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1. Introduction 
Except for a small portion of the energy currently used worldwide, such as 13%, the remainder is obtained by using 
fossil fuels. As a result of this high energy need, which causes climate change with high CO2 emissions, a wide variety 
of CO2 capture and separation techniques are being developed. In addition to the chemical CO2 capture process of 
the currently used amine solutions (diluted with 70% water) that are toxic, corrosive and degradation over time, 
the highly porous recyclable polymers that work according to the physisorption process are highly promising [1].  
By increasing the surface area and addition of electron rich atoms on these materials, CO2 uptake and selectivity are increased, 
as well as the capture affinity for other pipe  gases (a pipe gas includes SOx (<800 ppm), NOx (<500 ppm), O2 (3%–4%), H2O 
(5%–7%), CO2 (15%–16%) and  N2 (75%–76%)) can be practically changed [2].  Increased hydrogen bonding ability and 
dipole quadrupole interactions by using polar groups such as amine, hydroxyl and halogen of the porous material surface 
can capture CO2 gas more selectively on N2 and CH4 [3]. Accordingly, synthesis of new porous materials using nitrogen-
rich monomers and combination of polar groups into their construction through post modification techniques are of 
great interest [4,5]. Microporous organic polymers consisting of light nonmetallic elements with large surface area, narrow 
pore size, and high degree of thermal and chemical stability are extremely low-cost cutting-edge materials used for gas 
sorption and storage processes. Examples of many microporous polymers with high gas capture and separation capacities 
include triazine derivative crystalline organic networks (CTFs) [6,7] , covalent organic networks (COFs) [8], microporous 
conjugated polymers (CMPs) [9,10], intrinsic microporosity polymers (PIMs) [11,12], porous aromatic frameworks (PAFs) 
[13] and hypercrosslinked polymers (HCPs) [14–17] can be given. Hyper-covalent conjugated polymers (HCCPs), another 
subclass of MOPs, differ from HCPs due to their conjugation. Although the synthesis methods are similar to HCPs, it has 
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been found that HCCPs are more effective especially in gas selectivity thanks to their continuous conjugation due to the 
use of aromatic linkers in their synthesis [14]. Triazatruxene, which contains three nitrogen atoms that highly effective in 
gas capture processes, is an important indole derivative due to its planar and aromatic structure, as well as active benzene 
rings in Friedel–Crafts alkylation reaction. Triazatruxene derivatives have a great interest as a result of their high electron 
supply capability provided by the p-conjugate structure with high electron mobility and thermal stability provided in 
complex structures [18–22]. It was observed by our group that the HCP derivative of triazatruxene (TATHCP) synthesized 
by using the methylal linker has a high degree of gas adsorption and selectivity [15]. Therefore, in this study in order to 
see how change the gas uptake and selectivity properties of TATHCP by the change of linker, the synthesis, gas uptake and 
selectivity properties of the hypercovalent conjugated structure TATHCCP was obtained by using dimethoxybenzene as 
linker and triazatruxene as core. Despite the lower surface area of TATHCCP compared to its analog TATHCP, there is 
notable increase of CO2 selectivity over N2, CH4 and CO of TATHCCP, which shows the obvious difference on the use of 
aromatic linker in the selectivity.

2. Materials and methods
2.1. Materials
POCl3 99% purity was purchased from Sigma-Aldrich (Sigma-Aldrich Corp., St. Louis, MO, USA). 2-oxoindole 97% purity 
was procured from Sigma-Aldrich. Dimethoxymethane reagent plus 99% purity was purchased from Sigma-Aldrich. KOH 
≥ %85 purity was purchased from Merck.  All materials were used as received, unless otherwise stated.
2.2. 10,15-Dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole (Triazatruxene, 2)
In a 50 mL round-bottomed flask there was added 2-oxoindole (1; 2 g, 15 mmol) into POCl3 (10 mL, 105 mmol) stirred 
until dissolved at RT then stirred at 100 °C for 8 h. After 8 h, reaction mixture was cooled to room temperature and poured 
into a 500 mL beaker containing ice chips (250 mL) and saturated KOH was added until the pH value reached 7. The 
resulting dark green colored settlings were collected by vacuum filtration using No. 2 sintered glass filtrate and the raw 
product (1.2 g) was purified by silica gel (150 g) column chromatography by using 4:1 ethyl acetate/hexane as the eluent. 
After crystallization from 4:1 acetone/hexane, 10,15-dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole (2) was obtained (Yield: 
40%, 0.8 g) [23].  Melting point: 393-394 °C. 1H-NMR (600 MHz, DMSO): d 11.86 (bs, 3H), 8.67 (d, J = 7.6 Hz, 3H), 7.73 
(d, J = 7.6 Hz, 3H), 7.40 – 7.32 (m, 6H). APT 13C-NMR (150 MHz, DMSO): d 139.0, 134.2, 123.0, 122.7, 120.3, 119.5, 111.4, 
101.0. IR (KBr, cm–1): 3473, 3439, 3053, 3025, 2919, 2852, 1737, 1635, 1273, 729.
2.3. 5,10,15-triethyl-10,15-dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole (3)
In a 100 mL anhydrous THF, triazatruxene (2; 1.85 g, 5.36 mmol) and KOH (4.51 g, 80.34 mmol, 15 eq.) was added at 
room temperature and mixture was heated at 70 °C for 3.5 h. After cooling room temperature, ethyl bromide (2.33 g, 
21.42 mmol, 4eq.) was added to the mixture. The mixture was stirred magnetically overnight at room temperature. After 
checking with TLC and understanding that the reaction was complete, solvent was removed under reduced pressure. The 
raw product was dissolved in 150 mL of EtOAc and washed with diluted NaHCO3 (1× 100 mL) then water (3 × 100 mL) 
and dried over MgSO4. The solvent was removed under reduced pressure. The raw product was purified on silica gel (20 g) 
column chromatography by using 1:4 CH2Cl2/hexane. After crystallization over acetone, 5,10,15-triethyl-10,15-dihydro-
5H-diindolo[3,2-a:3’,2’-c]carbazole (3) was obtained. (Yield: 89%, 2.1 g) 1H-NMR (600 MHz, CDCl3): δ ppm 8.37 (d, J 
= 8.0 Hz, 3H), 7.68 (d, J = 8.0 Hz, 3H), 7.48 (t, J = 7.4 Hz, 3H), 7.37 (t, J = 7.4 Hz, 3H), 5.05 (t, J = 7.2 Hz, 6H), 1.64 (t, 
J = 7.2 Hz, 9H). 13C-NMR (150 MHz, CDCl3): δ ppm 143.4, 141.4, 126.2, 125.4, 124.1, 122.5, 113.0 105.9, 44.4, 18.2. IR 
(powder, cm-1): 3045, 2970, 1555, 1480, 1320, 1233, 1098, 724. HRMS: m/z: Calcd. for (C30H27N3) [M+H+]: 430.22385; 
found, 430.22868.
2.4. Synthesis of TATHCCP
In 20 mL nitrobenzene, 5,10,15-triethyl-10,15-dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole (3) (0.250 g, 0.582 mmol) and 
p-dimethoxybenzene (1.210 g, 8.73 mmol, 15 equiv.) in 20 mL 1,2-dichloroethane, anhydrous FeCl3 (4.150 g, 25.61 mmol, 
44 equiv.) was added at room temperature. The mixture was stirred at 80°C for 5 h then at 120°C for 24 h under an inert 
(N2) atmosphere. After 24 h, reaction mixture was cooling to room temperature then the dark brown precipitate was 
collected by using No. 1 sintered glass filtrate and repeatedly washed with methanol, concentrated HCl, distilled water, 
and methanol to eliminate unreacted monomers and FeCl3 till the filtrate was almost colorless. Then, the TATHCCP was 
purified by Soxhlet extraction from THF (50 mL) for 24 h then dried under vacuum at 120 °C for 24 h to give dark brown-
colored solid powder (Yield: 551 mg, 97 %). IR (powder, cm-1): 2927, 1572, 1457, 1427, 1324, 1208, 1135, 852, 811. 
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3. Results and discussion
3.1. Synthesis and characterization
One of the easiest methods to obtain a broad diversity of hyper-crosslinked polymers on a large scale by using aromatic 
structures that do not including active groups for polymerization is known as the “knitting” method [24,25]. Here, a 
new hyper-crosslinked covalent polymers network called TATHCCP is introduced, which obtained with Friedel-Crafts 
alkylation using triazatruxene (TAT) as the core and dimethoxymethane as the external linker (Figure 1a). Like the other 
similar HCPs synthesized using the same knitting method, the yield of TATHCCP was also quantitative [24,26]. The 
triazatruxene ring was obtained in a similar way to the previous work [23], and N-alkylation of the nitrogen atoms of the 
trimer structure was performed with ethyl bromide to increase the solubility (Figure 1a). By increasing the equivalent 
amounts of catalyst from 3 equivalents to 40 equivalents, the surface area of the obtained TATHCCP increased from 40 
m2/g to 557 m2/g. The stability of the obtained TATHCCP polymer in water and most organic solvents even in diluted 
NaOH and HCl simplified the purification and activation steps.
3.2. Textural and spectral properties
FT-IR, SEM, TEM, XRD, and solid-state magic angle spinning (CP/MAS) 13C NMR spectrometry were used to examine 
of the spectral properties of obtained material, as shown in Figure 2 and Figure S1-S10, SI. FT-IR peaks show the C−N−C 
moieties appear as characteristic bands at around 1450 cm−1 while aromatic C=C bands (stretching) vibrations around 
850–1580 cm–1 which belong to carbazole pyrrole fused benzene rings and crosslinked benzene moieties. C−H vibrations 
(stretching) around 2927 cm–1 indicate that the material is appropriate with the supposed cross-linked polymer (Figure 
2). 13C CP-MAS NMR spectroscopy was utilized to further support the chemical structure of the TATHCCP (Figure S1, 
SI). Peaks resonance at 143 and 127 ppm belong to fused carbazole rings of TAT, while the peak near 57 ppm belongs to 

Figure 1. a) Synthesis of TAT-HCCP. b) Proposed structure of TAT-HCCP (the actual structure can be much more complex due 
to the dense crosslinking).
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carbon in unreacted methoxy group of dimethoxybenzene crosslinker showing the uncompleted reaction of TATHCCP. In 
addition, unsubstituted aromatic carbons of dimethoxybenzene have resonance at 157 ppm while the peak of the carbon 
atoms at the 3-position of the indole trimer a resonance at about 106 ppm (Figure S1, SI). Asterisks denote at 217, 188, 
117, and 95 ppm are denoted spinning sidebands. SEM and EDX analysis was examined for particle composition and 
purity of the TATHCCP polymer. From SEM images of polymer, the findings suggest formation of submicrometer size of 
aggregated particles, while EDX analysis showed that there was not FeCl3 catalyst in the polymer obtained, except for C 
and N elements and O element from unreacted dimetoxymethane moiety. (Figure 3, SI). The powder XRD spectrum has 
not indicate any typical peaks showing that the polymer has greatly amorphous character (Figure S2, SI). 

It is seen from the thermogravimetric analysis (TGA) spectrum that the polymer has a thermal stability up to 350 
°C, and it is also seen that it retains 50% of its mass up to 800 °C (Figure 2d). Possible reason of this significant retain 
from the mass of TATHCCP is N-doped carbon because of thermal disintegration. Because of residuary solvent and 
moisture evaporation there is an initial weigh loss near at 90 °C. Considering the results of the TGA analysis, it is seen that 
TATHCCP is a possible candidate as it meets the requirements in high temperature processes such as CO2 capture and 
post combustion.
3.3. Porosity
Surface area and porosity of TATHCCP network were characterized at 77 K by using N2 as probe gas. Activation of 
the polymer was achieved by degassing for 12 h at 200 °C to start the analysis. As can be seen from the N2 adsorption 
desorption isotherm in Figure 2a, the sharp uptake at the initial low relative pressure (0−0.1 = P/Po) region and above 0.1 

Figure 2. Structural characterization of TATHCCP (a) N2 adsorption-desorption isotherms at 77 K, (b) FT-IR spectrum, (c) pore size 
distribution, (d) thermogravimetric analysis.
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at higher relative pressure shows that TATHCCP has a highly microporous character as well as a permanent microporosity. 
Considering the IUPAC [27] classification, it is seen that TATHCCP exhibits mixture of type I and V isotherm identity at 
increased pressures (Figure 2a). TATHCCP shows a mild capillary condensation between P/Po 0.9−0.95 that is commonly 
presented in microporous networks owing to distension force of the structure throughout the touch of interstitial gaps 
by the adsorbate molecules in the network [28]. The lack of edged adsorption peak at 0.8−1.0 P/Po high relative pressure 
area that points out the macroporous character reveals that TATHCCP doesn’t have this kind of pore structures (Figure 
2a). Calculated surface area analysis from the Langmuir (S

Lang) and BET (S
BET

) (Brunauer – Emmett – Teller) theories and 
textural properties are given in Table 1. According to Langmuir model, surface area of the TATHCCP was found 702 m2g–1, 
while it was found 557 m2g–1 for Brunauer – Emmett – Teller model as shown in Figures S3, SI and Figures S4, SI. The 
findings taken from pore size distribution graph (PSD) by using the nonlocal density functional theory (NLDFT) showed 
that the network has immensely (> 60%) ultramicropore character at 0.6 nm that promising for gas uptake and selectivity 
processes (Figure 2c).

Total pore and micropore volume of TATHCCP was found 0.31 and 0.26, respectively at relative pressures P/P0 = 0.99 
and 0.1. By using the ratio of micropore volume to total pore volume, degree of microporosity of TATHCCP was calculated 
as 84%, which is quite high compare with it’s before synthesized hyper covalent analog TATHCP (%70).
3.4. Gas uptake and selectivity
The amazing degree of microporosity (83%) with high amount of electron rich nitrogen bones of TATHCCP was 
encouraging to examine comprehensively for the possibility of promising gas uptake properties. Five different gas including 

Figure 3. SEM images of TATHCCP (a–f). See SI for more images.

Table 1. The textural properties of the TATHCCP.

Polymer SBET
a

[m2 g–1]
SLang

b

[m2 g–1]
Smicro

c

[m2 g–1]
Vt

d

[cm3 g–1]
V0.1

e

(cm3 g–1) %V0.1/Vt %Smicro/SBET 

4V/Af
BET

[nm]

TATHCCP 557 702 345 0.31 0.26 84 62 2.20

a. BET surface area calculated from N2 adsorption isotherm in the relative pressure (P/P0) range from 0.05 to 0.20. b. Langmuir 
surface area calculated from N2 adsorption isotherm in the pressure range from 30 to 220 mbar. c. Micropore surface area 
calculated from the N2 adsorption isotherm using t-plot method from the Harkins–Jura equation. d. Total pore volume at P/P0 
= 0.99. e. Micropore volume at P/P0 = 0.1. f. Average pore diameter. 
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CO2, N2, CH4, CO, and O2 was used to determine the adsorption properties of TATHCCP from 0 to 1.1 bar pressures at 273 
K, 298 K, and 320 K (Figure 4, Table S1). CO2 uptake capacity of TATHCCP was found 9.0% by weight at 273K /1.1 bar, 
5.5% by weight at 298 K /1.1 bar, and 3.2% by weight at 298K /1.1 bar, respectively (Figure 4a) . CO2 physisorption process 
seems reversible as the desorption isotherms are very close to adsorption isotherms. Although TATHCCP has a moderate 
surface area with respect to its hyper covalent analog TATHCP, obtained CO2 uptake values are very close to TATHCP 
at all temperature, and higher or closer than lots of networks with nearly equal surface area in literature (Table S3) [1, 
29–34]. Main effect of this high CO2 adsorption capacity of TATHCCP is due to the lone pair electrons of high amount 
nitrogen atoms on network, which are used to catch CO2 molecules with hydrogen bonding. In contrast to CO2 adsorption 
values, N2 adsorption values of TATHCCP were found very low at all three temperatures, which can be summarized as the 
TATHCCP has highly N2 phobic character. N2 uptake capacity of TATHCCP was found 0.52 wt%, 0.30 wt% and 0.18 wt% 
at 273 K, 298 K and 320 K at 1.1 bar, respectively (Figure 4b). 

The Clausius–Clapeyron equation was used to obtain the isosteric heat of adsorption (Qst) values of TATHCCP to 
determine whether CO2 is physically adsorbed. Calculated Qst values of TATHCCP was found 34.7 kJ mol–1 at zero loading 
and the fact that it remained as 29.5 kJ mol–1 even when the adsorbed amount of CO2 increased reveals that the network 
has well retention ability despite the low surface area (Figure S8, SI). Additionally, TATHCCP physically adsorbs CO2 
molecules due to the Qst values not more than 50 kJ mol–1, and thanks to the weak interactions with CO2, the network has 
a good recycle ability, which needs no more energy. Compared to low pressure and compressed form, physically adsorbed 
CH4 storage utilities are safer for long transportation processes and in terms of cost. Moreover, in clean energy applications, 
the physically adsorption of hydrogen is of great interest. Even if much higher pressures are needed to determine the exact 
gas uptake values for H2 and CH4 adsorption, low pressure uptakes up to 1 bar help to see latter gas separation utilities. 
Therefore, the adsorption properties of TATHCCP were tested by using H2 at 77 K and CH4 at 283, 298, and 320 K as 
probe gases. H2 adsorption value of TATHCCP was found 0.84 wt % at 77 K, while CH4 adsorption values was found 1.06 
wt%, 0.62 wt% and 0.37 wt% at 283, 298, and 320 K at 1.1 bar separately (Figures 4c, 4d). It is understood that higher H2 
capacity can be obtained at higher pressures as saturation cannot be reached as seen from the H2 isotherm of TATHHCCP 
performed at 77K. Also, this H2 uptake values are remarkable when compared with previous works [35–38] (Table S4). 
The obtained CH4 uptake values of TATHCCP are comparable with the previous works [28, 36, 39–45] (Table S5). Also, 
the calculated Qst values of CH4 by using isotherm data at 273 and 298 K (Figure S9) indicate that TATHCCP has 23.31 kJ 

Figure 4. Gas uptake (weight %) properties of TATHCCP. (a) CO2, (b) N2, (c) H2, (d) CH4, (e) CO, (f)O2 CO adsorption-desorption 
isotherms at 273K, 298K and 323 K.
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mol−1 at zero coverage. Difference between the Qst values of CH4 and CO2 is due to the nonpolar character of CH4, which 
has a less interaction with polymer compared with CO2 molecules.

TATHCCP adsorption capacity was also examined by using CO and O2 as probe gases separately at 273 K, 298 K, and 
320 K at 1.1 bar before calculation of selectivity properties. CO adsorption values of TATHCCP was found 0.75 wt%, 0.43 
wt%, 0.26 wt% at 273, 298, and 320 K while O2 uptake values was found 0.61 wt%, 0.36 wt%, and 0.22 wt% at 273, 298, and 
320 K at 1.1 bar, respectively (Figures 4e, 4f).

Besides, high CO2 sorption values, recycle ability, and CO2 selectivity over other pipe gases have the most important 
subjects of a new porous material candidate for using post combustion processes. Myers and Prausnitz’s ideal adsorbed 
solution theory (IAST) is one of the most used technique for prediction of adsorption feature from using one-ingredient 
gas isotherms to calculate multi-components [46]. IAST was used to compute the CO2 selectivity properties of TATHCCP 
over four different gases (CH4, N2, CO, and O2) at the three different temperatures (273, 298, and 320 K) used for adsorption 
analysis up to 1 bar (Figures 5,  6 and Table S2). To see the minor differences, CO2/N2 selectivity of TATHCCP was 
calculated at three different pipeline ratios (05/95, 15/85, and 50/50) (Figures 5a, 5b). Additionally, CO2/CH4 selectivity of 
TATHCCP was calculated at two different ratios (05/95 and 50/50) while CO2/CO and CO2/O2 selectivities were calculated 
at 50/50 ratio (Figure 6a, b).  CO2/N2 selectivity values of TATHCCP were found 59.1, 28.5, and 18.3 at 50/50 ratio, while 
they were found 50.0, 25.9, 18.3 at 15/85 ratio and 49.2, 25.9, 18.2 at 05/95 ratio at 273 K, 298 K and 320 K at 1.1 bar 
pressure, respectively (Figure 5a). Obtained selectivity values of TATHCCP at three different ratios and temperatures 
are close to each other and higher than previous networks in literature and especially its hypercovalent analog TATHCP 
[47–51] (Table S2, S6, SI). 

Selectively separation of CO2 from CH4 is very important issue in the purification process of natural gas due to 
preventing of pipeline corrosion and rise of obtained energy yield [28]. CO2/CH4 selectivities of TATHCCP at 50/50 ratio 
were found 12.3, 5.4, and 4.4, while they were found as 9.7, 5.9, and 4.5 at 05/95 ratio at 273 K, 298 K, 320 K at 1.1 bar 
pressure, respectively (Figure 5b). Obtained CO2/CH4 selectivities at 05/96 ratio of TATHCCP are nearly the same of its 
analog TATHCP at all three degrees and higher than most of the previous works at 273 K (Table S7) [47,52,53]. 

CO2/CO and CO/O2 selectivities of TATHCCP were also calculated at the same temperatures and pressure as 
to compare to TATHCP and previous works. Calculated CO2/CO selectivities of TATHCCP were found as 35.0, 17.6, 
and 12.3 at 50/50 ratio at temperatures 273, 296, and 320 K at 1.1 bar, respectively while CO2/O2 selectivies were found 
45.9, 23.5, and 16.4 at the same temperatures and pressure (Figures 6a, 6b). Both of CO2 selectivities over CO and O2 of 
TATHCCP at 273 K are higher than its analog TATHCP while a little low at other two temperature (Table S2). When 
TATHCCP (557 m2/g) and TATHCP (997 m2/g) obtained from the same triazatruxene core are compared considering the 
selectivity results, its obviously seen that specific surface area is not the main effect of selectivity. Continuous resonance 
of TATHCCP is one of the possible reasons of high selectivity values than TATHCP, and the other one is probably due 
to higher degree of microporosity of TATHCCP (%84) compared to TATHCP (%70), which helps to more selective CO2 

Figure 5. Selectivity calculations of TATHCCP using the IAST for (a) CO2/N2-05/95, 15/85, and 50/50 at 273 K, 296 K, and 320 K, (b) 
CO2/CH4-05/95 and 50/50 at 273 K, 296 K, and 320 K.
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catching. These differences in selectivity and sorption properties observed between these two hypercovalent polymers 
based on triazatruxene cannot be generalized for all hypercovalent polymers that consist of the same core but contain only 
differentiated linkers. Each polymer obtained with high porosity has its own selectivity and sorption properties arising 
from the core from which it is formed. It’s known from previous studies of HCP derivatives that even if the change of 
linkers affects the selectivity properties, the core of the polymer and the different atoms attached to the core also affect the 
selectivity values of the obtained polymers [14,54]. Therefore, regardless of whether the linkers used in different studies are 
the same, if the core used is different from the one used in the other study, the selectivity and sorption properties should 
be examined from the beginning. In this way, changes can be observed much more clearly by both the linker and the core. 
This study has been one of the rare studies in which these differences are shown specifically for linkers.

4. Conclusion
In sum, starting from electron-rich triazatruxene and using aromatic dimethoxybenzene ring as a linker, a new 
microporous hypercrosslinked conjugated polymer, TATHCCP, was synthesized by using FeCl3 catalyzed Friedel–Crafts 
reaction. The high degree of micropore character of 84%, together with the moderate surface area, prompted the study 
of TATHCCP’s gas uptake and selectivity properties. The gas uptake properties are comparable to most of the similar 
structures in the literature, as well as higher selectivity properties than many of the previously synthesized HCPs and 
especially its previous analog TATHCP, revealed that TATHCCP has a high potential for CO2 separation processes in flue 
gas systems. The obtained Qst values in the physical adsorption region for CO2 and CH4, its resistance to highly acidic-
basic environments and different solvents combined with its cheap structure make TATHCCP very useful for industrial 
applications. Furthermore, this study showed how the degree of microporosity also plays an important role, as well as the 
effect of high specific surface area on selectivity properties. 

Supplementary materials
Materials and methods, synthesis, Langmuir and BET area plots, scanning electron microscopy (SEM) images, energy-
dispersive X-ray spectroscopy (EDS) images and spectra, solid-state 13C CP-MAS NMR spectra, adsorption selectivities of 
CO2 over N2, CH4, O2, CO, tables of selectivity, gas adsorption capacity and CO2, CH4, H2 uptake comparison of different 
microporous materials. 
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Figure 6. Selectivity calculations of TATHCCP using the IAST for (a). CO2/CO-50/50 at 273 K, 296 K and 320 K. (b). CO2/O2-05/95 and 
50/50 at 273 K, 296 K, and 320 K.
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1. General methods and characterization 
 

All reagents were purchased from commercial supplier (Sigma-Aldrich Corp.) and used without 

further purification. Solid-state NMR measurements were carried out with Bruker Ascend 400 

MHz spectrometer (Billerica, Massachusetts, ABD). The 13C CP/MAS NMR spectra were obtained 

with a 4-mm double-resonance MAS probe and with a sample spinning rate of 8.0 kHz; a contact 

time of 2 ms and pulse delay of 3 s were acquired. The gas adsorption and desorption experiments 

were performed using Micromeritics 3Flex system. The samples were degassed at 200 °C for 12 h 

before the measurements. Surface areas were determined from the adsorption data using Brunauer–

Emmett–Teller (BET) and Langmuir methods. The pore-size-distribution curves were obtained 

from the adsorption curve using nonlocal density functional theory (NLDFT) method. Scanning & 

Transmission Electron Microscopy (SEM & STEM) images were obtained Hitachi SU-5000 

(Chiyoda, Tokyo, Japan) microscope worked at changing voltage of 5.0 – 30.0 kV. The thermal 

behaviour of polymer materials was investigated thermogravimetric analysis (TGA) instrument 

(Eixstar) over the temperature range of 20 to 800 °C under N2 atmosphere. FTIR spectra were 

recorded with Bruker Alpha-P instrument. Powder X-ray diffraction (PXRD) results were obtained 

with Shimadzu XRD 6000 (Shimadzu Scientific Instruments Incorporated, Kyoto, Japan) operated at 

40 kV and 40 mA with Cu Kα radiation (step size: 0.020, step time: 0.60 s).  

 

2. Synthetic procedures 
2.1. 10,15-Dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (Triazatruxene, 2)  

In a 50 mL round-bottomed flask there was added 2-oxoindole (1; 2 g, 15 mmol) into POCl3 (10 
mL, 105 mmol) stirred until dissolved at RT then stirred at 100 °C for 8 h. After 8 h, reaction 
mixture was cooled to room temperature and poured into a 500 mL beaker containing ice chips 
(250 mL) and saturated KOH was added until pH value is 7. The resulting dark green colored 
settlings was collected by vacuum filtration using No. 2 sintered glass filtrate and the raw product 
(1.2 g) was purified by silica gel (150 g) column chromatography by using 4:1 Ethyl acetate/hexane 
as the eluent. After crystallization from 4:1 acetone/hexane, 10,15-dihydro-5H-diindolo[3,2-
a:3',2'-c]carbazole (2) was obtained (Yield: 40%, 0.8 g)[23].  Melting point: 393–394 °C. 1H-NMR 
(600 MHz, DMSO): d 11.86 (bs, 3H), 8.67 (d, J = 7.6 Hz, 3H), 7.73 (d, J = 7.6 Hz, 3H), 7.40–7.32 
(m, 6H). APT 13C-NMR (150 MHz, DMSO): d 139.0, 134.2, 123.0, 122.7, 120.3, 119.5, 111.4, 
101.0. IR (KBr, cm–1): 3473, 3439, 3053, 3025, 2919, 2852, 1737, 1635, 1273, 729. 
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2.2. 5,10,15-triethyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (3) 

In a 100 mL anhydrous THF, triazatruxene (2; 1.85 g, 5.36 mmol) and KOH (4.51 g, 80.34 mmol, 
15 eq.) was added at room temperature and mixture was heated at 70 °C for 3.5 h. After cooling 
the room temperature, ethyl bromide (2.33 g, 21.42 mmol, 4eq.) was added to the mixture. The 
mixture was stirred magnetically overnight at room temperature. After checking with TLC and 
understanding that the reaction was complete, solvent was removed under reduced pressure. The 
raw product was dissolved in 150 mL of EtOAc and washed with diluted NaHCO3 (1 × 100 mL) 
then water (3 × 100 mL) and dried over MgSO4. The solvent was removed under reduced pressure. 
The raw product was purified on silica gel (20 g) column chromatography by using 1:4 
CH2Cl2/hexane. After crystallization over acetone, 5,10,15-triethyl-10,15-dihydro-5H-
diindolo[3,2-a:3',2'-c]carbazole (3) was obtained. (Yield: 89%, 2.1 g) 1H-NMR (600 MHz, 
CDCl3): δ ppm 8.37 (d, J = 8.0 Hz, 3H), 7.68 (d, J = 8.0 Hz, 3H), 7.48 (t, J = 7.4 Hz, 3H), 7.37 (t, 
J = 7.4 Hz, 3H), 5.05 (t, J = 7.2 Hz, 6H), 1.64 (t, J = 7.2 Hz, 9H). 13C-NMR (150 MHz, CDCl3): δ 
ppm 143.4, 141.4, 126.2, 125.4, 124.1, 122.5, 113.0 105.9, 44.4, 18.2. IR (powder, cm-1): 3045, 
2970, 1555, 1480, 1320, 1233, 1098, 724. HRMS: m/z: Calcd. for (C30H27N3) [M+H+]: 430.22385; 
found, 430.22868. 

2.3. Synthesis of TATHCCP 

In 20 mL nitrobenzene, 5,10,15-triethyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (3) 
(0.250 g, 0.582 mmol) and p-dimethoxybenzene (1.210 g, 8.73 mmol, 15 equiv.) in 20 mL 1,2-
dichloroethane, anhydrous FeCl3 (4.150 g, 25.61 mmol, 44 equiv.) was added at room temperature. 
The mixture was stirred at 80 °C for 5 h then 120°C for 24 h under an inert (N2) atmosphere. After 
24 h, reaction mixture was cooling to room temperature then the dark brown precipitate was 
collected by using No. 1 sintered glass filtrate and repeatedly washed with methanol, concentrated 
HCl, and distilled water to eliminate unreacted monomers and FeCl3 till the filtrate was almost 
colorless. After that the TATHCCP was purified by Soxhlet extraction from THF (50 mL) for 24 
h then dried under vacuum at 120 °C for 24 h to give dark brown-colored solid powder (Yield: 
551 mg, 97 %). IR (powder, cm-1): 2927, 1572, 1457, 1427, 1324, 1208, 1135, 852, 811. 
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3. General spectra of TATHCCP 
 

 
 

Figure S1. (CP/MAS) 13C NMR spectra of TATHCCP. 
 

 
 
Figure S2. PXRD pattern profile of TATHCCP. 
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Figure S3. Langmuir surface area plot for TATHCCP calculated from the isotherm. 
 
 
 

 
 
Figure S4. BET surface area plot for TATHCCP calculated from the isotherm. 
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Table S1. Comparable gas adsorption capacity of the TATHCCP with TATHCP. 
Gas/Temperature 273 (K) 298(K) 323(K) 

CO2 wt %  9 / 12.55 5.5 / 7.68  3.2 / 4.75  
CH4 wt %  1.06 / 1.56  0.62 / 0.90  0.37 / 0.60  
O2 wt %  0.61 / 0.88  0.36 / 0.48  0.22 / 0.31  
CO wt % 0.75 / 1.04  0.43 / 0.58  0.26 / 0.38  
N2 wt %  0.52 / 0.92  0.30 / 0.03  0.18 / 0.02  
H2 wt % (77K) 0.84 / 1.30  - - 

 
Table S2. Comparable results of gas selectivity for TATHCCP with TATHCP. 
Gases/ Temperature 273K 298K 323K 
CO2/N2 (05/95) 49.2 25.9 18.2 
CO2/N2 (15/85) 50.0 / 38.4 25.9 / 22.3 18.3 / 15.3 
CO2/N2 (50/50) 59.1 / 37.5 28.5 / 24.1 18.3 / 15.6 
CO2/CH4 (50/50) 12.3 / 7.8 5.4 / 5.2 4.4 / 4.2 
CO2/CH4 (5/95) 9.7 / 7.9 5.9 / 4.8 4.5 / 4.1 
CO2/O2 (50/50) 45.9 / 40.6 23.5 / 25.5 16.4 / 18.0 
CO2/CO (50/50) 35.0 / 32.1 17.6 / 18.6 12.3 / 13.2 

 
 

Table S3. Comparison of different microporous materials with respect to their textural and CO2 
uptake (wt % - mmol) values.  

Material BET (m2/g–1) CO2 uptake (wt %-
mmol) at 273K 

CO2 uptake (wt %/ 
mmol) at 298K 

TATHCCP 557 9 / 2.1 5.5 / 1.27 
TATHCP1 957 12.6  7.7  
YBN-CC2 579 8.78 / 2.0 5.61 / 1.27 
YBN-DMM2 784 12.70 / 2.87 7.70 / 1.75 
YBN-DMB2 968 12.74 / 2.87 7.41 / 1.68 
PAF-13 5600 9.1 - 
PON-14 1400 10.8 - 
TPI-15 809 10.7 - 
BPL carbon - 9.15 - 
IN4  243 7.5 4.85 
BT4 571 10.6 6.4 
BF4 1022 10.6 6.0 
PECONF-26 637 12.5 8.7 
PECONF-46 - 0.6 7.9 
BLP-1H at 7 - 7.4 - 
COF-1038 - 7.6 - 
CMP-18 - 9.02 - 
CBZ4 391 9.2 6.02 
DBT4 493 9.7 6.06 
BILP-113 1172 4.27mmol 2.97mmol 
BILP-213 708 3.39mmol 2,36mmol 
BILP-313 1306 5.11mmol 3.29mmol 
BILP-513 599 2.9mmol 1.97mmol 
ALP-125 1235 5,36mmol 3.24mmol 
ALP-425 862 3.5mmol 1.84mmol 
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Table S4. Comparison of different microporous materials with respect to their H2 uptake.  
(wt %) values. 

Material H2 uptake (wt%) at 77K 
TATHCCP 0.84 
TATHCP1 1.30 
YBN-CC2 1.59 
YBN-DMM2 1.23 
YBN-DMB2 1.18 
Polyaniline16 0.85 
CMP-217 0.91 
COF-1038 1.25 

 
Table S5. Comparison of different microporous materials with respect to their CH4 uptake (wt %) values. 

Material CH4 uptake (wt%) at 273K 
TATHCCP 1.06 
TATHCP1 1.56 
YBN-CC2 1.08 
YBN-DMM2 1.61 
YBN-DMB2 1.47 
DBF4 1.47 
BT4 1.34 
BF4 1.22 
CBZ4 1.16 
IN4 0.73 
MaSOF-110 0.98 
SBICC11 0.98 
mesoPOF-112  1.49 
BILP-513 1.77 
BILP-1014 1.61 
CC215 1.82 

 

Table S6. Comparison of different microporous materials with respect to their CO2/N2 (15/85) 
selectivity values at 273 K. 

Material Selectivity 

TATHCCP 50 
TATHCP1 38.4 
YBN-CC2 60.0 
YBN-DMM2 44.6 
YBN-DMB2 159.1 
FCBZz18 28.9 
FCTCz18 26.1 
TATCOF219 5.9 
YPTPA20 17.3 
SPTPA20 30.6 
TBPIM3321 18.1 
TBPIM2521 17.0 
PPF-122 14.5 
PPF-222 15.4 
PPF-322 20.4 
PPF-422 15.0 
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Table S7. Comparison of different microporous materials with respect to their CO2/CH4 (50/50) 
selectivity values at 273 K. 

Material Selectivity 

TATHCCP 9.7 
TATHCP1 7.8 
YBN-CC2 7.9 
YBN-DMM2 6.9 
YBN-DMB2 7.3 
FCBZ18 5.8 
FCTCz18 5.2 
CMPs23 4 
Cz-POF124 4.4 
Cz-POF324 4.7 

 
 
 
 
 
 

 

Figure S5. Initial slope fitting for gases of TATHCCP at 273K 
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Figure S6. Initial slope fitting for gases of TATHCCP at 298K. 
 
 

 

Figure S7. Initial slope fitting for gases of TATHCCP at 320 K. 
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Figure S8. The isosteric heat of adsorption (Qst) of TATHCCP for CO2. 

 

 

Figure S9. The isosteric heat of adsorption (Qst) of TATHCCP for CH4. 



11 
 

      

 

 

Figure S10. EDS spectra of TATHCCP. 



12 
 

4. Scanning electron microscopy (SEM) images of TATHCCP 
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