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Abstract: This study develops the deep Q-network (DQN)-based noise suppression for robust speech recognition
purposes under ambient noise. We thus design a reinforcement algorithm that combines DQN training with a deep
neural networks (DNN) to let reinforcement learning (RL) work for complex and high dimensional environments like
speech recognition. For this, we elaborate on the DQN training to choose the best action that is the quantized noise
suppression gain by the observation of noisy speech signal with the rewards of DQN including both the word error rate
(WER) and objective speech quality measure. Experiments demonstrate that the proposed algorithm improves speech
recognition in various noisy conditions while reducing the computational burden compared to the DNN-based noise

suppression method.
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1. Introduction

Recent years have witnessed major advances of deep neural networks (DNN)-based speech enhancement since the
introduction of the regression approach and ideal ratio mask (IRM) [1, 2]. These algorithms successfully suppress
the background noise, which is an inevitable problem in real world scenarios. Although speech enhancement
techniques are found to be very helpful in tasks such as speech recognition, recognition performance is severely
degraded in noisy conditions [3, 4]. It is hence crucial that the speech recognition exhibits a robust performance
across ambient noises and benefit many speech technology applications. In [4], the supervised learning approach
is proposed to map a set of harmonic features into a pitch based grouping cue for time-frequency (T-F) unit.
T-F unit means another domain of a signal converted through the short time Fourier transform from a time
domain. The mapping results in an ideal binary mask (IBM) that is used to preserve the speech dominant one
in the T-F unit, in which, a value of 1 in the mask indicates that the speech is stronger than noise and a value
of 0 otherwise. It is recently found that performing T-F masking in the complex domain is very beneficial to
jointly enhance the magnitude and phase response of noisy speech by estimating the complex IRM in the real
and imaginary domains [5]. A new speech enhancement algorithm was introduced in [6], this method is based
on the adaptive threshold of intrinsic mode functions (IMFs) of noisy signal frames extracted by empirical mode
decomposition. Adaptive threshold values are estimated by using the gamma statistical model of Teager energy
operated IMFs of noisy speech and estimated noise based on symmetric Kullback—Leibler divergence. Enhanced

speech is then obtained from noisy speech by a semisoft thresholding function.
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On the other hand, a regression approach to DNN-based speech enhancement has been proposed to train
deep and wide neural networks based on a large training data that encompasses many possible combinations
of speech and noise types, which maps directly from observed noisy speech to desired clean speech [7]. It turns
out that the annoying musical noise, which is a noise residue that remains after applying speech enhancement,
is greatly reduced and thus the enhanced speech shows a higher speech quality in terms of the objective quality
metric and listening test. This idea was further extended to cope with adverse conditions and non-stationary
noises in real-world scenarios. Recently, a novel structure of network called the SpinalNet [8] was developed,
and it was reported to achieve the state-of-the-art (SOTA) performance in the regression task on several well-
known benchmark datasets. By observing the recent success of convolutional neural networks (CNN) and the
wonderful architecture of human spinal cord Kabir et al., developed a neural network with gradual inputs, named
SpinalNet as shown in Figure 1. Among two predominant algorithms [7, 8] we introduced earlier, the SpinalNet
has been considered to employ the reinforcement learning (RL) [9] since a huge amount of the training data is
necessary to ensure the output speech quality of the DNN-based regression method. In order to efficiently use
the training data that is relatively insufficient in absolute amount, RL can be adopted as a promising algorithm
since it is self-optimized with a reward which is calculated from the perceptual score in such a way that the
amount of computation is greatly reduced [10]. In [11], the Q-learning is proposed to incorporate the feedback
from perceptual quality of enhanced speech and then the best T-F mask is selected among the clustered T-F
mask templates, supported by the k-means algorithm. Recently, in [12, 13], the RL was further applied to
optimize the speech enhancement model for the recognition results. However, since these studies were not
designed directly based on the recognition results of automatic speech recognition (ASR), but only the speech
quality was considered, the possibility of improving the recognition performance of ASR still remains. Recently,
the RL began to be introduced to train the ASR system [14, 15]. As is well known, the deep Q-network (DQN)
is an effective way to implement RL, which is an area of machine learning concerned with how software agents
ought to take actions in a way to maximize the reward under given environments.

In this paper, we design the DQN-based speech enhancement in such a way that the speech recognition
accuracy is improved under various noise conditions. We first develop the SpinalNet to estimate noise suppression
gain vectors, which are quantized to produce the finite action-value functions. The DQN is then designed based
on the finite action to value the DQN higher than the SpinalNet when the DQN-based action outperforms the
SpinalNet-based one in terms of the given reward. To validate the performance comparison between the DQN
and SpinalNet, the ASR, performance in terms of word error rate (WER) as well as the objective speech quality
measure, called composite measure [16], are exploited to design the reward when training the DQN. In the test
stage, the best action-value function, namely, one of the quantized noise suppression gain vectors is chosen by
the DQN on a frame-by-frame basis and applied to noisy speech, leading to higher speech ASR performance.

The rest of this paper is processed in the following order. Deep Q-network is reviewed in Section 2. The
proposed algorithm is introduced in Section 3. Experimental setup and results are provided in Section 4. In

the end, conclusions are provided in Section 5.

2. Review of deep Q-network

The approach we present in this paper is focused on RL, a method of learning how to select an optimal action
after constructing a policy which is taken to the next state in order to receive the highest reward in a specific
state. Policies define how learning agents take at specific times. Specifically, a policy is an action to be taken

when in that state in a detected environmental state.
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In certain cases, a policy may be in the form of a lookup table or a very simple function, while in some
cases it may include something like a search process. Policies are the core parts of reinforcement learning,
because they are effective in determining behavior. The goals of reinforcement learning problems are defined
as rewards. At each time step, the reinforcement learning agent receives a single number, a reward from the
environment. Maximizing the total reward is a very important goal of the agent. The agent is informed of what
is good from the reward. The reward is a fundamental component of policy change. If a low reward is given for
the action chosen as a policy, the policy will be changed so that a different action is chosen in the same situation
in the future. Usually, the reward can be a stochastic tool of environmental conditions and actions. Optimal
actions represent good things in the long term and rewards represent good things in the relatively short term.
The value of a state is the total reward that an agent can accumulate from present to future. It is originally
inspired by behavioral psychology as an area of machine learning where an agent defined given an environment
selects an action that maximizes the reward given the choice of the action on a current state to be recognized.
These problems are so comprehensive that they are also studied in areas such as game theory, control theory,

multiagent systems and so forth.

The optimization control theory also studies similar problems, but it clearly differs from the reinforcement
learning approaches in terms of learning and approximation in that most studies focus on the existence and
characteristics of the optimal solution. The RL also differs from general supervised learning in that there is no

training set consisting of input and output pairs. This is why no explicit correction is made for wrong behavior.

Instead, the focus of the RL lies on performance in the learning process which is enhanced by balancing
exploration and exploitation. Balanced problem of exploration and exploitation is the most studied problem in

the RL, and it has been studied in multiarmed bandit problem and finite Markov decision process [9].

There exist several types of strategies to make use of the RL with a goal of finding the best action. A
simple but efficient way is to create a Q-table where we calculate the maximum expected future reward, for
each action of each state. Then, since we know what the best action to take is for each state, we are able to
take that action of that state with the best policy given. Instead of implementing a policy directly, we aim at

improving the Q-table to always choose the best action.

The values for each element of the Q-table are specifically updated via the Q-learning algorithm. Once
the Q function (or action-value function) is defined by the expected future reward of that action at the state,
the Bellman equation [17] is used to iteratively update the Q function. Then, as we explore the environment,
Q gives us a better and better approximation even in a harder environment. However, when imaging a big
environment with a gigantic state space producing different states, it is not easy to create and update the
Q-table at all. The best idea is to use a neural network, which classifies, given a state, the different Q-values
for each action. This algorithm is called the DQN to take an input and pass it through its network for finding
a vector of Q-values for each action possible in the given state. Then, it is needed to take the biggest Q-value

of this vector, which corresponds to the best action.

A pioneered work, presented in [11], investigated whether the RL, which is implemented on the DQN
algorithm, can self-optimize a DNN-based speech enhancement algorithm. To implement the DQN, finite action
functions are required for which the DNN-based enhancements gains are first quantized. Then, the DQN is
carefully designed to select the best action, gain vector to suppress noise by utilizing quantitative metrics

reflecting a subjective individual perception score as a reward of the RL.

Thus, the DQN exhibits the superior performance compared to the DNN-based references over a diverse

range of scenarios. However, it is useful only to enhance the speech quality but does not mean that the accuracy
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of speech recognition systems is improved in difficult acoustical environments.

3. Proposed DQN-based noise suppression method

In order to develop the DQN-based noise suppression for improving the ASR performance, we first find the
relevant reward in measuring performance of the ASR. Since the perceptual evaluation of speech quality used
in [11] does not exhibit inherently high correlation with the ASR accuracy, the first strategy is to use the WER,
designed by

S+I+D

WER = == x 100, (1)

where the word sequence hypothesized by the ASR system is aligned with a reference transcription, and the
number of errors is computed as the sum of substitutions (5), insertions (I), and deletions (D) with N denoting
the number of total words. Hence, the WER becomes the Levenshtein distance between the hypothesis H and
correct answer phase R, namely D(H, R). For this, let m be the number of words in R and n be the number

of word in H

Di 1511 +0 (H; =Ry)
D;,; = min Dic1jn 1 <Sub5ﬁ.tution) (2)

Dij-1+1 (Insertion)

Di1;+1  (Deletion)

where 1 < i <m, 1 < j < n, H; denotes the jth word in the hypothesis R; denotes the ith word in the
reference. Then, the WER is finally computed as follows:

WER(H,R) = D, ; /m, 3)

where we believe that WER can be successfully responsible for the short-term recognition accuracy as the desired
reward, additionally, we consider the composite measure C, proposed in [16], which is known to show the
significantly high correlation with the listening quality as perceived by users which is determined by the

regression technique as shown below:
C=1.594+40.805- Sprsg — 0.512- Sr g — 0.007 - Swss, (4)

where Sprsg, Siir, and Swss mean the values obtained by perceptual evaluation of speech quality (PESQ)
[18], log likelihood ratio, and weighted spectral slope, respectively. We believe that C can be responsible
for the long-term recognition accuracy as the desired reward. Since the composite measure C is used to
determine the quality of the whole speech, it is wise to say that C accounts for the long-term reward. Then,
the reward functions WER and C are collpased into the single reward, in which we use the difference of WER and
C compared to opponents rather than using original values themselves, since WER or C are affected not only by
the performance but also the external factors [16]. As for the opponent, the SpinalNet [8] is employed due to
its superior performance. The configuration of the SpinalNet is composed of an input row, an intermediate row
of multiple hidden layers, and the output row. To minimize the number of multiplications, Kabir et al., kept
the number of inputs per layer and the number of neurons per hidden layers as small as possible but this may
cause the network to underfit. To overcome this issue, each layer in the intermediate row receives the input
from the previous layer. Since the input is recurring, if any significant input feature does not affect the output

in one of the hidden layers, they can affect in another hidden layer. The input is split into two rows as depicted
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in Figure 1 and both rows are allocated to different hidden layers repetitively. The intermediate row contains a
nonlinear activation function and the output row contains the linear activation function. Finally, the last layer,
output layer, combines the weighted outputs of the hidden neurons on the intermediate row. Thus, we obtain

the below with the scaling factor a; and as:
U= tanh(al(WERDQN _ WERSpinalNet) + ay ((CDQN _ (CSpinalNet))7 (5)

where CP@N and CSPinalNet denote the composite measure values directly obtained by the DQN and SpinalNet,
respectively. Also, WERPQN and WERSPmeNet are determined by not only the DQN and SpinalNet but also the
ASR algorithm.

Next, U is further revised to take full consideration on the logarithmic difference between enhanced

speech and clean speech as given by

M Q
Be= > > [log|Xyspr| — log| Xy sq-]? (6)
T=—M w=1
where XWH_T denotes an enhanced speech signal and X, ;4. denotes a clean speech signal. w = {1,2,---,Q},
t = {1,2,---,T} and 7 = {0,1,--- , M} denote the indices of the frequency, time and context window,

respectively. Subsequently, F; is normalized between 0 and 1 such that

E
Ep=—"t (7)
maxteT (Et)

Then, the new reward 7; is calculated during speech is absent such that

E.U (-1<U<0) ®)

. {(I—Et)[U (0<U<1)
t =

where the voice activity detection (VAD) algorithm, proposed in [19], was employed to identify speech absent
or not. As for the speech periods, r; is determined to exploit the ASR results obtained from the two competing

algorithms, namely DQN and SpinalNet, in each time ¢ such that

o Jw-E)U 0<U<1)
T\ wEU (-1<U<0)

In time, w; is obtained differently for four distinct cases:

( HtDQN _ Rt’prinalNet # Rt )
wo ( HtDQN — Rt7HtSpinalNet _ Rt )
( HDQN 7& Rt HSpinalNet 7& Rt )

t ot
( HtDQN 7& Rt’prinalNet _ Rt )

(10)

Wy =

where HP?Y and HP™*N¢' denote the hypotheses derived from the DQN algorithm and the SpinalNet,

respectively, and R; is the correct reference at time t.
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X(k+1:2k)

Y

X(1:k)

Figure 1. The structure of SpinalNet [8] as X and Y denote the input and output of network, respectively.

As shown in Figure 2, the process of calculating the reward of the proposed algorithm described above is

summarized as follows. The log power spectrum (LPS) is extracted from the training dataset and it is applied
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as the input to the DQN. Then, the noise suppression gain, which is the output of the DQN, is applied to
the input LPS. In addition, the noise suppression gain, which is obtained through the SpinalNet, is separately
applied to the input LPS. Each output from the DQN and SpinalNet is applied as input to ASR and WERs are
acquired. In addition, composite measures are calculated based on the output of each algorithm. After that,
the rewards are determined through Eqs. (6)—(10), eventually, the DQN is trained through the reward obtained
above.

DOQN
' suppression

. ) ) gain
Training DB : ' ' selection

Automatic WERP 9N

speech

recognition WERSpinalNet Reward

calculation

SpinalNet Composite (6)-(10)

suppression measure

gain calculation
selection

Figure 2. Overall block diagram of the proposed DQN-based noise suppression technique.

Once the reward is carefully designed, the next step is to develop the policy Q function, indicating for how
good it is for the ASR system to pick an action while being in the current observation y;. For this, the action
a; must belong to the finite set for which a continuous large set of gain functions derived from the SpinalNet

noise suppression as in [8] are converted into A, discrete set with a size of A(=32) through the quantization

step [11]. Then, the optimal selection policy (:2 at the tth frame is formed to consider the DQN output in

future 7 frames as follows:

A {rt + Zﬂ/[:o A(T)maxaeaQ(Yeq-,a)] fO<U<1 (11)

Q(ytv at) = Q(yt, at) otherwise

where A(7) denotes the 7th discount factor. Next, Wq, a set of parameter of the DQN is fully trained to
minimize the cost, which is the error between the optimal policy Q and the DQN output @ as follows:

T A
1 . o
Wq + argr%nT;;@(yt,l) — Qys, 1), (12)
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where T is the total number of the frames.
After training, in the test stage, the T-F IRM mask is determined as the best action chosen by the

optimal selection policy for given input y; as follows:
ay = argmax Q(y, 1), (13)
i€A

where the suppression gain G, 4, is applied to input y; in the end such that

X’w,t = Gw,&t ' th (14)

)

yielding the enhanced speech, which serves as the input to the ASR system.

4. Experiments and results

This section presents the performance evaluation of the proposed DQN-based noise suppression method. In order
to objectively verify the superiority of our proposed method, we compared it with the conventional algorithms.

The first and second comparative models were proposed in [6, 8], respectively. The third comparative
model was the conventional RL and the structure was designed as the 257 dimensions LPS corrupted by noise
[11]. The frame considered were 5 previous frames, the present frame, and 5 future frames, total dimension
was 2827 ( = 257 dimensions x 11 frames). The hidden layer consisted of three. Each hidden layer consisted
of 1024 nodes and the output was 32 dimensions, which makes the DQN results in lower complexity than the
SpinalNet whose output dimension was 257. In other words, we set 32 noise suppression gain clusters established
by the k-means algorithm. We used the ReLU [20] as the activation function, mean squared error (MSE) as the
cost function, Adam as the optimizer [21] and 0.0005 as the learning rate. The fourth comparative model was
proposed in [12].

The input dimension of the proposed DQN-based noise suppression algorithm was 2827 ( = 257 dimensions
x 11 frames), which is considered as a total of 11 frames, 5 previous frames, the present frame, and 5 future
frames considered as a basic unit of 257 dimensional LPS of speech signal corrupted by noise. The hidden
layer consisted of three. Each hidden layer consisted of 1024 nodes and the output was 32 dimensions. In
other words, we set noise suppression gain vectors 32 clusters given by k-means algorithm. We used the
same activation function, optimizer and learning rate as used in the third comparative model [11]. In (5),
a1 = —1, a9 = 20 were used. Also, M was chosen 2 for in (6) and (11). In (10), each parameter was used as
follows: w; = 1.0,wy = 0.3,ws = 0.3 and wy = 0. In (11), 7(0) = 0.7,7(1) = 0.2 and 7(2) = 0.1 were used.
These parameters were selected with the CHiME-3 development-set [22].

The part of experiments used the CHiME-3 dataset. All the dataset used in this study have been
experimented by sliding them with 512 samples and 50% overlapping at a sampling frequency of 16 kHz.

We eventually conducted experiments on the following platform. The central processing unit (CPU)
was Intel i7-9700K, the random access memory (RAM) was 32 GB, and the graphics processing unit (GPU)
was NVIDIA GeForce RTX 2080 Ti. The recognizer was based on Kaldi-toolkit [23] and the recognizer was
trained on the CHiME-3 training-set. Specifically, the features were up to the delta-delta, which is the difference
between the 13th order mel-frequency cepstrum coefficients (MFCCs) [23], namely delta and its difference, which
is delta-delta, and the considered frame was 11 frames. A total of 429 ( = 13 orders x 3 types X 11 frames)

dimensions were considered. As for the acoustic model, the number of input nodes was 429, the hidden layer
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consisted of 5, each hidden layer consisted of 1024 nodes, the activation function was sigmoid, the number of
output nodes was 6063, and neutral-gradient-based optimization was applied [23]. The language model used

tri-gram for 8666 words and training dataset was used about 18 hours among CHiME-3 dataset.

4.1. Experiments on CHiME-3 dataset

The dataset used in the experiment was CHiME-3, which was collected directly through a multimic mobile
apparatus for ASR in environments such as bus, cafe, pedestrian region, and streets. Each dataset had two
types: real speech dataset (REAL) and simulated speech dataset (SIMU). The real speech dataset was recorded
in 6 channels and its sampling rate was 16 kHz. Twelve American English speakers (6 males and 6 females) aged
20-50 read sentences from the WSJ0 dataset and the sentences were recorded by a multimic mobile apparatus.
As a result, the estimated signal-to-noise ratio (SNR) of the collected dataset was about 5 dB [22].

Training, development and evaluation sets were included in the CHiME-3 dataset. The first set consisted
of 87 speakers, 18 h, 1600 utterances and the ratio of REAL:SIMU is 1:5, the second set consisted of 4 speakers,
2.9 h, 3280 utterances and the ratio of REAL:SIMU is 1:1. Finally, the third set consisted of 4 speakers, 2.2 h,
2640 utterances and the ratio of REAL:SIMU is 1:5. Only the fifth microphone was used in experiments.

The performance for each given noise environment was evaluated by the recognition rate in which Table 1,
each value was the WER as summarized in Table 1. Tables 2 and 3 show the average PESQ [18] and short-time
objective intelligibility (STOI) [24], respectively. A high PESQ (between —0.5 and 4.5) and STOI (between 0
and 1) indicate improved quality and intelligibility, respectively. Experimental results show that the proposed
approach leads to improvements of speech recognition, PESQ, and STOI in various noisy conditions while

reducing the computational burden compared to the SpinalNet.

Table 1. Performance comparison of WER for the conventional algorithms and proposed technique on CHiME-3 dataset.

Conditions WER
Environments | Types | Unprocessed | Arslan [6] | Kabir [8] | Koizumi [11] | Shen [12] | Proposed method
Bus SIMU | 56.09 25.12 24.08 22.61 21.74 18.64
REAL | 65.37 36.31 34.25 33.30 32.34 29.04
Cafe SIMU | 64.01 36.93 32.92 31.39 30.29 27.59
REAL | 71.85 42.74 38.17 36.88 35.40 32.16
Pedestrian SIMU | 64.65 30.76 29.29 27.54 25.77 22.27
REAL | 56.38 26.32 25.44 24.83 23.06 19.96
Street SIMU | 62.47 33.87 31.86 30.13 28.42 25.22
REAL | 55.55 25.62 23.33 21.76 19.98 16.28
Overall 62.04 32.21 29.91 28.55 27.13 23.89

From these results, it was found that RL optimized the DQN-based noise suppression algorithm, and the
ASR performance of the proposed method was improved when exploiting the WER and composite measure as
reward for DQN. In summary, it makes sense to say that the proposed algorithm efficiently used the training
data resources which were relatively insufficient in quantity than the SpinalNet, since the DQN-based method
outperformed the SpinalNet in terms of WER, PESQ, and STOI. Also, in the test phase after all training is
complete, the proposed technique is to choose one of 32 mask templates per frame. In contrast, the SpinalNet

does a regression with 257 dimensions of output per frame. Therefore, the complexity of the proposed method is
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Table 2. Performance comparison of PESQ for the conventional algorithms and proposed technique on CHiME-3
dataset.

Conditions WER
Environments | Types | Unprocessed | Arslan [6] | Kabir [8] | Koizumi [11] | Shen [12] | Proposed method
B SIMU | 0.82 1.39 1.41 1.44 1.46 1.52
us

REAL | 0.65 1.18 1.22 1.24 1.26 1.33
Cafe SIMU | 0.67 1.17 1.25 1.28 1.30 1.35

REAL | 0.53 1.06 1.15 1.17 1.21 1.27

. SIMU | 0.66 1.29 1.31 1.35 1.38 1.45

Pedestrian

REAL | 0.81 1.37 1.38 1.40 1.44 1.50

SIMU | 0.70 1.23 1.27 1.30 1.34 1.40
Street

REAL | 0.83 1.38 1.42 1.46 1.49 1.56
Overall 0.71 1.26 1.30 1.33 1.36 1.42

Table 3. Performance comparison of STOI for the conventional algorithms and proposed technique on CHiME-3 dataset.

Conditions WER
Environments | Types | Unprocessed | Arslan [6] | Kabir [8] | Koizumi [11] | Shen [12] | Proposed method
Bus SIMU | 0.306 0.519 0.527 0.538 0.546 0.568
REAL | 0.242 0.442 0.456 0.464 0.472 0.495
Cafe SIMU | 0.251 0.437 0.466 0.477 0.486 0.506
REAL | 0.196 0.397 0.429 0.439 0.450 0.474
Pedestrian SIMU | 0.247 0.480 0.491 0.504 0.517 0.543
REAL | 0.304 0.511 0.517 0.523 0.536 0.559
Street SIMU | 0.262 0.459 0.473 0.486 0.499 0.522
REAL | 0.310 0.516 0.532 0.544 0.558 0.584
Overall 0.265 0.470 0.486 0.497 0.508 0.531

significantly smaller than that of SpinalNet. The utilization of WER and composite measure, which are closely
related to speech recognition performance, to the reward design can be seen as a factor contributing to the

performance difference between the proposed algorithm and conventional reinforcement learning methods.

5. Conclusion

In this paper, we proposed the DQN-based noise suppression algorithm which was designed by the reward
based on the WER and composite measure exhibiting higher correlation with ASR performance by referring
to existing speech enhancement based on RL whose reward is PESQ. The proposed method was evaluated in
terms of WER, PESQ, and STOI conducted on CHiME-3 dataset and outperformed conventional methods

under various noise conditions.
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