of lightweight deep learning
models. The F-score of the SqueezeNet, MobileNetV2, and ShuffleNet are 90.41, 92.95, and 91.66, respectively.
The accuracy of the SqueezeNet, MobileNetV2, and ShuffleNet are 89.39, 92.42, and 90.90, respectively. The
proposed fusion model has precision of 89.18, recall of 100, F-score of 94.28 and accuracy of 93.93 respectively.
Hence, it can be seen that the proposed fusion model achieves 2 x times more F-score and 3 X times more
precision and better accuracy as compared to the other models.

4.6.2. Performance comparison with fine-tuned lightweight models

In this section, the performance comparison of the fusion model is carried out with fine-tuned lightweight models.
The metrics used for the comparison are precision, recall, F-score and accuracy. The results of the performance
comparison are as shown in the Table 8.

Table 8. Performance metrics obtained with fine-tuned lightweight models.

Model Precision (%) | Recall (%) | F-score (%) | Accuracy (%)
SqueezeNet 89.19 100 94.29 93.93
Mobilenet-v2 | 91.66 100 95.65 95.45
ShuffleNet 91.66 100 95.65 95.45
Fusion model | 94.11 100 96.96 96.87

Table 8 shows values of precision, recall, F-score and accuracy of the fine-tuned models. The precision
of the SqueezeNet, MobileNetV2, and ShuffleNet are 89.19, 91.66, and 91.66, respectively. The recall is 100 for
all the of fine-tuned learning models. The F-score of the SqueezeNet, MobileNetV2, and ShuffleNet are 94.29,
95.65, and 95.65, respectively. The accuracy of the SqueezeNet, MobileNetV2, and ShuffleNet are 93.93, 95.45,
and 95.45, respectively. The proposed fusion model has precision of 94.11, recall of 100, F-score of 96.96 and
accuracy of 96.87, respectively. Hence, it can be seen that the proposed fusion model achieves more precision
and better accuracy as compared to the other models.
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The results of the Tables 7 and 8 clearly demonstrate the proposed fusion model with the pretrained and
fine-tuned parameters has accuracy of 93.93 and 96.87 respectively. The accuracy is improved by 3 x times in
the fine-tuned models and thus helps in the better classification of the image forgery. The improvement in the
accuracy is obtained using the regularization of the weights in the proposed fusion model.

The results of the performance comparison of the fusion model with the baselines are as shown in the
Table 9. The metrics used for the comparison are the FPR and TPR as they give the correctness of the model
for the image forgery detection. The FPR for the baseline 1 [41] is 8%, baseline 2 [42] is 3.64%, baseline 3 [43]
is 84%, baseline 4 [44] is 86%, baseline 5 [45] is 2.89%, baseline 6 [46] is 5.45%, baseline 7 [47] is 7.63%, proposed
pretrained fusion model is 12.12% and proposed fine-tuned fusion model is 6.06%. The TPR for the baseline
1 [41] is 100%, baseline 2 [42] is 73.64%, baseline 3 [43] is 89%, baseline 4 [44] is 87%, baseline 5 [45] is 96%,
baseline 6 [46] is 83.64%, baseline 7 [47] is 97.87%, proposed pretrained fusion model is 100% and proposed
fine-tuned fusion model is 100%. Therefore, it can be observed that the fusion model has higher TPR and less

FPR as compared to the baseline models due to weight initialization strategy used for the fusion model.

Table 9. Comparative performance of proposed fusion models with baselines.

Approach FPR (%) | TPR (%)
SIFT [41] 8 100
SURF [42] 3.64 73.64
DCT [43] 84 89

PCA [44] 86 87
CSLBP [45] 2.89 96
SYMMETRY [46] 5.45 83.64
CLUSTERING strategy [47] 7.63 97.87
Pretrained fusion model (proposed) | 12.12 100
Fine-tuned fusion model (proposed) | 6.06 100

5. Conclusion

Image forgery detection helps to differentiate between the original and the manipulated or fake images. In this
paper, a decision fusion of lightweight deep learning based models is implemented for image forgery detection.
The idea was to use the lightweight deep learning models namely SqueezeNet, MobileNetV2, and ShuffleNet and
then combine all these models to obtain the decision on the forgery of the image. Regularization of the weights
of the pretrained models is implemented to arrive at a decision of the forgery. The experiments carried out
indicate that the fusion based approach gives more accuracy than the state-of-the-art approaches. In the future,

the fusion decision can be improved with other weight initialization strategies for image forgery detection.
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