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1. Introduction
Grape production is an important agricultural sector 
globally, and in particular in Syria and Turkey. There are 
many common diseases affect the quality and production 
of grapes such as powdery mildew (Atak et al., 2017; İçli 
and Tahmas, 2020). Early detection of these diseases is 
crucial for minimizing the losses of fruits. Syria ranks 
28th globally produce grapes with 0.4% of global yield 
(Idris and Arabi, 2014) over an area of ​​70,000 hectares, 
equivalent 540,000 tons of vine fruits per year. In 1920 
in Syria, the grapevines were infected with phylloxera, 
which spread rapidly and affected a large area (Contaldo 
et al., 2011). This disease is characterized by its devastation 
on grape production and spreads quickly. Currently, the 
symptoms of vine shrub diseases on leaves can be detected 
by experts who then request the pesticides to be used. 
However, this method relies on a number of resources. 
First, it requires the availability of human resources. 
Second, farmers may notice the occurrence of diseases 

on leaves but fail to report the case and hence delay the 
handling of the disease at a suitable time. Our study is 
focused on early, accurate and accessible detection of 
vine leaf diseases. This paper reports a method of using 
deep learning for rapid detection of diseases and then 
determines the best way to handle the circumstance. 
Deep learning has extended classical machine learning by 
adding more ‘depth’ (complexity) into the model as well as 
transforming the data using various functions that allow 
data representation in a hierarchical way through several 
levels of abstraction (Kamilaris and Prenafeta, 2018). Smart 
agriculture uses artificial intelligence (AI) technology 
for quality control and disease detection (Tongke, 2013). 
Many models of artificial networks have been used to 
diagnose plants diseases such as CNN (Ferentinos, 2018; 
Pradhan and Patil, 2020), deep Siamese networks (DSN) 
(Goncharov et al., 2020), deep convolution neural network 
(D-CNN) (Howlder et al., 2019), feed forward neural 
network (FFNN), learning vector quantization (LVQ) 
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(Muthukannan et al., 2015), K-NN, SVM and random 
forest (Islam et al., 2017; Sanjeev et al., 2013). In the natural 
environment of vines, a method of image processing has 
been used (Reis et al., 2012), where they recognized white 
and red grapes both in daylight and at night to inform 
the harvesting robot. They tried to introduce precision 
agriculture (PA) and precision viticulture (PV) into the 
farmers’ daily routine. In other studies, deep learning has 
been used to classify diseases on plants (Muthukannan et 
al., 2015; Sharath Kumar and Suhas, 2017). Mohanty et 
al. (2016) obtained an automated detection accuracy of 
99.35% using D-CNN on 14 plant species with 26 diseases, 
which were classified using a public accessible dataset 
consisting of 54.306 images from PlantVillage dataset. 
Classification of diseased/healthy leaf images (e.g., bean 
and bitter gourd leaves) was carried out using FFNN 
which is one kind of the standard artificial neural network 
algorithms. In the meantime, LVQ, a supervised version of 
vector quantization, was used with labeled input data. In 
the study conducted at Anna University in India, images 
of various plant leaves collected from agricultural fields 
and 118 diseased leaf data (Bean leaf-63, Bitter gourd-55) 
were used (Muthukannan et al., 2015). Deep learning with 
an unmanned automated vehicle (UAV) system and RGB 
cameras was used to detect a vine leaf disease. Images 
were obtained at an altitude of 25 meters, and the major 
limitation of the study was that it detected just one disease 
(Kerkech et al., 2018). Kamilaris and Prenafeta-Boldu 
(2018) surveyed 40 papers related to the field of smart 
agriculture and found that deep learning is the best way for 
object detection (Kamilaris and Prenafeta-Boldú, 2018). 
Classical machine learning approaches also can be used 
in various studies on leaves. For example, (Pukkela and 
Borra, 2017) evaluated several techniques for the detection 
of diseases in a variety of plants (apple, potato, tomato and 
rice), including radial basis function (RBF) kernel-based 
support vector machine (SVM) learning algorithm, and 
SVM with k-means clustering algorithm. Thermal imaging 
technology can also be employed to detect diseased 
regions in a nondestructive way (Raza et al., 2015). For this 
aim, they developed a SVM based system to examine the 
diseases on the thermal profile of a plant remotely.  Other 
studies show that the automated segmentation model of 
diseased leaf with active gradient and local information 
can be used to examine seven diseases over leaf images of 
cotton under natural conditions. The Jian’s model has good 
segmentation accuracy with less running time when being 
used to process seven diseases over leaf images of cotton 
under different conditions (e.g., uneven lighting, leaf 
disease spot blur, adhesive diseased leaf, shadow, unclear 
diseased leaf edges, complex background, and staggered 
condition). Compared with geodesic active contour 
1 https://www.agric.wa.gov.au

(GAC) (Kass et al., 1988), Chan-Vese (CV) (Chan and 
Vese, 2001), and local binary fitting (LBF) algorithms (Li et 
al., 2007) the Jian’s model has the best detection accuracy 
(Jian-hua et al., 2018). Transfer learning and deep learning 
have been used with classifiers such as SVM and LDA 
for plant classification. Flavia, PlantVillage, and Swedish 
leaf datasets were used as an input to pretrain AlexNet 
and VGG16 (Kaya et al., 2019). They demonstrated that 
transfer learning with deep learning models can provide 
better performance compared to the other combinations. 
Their dataset is widely available on the internet, including 
the shapes of the leaves for classification. Pulse-coupled 
neural network (PCNN) has been used for segmentation 
of tomato plant images captured at night (Xiang, 2018). 
The existing solutions shown above have demonstrated 
promising outcomes in the detection of vine leaf diseases. 
As can be seen from the studies above, transfer learning 
based deep learning has shown successful cases in leaf 
disease detection and we wish to continue to work along 
this direction. Our study will contribute to vine leaf 
disease detection by presenting a new technique based on 
deep learning to improve the accuracy of disease detection 
in vine leaves with satisfactory efficiency. 

2. Materials and methods
In this paper, based on the leaves image input it is aimed to 
identify normal (healthy) ones and nine different diseases 
such as anthracnose, black rot, downy mildew, powdery 
mildew, Fe deficiency, K deficiency, Mg deficiency, mite 
infections and phylloxera infection. The nine diseases 
selected are the most common diseases affecting vine 
leaves in Syria and the surrounding regions. 
2.1. Materials
2.1.1. Data set
A total of 1000 digital color images of vine leaves were used, 
comprising 100 images of leaves showing signs of disease 
for each of the nine diseases selected, and 100 images of 
normal leaves. The images were supplied by experienced 
viticulturists and some were collected from horticultural 
websites1 and verified by horticultural experts. A sample of 
the dataset is shown in Figure 1. The images were applied 
as an input into the experimental hybrid deep learning 
classification system. We train the deep neural networks 
with ImageNet, and then train the parameterized neural 
networks using our dataset again (in this case, 1000 
images) through the transfer learning scheme (See Figure 
2).
2.1.2. Computational set-up
We employed MATLAB 2018B with Deep Learning 
Toolbox. Transfer learning algorithm is illustrated in 
Figure 3. 

https://www.agric.wa.gov.au
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We used AlexNet+TL, GoogleNet+TL, ResNet-
18+TL, and AlexNet+SVM which are pretrained networks 
where AlexNet contains 25 layers. The first five layers are 
convolutional layers and the final three layers are fully 
connected layers as shown in Table 1.

The first layer, namely the image input layer, requires 
input images of 227 × 227 × 3 pixels. In this study, we 

have used a computer with CPU i7/7th, 16GB RAM, and 
GTX 1050 4GB. These features enable the use of the GPU/
CUDA to accelerate the processing in the training and the 
testing stages. The NVIDIA CUDA Deep Neural Network 
library (cuDNN) is a GPU-accelerated library of primitives 
for deep neural networks. cuDNN provides highly tuned 
implementations for standard routines such as forward 

Figure 1. A sample of dataset for each class.

Figure 2. Comparison of building a network from scratch (left) and by transfer learning (right).
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and backward convolution, pooling, normalization, and 
activation layers2. Table 1 illustrates the overall layers of 
the AlexNet architecture. 
2.2. Methods
In this study, three pretrained networks (AlexNet+TL, 
GoogleNet+TL, ResNet-18+TL and AlexNet+SVM) were 
used to compare the accuracy of four model networks. 
ROC-AUC curves of three pretrained networks+TL 
and AlexNet+SVM (Alkan, 2011) will be given in the 
experiments.
2.2.1. AlexNet
The images were manually cropped to remove irrelevant 
background and the resolution of each image was reduced 
to 227 × 227 × 3 pixels, where 3 is the number of the color 
channels. Since color changes are an important sign of 
diseases in vine leaves, it was essential that the proposed 
system have the ability to distinguish colors.

For the purpose of this study, we decided to use transfer 
learning because it is an efficient and powerful solution 
for many classification problems. Training requires 
enough data and computer time, but much less than 
training from scratch (see Figure 2 for a comparison with 
pretrained networks and training from scratch) (Bengio, 
2012), and the result is a network specifically tailored to 
our objectives. It is beneficial that we use the pretrained 
AlexNet architecture to build the network3 where Figure 4 
shows the AlexNet architecture.
2.2.2. ResNet-18
This pretrained network is a convolutional neural 
network that is trained on more than a million images.4 It 

2 https://developer.nvidia.com/cudnn
3 https://www.mathworks.com/help/deeplearning/ref/alexnet.html
4 https://www.mathworks.com/help/deeplearning/ref/resnet18.html
5 https://www.mathworks.com/help/deeplearning/ref/googlenet.html

contains 18 layers and can classify images into 1000 object 
categories, where the input layer includes the images of a 
size of 224 × 224 × 3 pixels (see Table 2) for the ResNet-18 
architecture (Napoletano et al., 2018).
2.2.3. GoogleNet
This pretrained network is also a convolutional neural 
network that is trained on more than a million images.5 
This network contains 18 layers and can classify images 
into 1000 object categories, where the input layer refers to 
the input images of a size of 224 × 224 × 3 pixels. Figure 5 
shows the GoogleNet architecture (Guo et al., 2017).
2.3. Training and testing stages
The prepared images were applied to AlexNet+TL, 
GoogleNet+TL, ResNet-18+TL, and AlexNet+SVM.  
For these operations, transfer learning (TL) was applied 
to three trained deep learning architectures (AlexNet, 
GoogleNet, and ResNet-18) to get better parameterization 
of these architectures. Also, in AlexNet+SVM, to classify 
test images, features extracted from training images were 
used to train the model.

 At this stage, all the legacy network parameters were 
replaced with our new data (1000 images divided into 
10 categories, 80% for the training stage and 20% for the 
testing stage). Figure 6 shows the stages of using deep 
learning architectures in AlexNet+TL.
2.3.1. GPU processing and CUDA in MATLAB
MATLAB allows the use of NVIDIA graphics processing 
units to accelerate the process required by deep learning 
and other computationally intensive analysis units 
using CUDA and Parallel Computing Toolbox. Figure 7 
illustrates the architecture of using GPU with CUDA code.

Figure 3. Workflow of transfer learning.
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3. Results and discussion
3.1. Accuracy in the three pretrained networks
Table 3 shows the training iterations of using the 
AlexNet+TL architecture with GPU in MATLAB. It is 
clear that as the iteration number increases, the accuracy 
of the image classification goes up while the loss decreases. 
Similar outcomes can be witnessed from Figures 8–10. The 
experimental studies have shown that the total detection 
accuracy of this system reaches 92.5%, 87.4%, 85.0% 
and 85.1% when we use AlexNet+TL, ResNet-18+TL, 
GoogleNet+TL and AlexNet+SVM respectively.

In our proposed system, ten different groups were 
classified (nine types of diseases and one healthy group) 
with an accuracy rate of 92.5% by AlexNet+TL.  Figure 11 
shows the confusion matrix of using AlexNet+TL is the 
most successful technique to test on our dataset. 

Table 4 shows the number of correctly classified 
images, incorrectly classified images and accuracy in the 
testing stage.

Looking at Table 4, one can see that high classification 
accuracy rates are obtained with the AlexNet+TL architecture. 
There are different accuracy figures, changing between 85% 
and 100% with a noticeable average value of 92.5%. These 
discrepancies may be due to the image contrast and similarities 
for some diseases in the dataset. Taking into consideration the 
nature of the image dataset, we obtain a high classification 
accuracy rate that can be useful for farmers and agricultural 
engineers. Also, the AlexNet may be applied to different 
images for different situations. In our study, CUDA code 
was used to speed up the processing in GPU by accelerating 
the processing of deep learning frameworks. In practice, the 
GPU takes 3:46, 3:07, 6:55, 1.35 min in AlexNet+TL,  ResNet-
18+TL, GoogleNet+TL and AlexNet+SVM respectively for 
individual training sessions. On the other hand, CPU needs 
more than 10 h to complete the exercise of GPU.
3.2. Performance metrics
We use the receiver operating characteristics (ROC) and 
area under the curve (AUC) to validate the classification 

Table 1. Layers of the AlexNet architecture.

N Name Type Description

1 Data Image input 227 × 227 × 3 images with ‘zerocenter’ normalization
2 conv1 Convolution 96 11 × 11 × 3 convolutions with stride [4 4] and padding [0 0 0 0]
3 relu1    ReLU ReLU
4 norm1 Cross channel normalization cross channel normalization with 5 channels per element
5 pool1 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
6 conv2 Grouped convolution 2 groups of 128 5 × 5 × 48 convolutions with stride [1 1] and padding [2 2 2 2]
7 relu2 ReLU ReLU
8 norm2 Cross channel normalization cross channel normalization with 5 channels per element
9 pool2 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
10 conv3 Convolution 384 3 × 3 × 256 convolutions with stride [1  1] and padding [1  1 1  1]
11 relu3 ReLU ReLU
12 conv4 Grouped convolution 2 groups of 192 3 × 3 × 192 convolutions with stride [1 1] and padding [1 1 1 1]
13 relu4 ReLU ReLU
14 conv5 Grouped convolution 2 groups of 128 3 × 3 × 192 convolutions with stride [1 1] and padding [1 1 1 1]
15 relu5 ReLU ReLU
16 pool5 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
17 fc6 Fully connected 4096 fully connected layer
18 relu6 ReLU ReLU
19 drop6 Dropout 50% dropout
20 fc7 Fully connected 4096 fully connected layer
21 relu7 ReLU ReLU
22 drop7 Dropout 50% dropout
23 fc8 Fully connected 1000 fully connected layer
24 prob Softmax Softmax
25 output Classification output crossentropyex with ‘tench’ and 999 other classes
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Figure 4. AlexNet  architecture.

Table 2. ResNet-18 architecture.

Layer name Output size ResNet-18

conv1 112 × 112 × 64 7 × 7, 64, stride 2
conv2x 56 × 56 × 64 3 × 3 max pool, stride 2

conv3x 28 × 28 × 128 !3 × 3.643 × 3.64' × 2 
 

!3 × 3.1283 × 3.128' × 2 
 

!3 × 3.2563 × 3.256' × 2 
 

!3 × 3.5123 × 3.512' × 2 

conv4x 14 ×  14 × 256

!3 × 3.643 × 3.64' × 2 
 

!3 × 3.1283 × 3.128' × 2 
 

!3 × 3.2563 × 3.256' × 2 
 

!3 × 3.5123 × 3.512' × 2 

conv5x 7 × 7 × 512

!3 × 3.643 × 3.64' × 2 
 

!3 × 3.1283 × 3.128' × 2 
 

!3 × 3.2563 × 3.256' × 2 
 

!3 × 3.5123 × 3.512' × 2 Average pool 1 × 1 × 512

!3 × 3.643 × 3.64' × 2 
 

!3 × 3.1283 × 3.128' × 2 
 

!3 × 3.2563 × 3.256' × 2 
 

!3 × 3.5123 × 3.512' × 2 

Fully connected 1000 7 × 7 average pool
Softmax 1000 512 × 1000 fully connection
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model’s performance and find out the best pretrained 
network in terms of accuracy and efficiency. These 
classification performance results are given in Figures 12 
and 13. 

Figure 12 shows that AlexNet+TL is of the best accuracy 
and highest AUC value for the automatic detection of 
diseases of vine leaves. This success can also be seen in 
Figure 13 by examining the calculated AUC values.

In this study, disease diagnosis was made using 
image processing-based hybrid deep learning from grape 

leaves. The results obtained by comparing the achieved 
achievements with similar studies conducted with 
different plant leaves in the literature are summarized in 
Table 5. When the table is examined, it can be seen that the 
obtained results in the current study give high accuracy 
and AUC values ​​that can contribute to the literature.

4. Conclusion
The use of smart technology in agriculture is increasing 
every day depending on the technological developments, 

Figure 5. GoogleNet architecture.

Figure 6. Stages of disease detection in vine leaves by deep learning in AlexNet+TL.
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Table 3. Training stage for Alexnet+TL with GPU. 

Training on single GPU

initializing image normalization.

Epoch Iteration Time elapsed
hh:mm:ss

Minibatch
accuracy 

Minibatch
loss

Base-learning
Rate

1 1 00:00:00 20.31% 2.2581 0.0010
9 50 00:00:18 100% 0.0264 0.0010
17 100 00:00:36 100% 0.0085 0.0010
25 15 00:00:55 100% 0.0009 0.0010
34 200 00:01:14 100% 0.0024 0.0010
42 250 00:01:33 100% 0.0004 0.0010
50 300 00:01:52 100% 0.0005 0.0010
59 350 00:02:11 100% 0.0011 0.0010
67 400 00:02:30 100% 0.0011 0.0010
75 450 00:02:49 100% 0.0004 0.0010
84 500 00:03:08 100% 0.0008 0.0010
92 550 00:03:27 100% 0.0008 0.0010
100 600 00:03:46 100% 0.0002 0.0010
Accuracy = 0.9253

Figure 7. GPU pathway.

especially artificial intelligence. In this study, we developed 
a hybrid deep learning based experimental system for 
automated detection of nine different diseases in vine 
leaves using. Four different deep learning based hybrid 
techniques are employed. The highest vine leaf disease 

detection rate is achieved by using AlexNet+TL algorithm 
with the rate of 92.5% accuracy. This system can detect/
recognize diseases automatically and rapidly, and hence 
our proposed system will be helpful for the farmers and 
scientists that study in practice. In a future study, we plan 
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Figure 8. Training stage for ResNet-18+TL with GPU. 

Figure 9. Training stage for GoogleNet+TL with GPU.
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Figure 10. Training stage for AlexNet+SVM with GPU.

Figure 11. Confusion matrix by Alexnet+TL.
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Table 4. Types of diseases and detection accuracy for each class in AlexNet+TL.

Type of diseases Number of images 
tested

Number of correct 
detections

Number of incorrect 
detections Accuracy

Anthracnose 20 17 3 85%
Black rot 20 19 1 95%
Downy mildew 20 19 1 95%
Powdery mildew 20 19 1 95%
Mites 21 19 2 90.47%
Phylloxera 20 18 2 90%
Fe-deficiency 20 20 0 100%
K-deficiency 20 18 2 90%
Mg-deficiency 20 20 0 100%
Normal 20 17 3 85%
Total 201 186 15 92.53%

Figure 12. ROC for classification in the four models
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to develop a mobile application that will allow farmers to 
automatically segment and capture images of grapevines 
by using a portable device to examine the condition of the 
vine leaves on site.
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Table 5. Comparison of the obtained results with the recent literature.

Study Plant Dataset sources  Models of methods Accuracy AUC

Muthukannan et al., 
2015

Bean leaf and bitter 
gourd leaf.

The agricultural
field

FFNN
LVQ
RBF

0.9067
0.5677
0.7118

NA

Islam et al., 2017 Potato leaf PlantVillage
public source MSVM 0.95 NA

Pukkela, P et al., 2017 Rice leaf NA SVM NA NA

Xiang, R.  et al., 2018 Tomato The agricultural
field

I
Image segmentation 
based on PCN

0.9167 NA

Current study Vine leaves 

The agricultural 
fields collected by 
expert and from 
internet 

AlexNet+TL
ResNet-18+TL
GoogleNet+TL
AlexNet+SVM

0.925
0.874
0.85
0.851

0.9906
0.9695
0.9888
0.9382

Figure 13. Values of the AUC for the three pretrained networks+TL and   AlexNet+SVM.
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