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1. Introduction
Stroma is a mass of connective tissue that surrounds a 
set of cells formed by the elements involved in an organ 
or formation. Cancer is a disease involving multiple 
components of both tumor cells and stromal cells (Mao 
et al., 2013). Stromal cells participate in all steps of tumor 
initiation, progression, recurrence, metastasis and drug 
response, and finally, affect the prognosis of patients (Guo 
and Deng, 2018). Stromal cells in the microenvironment 
of the tumor have been shown to play an important role 
in cancer development. Molecular events in which active 
stromal cells affect cancer cells can be determined so 
that biomarkers and therapeutic targets can be identified 
(Valkenburg et al., 2018). Breast cancer is usually seen 
in the breast epithelium, but there is some important 
evidence that breast stromal cells also play an important 
role in tumor formation (Mao et al., 2013). Ovarian cancer, 
which proceeds from cell transformation through normal 
tissue invasion, is also connected to communication with 
the stromal microenvironment (Schauer et al., 2011). Both 
tumor types have common molecular characteristics. For 

example, BRCA1 and BRCA2 are common susceptibility 
genes for breast and ovarian cancer (King et al., 2003).

Advances in microarray and high-throughput 
sequencing technologies have provided effective 
applications to help develop more reliable biomarkers 
for diagnosis, survival and prognosis (Gov et al., 2017a). 
The predictive power of a single gene biomarker may 
be insufficient. The resulting studies have found that 
gene signatures, including several genes, may be better 
alternatives. The functions and mechanisms of gene 
signatures in diseases continue to be explored further. In 
several studies, the identification of molecular signatures 
to understand disease mechanism and explore the drug 
targets was studied such as key genes of three different 
ovarian diseases by using integrative systems biology 
analysis perspective (Kori et al., 2016), tissue-specific 
molecular biomolecules in ovarian cancer (Gov et al., 
2017b), T2 diabetes (Calimlioglu et al., 2015), head and 
neck cancer (Islam et al., 2018) and Alzheimer disease 
(Rahman et al., 2020), as well as ovarian cancer stem cells 
(Gov, 2020). 
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Cancer tissues produce special stroma, preferably for 
abnormal proliferation and invasion. Some other types 
of cells, such as fibroblasts, preexisting vascular cells, 
and mesenchymal stem cells, become potentially cancer-
related fibroblasts (CAFs). Significant proinflammatory 
factors expressed by CAFs have been reported in some 
types of cancer such as breast and ovarian cancer (Erez 
et al., 2013). It was reported that infiltrated immune 
and inflammatory cells affect the molecular biology and 
clinical status of breast cancer (Karn et al., 2015). Planche 
et al. (2011) reported that the tumor microenvironment 
displays distinct features according to the cancer type that 
has prognostic predictive potentials in a study about the 
identification of common molecular signatures of breast 
and prostate tumor stroma.

In the present study, we performed an analysis of 
transcriptome datasets of ovarian cancer stroma and 
breast cancer stroma through an integrative systems 
biology perspective to identify common critical molecular 
signatures at multiomics levels. This study represents 
mutual reporter molecules for ovarian and breast cancer 
stroma as a potential prognostic molecular signatures 
and may provide a contribution about common cancer 
stroma response map for cancer treatment, diagnosis and 
prognosis.

2. Materials and methods
2.1. Selection of the gene expression datasets
The raw data of three transcriptome datasets related to 
breast cancer stroma [GSE26910 (Planche et al., 2011), 
GSE8977 (Karnoub et al., 2007) and GSE10797 (Casey 
et al., 2009)] and two datasets related to ovarian cancer 
stroma [GSE40595 (Yeung et al., 2013) and GSE38666 (Lili 
et al., 2013)] are obtained from Gene Expression Omnibus 
(GEO) (Barrett et al., 2013). The datasets originated from 
Affymetrix Human Genome U133 Plus 2.0 Array were 
selected. Samples of datasets were obtained from tumor 
stroma and normal stroma. A total of 79 tumor stroma and 
43 normal stroma including 41 breast tumor stroma vs. 27 
normal breast stroma and 38 ovarian tumor stroma vs.16 
normal ovarian stroma were studied.
2.2. Identification of differentially expressed genes 
For identification of differentially expressed genes (DEG), 
CEL microarray raw data files were downloaded and affy 
package (Gautier et al., 2004) of the R (version 3.6) was 
employed. The executed dataset was normalized through 
robust multiarray (RMA) techniques (Bolstad et al., 2003) 
and linear models for microarray data (LIMMA) method 
(Smyth et al., 2003) were examined in the advanced 
statistical analysis of each dataset. DEGs were determined 
according to resultant p-values < 0.05 and fold changes 

were taken into account to determine the regulatory 
patterns of the DEGs (fold change >1.5 and <0.67).
2.3. Gene enrichment analysis of gene sets
Gene enrichment analysis was carried out via the 
ConsensusPathDB functional annotation tool (Kamburov 
et al., 2013) to determine the down and upregulated 
biological pathways statistically significant associated 
with DEGs. Reactome (Croft et al., 2011) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 
et al., 2012) were preferable used databases and enrichment 
results with a p-value of <0.01 were accepted. Each p-value 
is calculated utilizing the hypergeometric test for each of 
the biological pathways. The whole genome description 
and background for the human genome were utilized as 
the reference gene set.
2.4. Protein-protein interaction network reconstruction
The previously reconstructed comprehensive protein-
protein interaction (PPI) network of Homo sapiens 
(Karagoz et al., 2016) which consists of 288,033 physical 
interactions between 21,052 proteins, was utilized. Cancer 
stroma-specific PPI network was reconstructed using 
the proteins encoded by the resultant core DEGs. In PPI 
networks, nodes represent proteins and edges represent 
interaction which is accepted as undirected between 
proteins. The networks were analyzed and visualized 
through Cytoscape (v3.6) (Smoot et al., 2011). To identify 
highly connected central proteins (i.e. hub protein) of PPI 
networks the dual-metric approach considering degree 
and betweenness centrality metrics simultaneously was 
used (Gov et al., 2017b). 
2.5. Identification of reporter molecules
To identify reporter molecules firstly interaction data 
were arranged. Interaction data were obtained from our 
previous study (Comertpay and Gov, 2020) consisting of 
284 TFs, 2599 miRNAs, 916 receptors and 22808 genes. 
Reporter molecules were determined via employing the 
hypergeometric probability density function by using 
the physical interaction of TFs, miRNAs and receptors 
with core DEGs obtained from breast and ovarian cancer 
stroma datasets.

The adopted our procedure (Comertpay and Gov, 
2020) was applied to gene expression data of cancer stroma 
and employed in the prediction of molecular signature in 
the tumor microenvironment. Reporter molecules were 
identified according to computed p-values < 0.05.
2.6. Tumor microenvironment generic network 
reconstruction
The reconstruction of stroma specific network was 
employed by using reporter receptors, regulatory reporter 
molecules, TFs and miRNAs, interacted with target 
core DEGs. The visualization of network was provided 
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via Cytoscape (v3.6) which is an open-source software 
platform (Smoot et al., 2011).
2.7. Prognostic performance analysis
Cox survival analysis was performed to determine the 
prognostic performance of the hub genes in the tumor 
microenvironment generic network using comprehensive 
microarray and RNA-Seq datasets. In the analyses, breast 
cancer dataset (n = 962) from TCGA and ovarian cancer 
dataset (n = 329) from TCGA and ICGC databases were 
employed. Cox proportional hazards regression analysis 
was executed through the SurvExpress validation tool 
(Aguirre-Gamboa et al., 2013). In SurvExpress, the cancer 
samples were grouped into low- and high-risk groups 
according to their prognostic index calculated using patient 
survival times. The prognostic capabilities of the hub genes 
were identified through Kaplan–Meier plots and the log-
rank test. Furthermore, heat map representation was used 
to the gene expression pattern of hub genes according to 
low- and high-risk groups and the p-value was obtained 
from the Student’s t-test.

Cox-survival analysis of hub miRNAs was performed 
by using the Kaplan–Meier plotter tool (Nagy et al., 2018). 
In the pan-cancer section, breast cancer (n = 1077) and 
ovarian cancer (n = 486) datasets were used for drawing of 
Kaplan–Meier plots.

3. Results
3.1. Mutual tumor microenvironment signatures for 
breast and ovarian cancer 
The microarray datasets obtained from the stroma of 
breast and ovarian cancer were analyzed. For both cancer 
stroma gene expression analyses, it was determined that 
the number of the downregulated genes is a little higher 
than the upregulated genes number except GSE40595 
(Figure 1a). The integrative analyses of DEGs indicated that 
there were 59 mutual core DEGs were identified between 
the five datasets (Figure 1b). These core DEGs were 
considered as mutual tumor stroma signatures for breast 
and ovarian cancer. The genes were classified according 
to their molecular functions and biological processes. It 
was determined prominent biological processes like the 
cellular process (45.7%), metabolic process (30%) and 
biological regulation (25.4%) (Figure 1c) and molecular 
activities as binding (39%), catalytic activity (18.6%) 
(Figure 1d). PANTHER GO-slim analysis showed that the 
core DEGs were enriched in different biological processes 
and molecular functions.

The biological pathway enrichment analysis of each 
dataset revealed that common pathways in immune systems 
related pathways (37.5%), signaling pathways (29%), and 
stroma associated pathways such as proteoglycan in cancer, 

collagen formation, extracellular matrix organizations 
were altered (Figure 2). It was determined that common 
pathways mostly upregulated (green colors in Figure 2) 
while PKA activation is downregulated in four datasets. 
Common enriched pathways of GSE10792 is low due to it 
has few number of DEGs compared to other datasets. 
3.2. Tumor microenvironment protein interaction 
network 
The first neighbor enriched PPI network of the proteins 
of corresponding mutual core DEGs was constructed 
including 907 nodes and 1660 edges. Tumor stroma 
specific PPI network represented scale-free topology 
with a few highly-connected proteins. The hub proteins 
including EGFR, STAT1, VDR, NCOA1, CTBP2, MET, 
EIF3B, LEF1, KIF1B and CIRBP were identified by using 
degree (local-based) and betweenness centrality (global-
based) metrics (Kori et al., 2016).
3.3. Tumor microenvironment generic network with 
enriched reporter biomolecules
To identify common breast and ovarian cancer stroma 
response map was constructed using core DEGs and 
reporter biomolecules. According to hypergeometric 
probability analysis results, 7, 12 and 32 reporter receptors, 
TFs and miRNAs significantly interacted with core DEGs 
were identified (p < 0.01), respectively (Table 1). The 
results have been mapped by using core DEGs reporter 
biomolecules interaction and it was reconstructed tumor 
microenvironment generic network of breast and ovarian 
cancer including 105 nodes and 251 edges (Figure 3). 
Through topological analysis, hub biomolecules (AR, 
COL1A1, EGFR, ESR1, GATA2, GATA3, miR-124-3p, 
miR-192-5p, STAT1 and TOR1AIP1) were identified. 
Interestingly, COL1A1 and TOR1AIP1 which are mutual 
core DEGs were determined as highly connected with 
reporter biomolecules. On the other hand, EGFR and 
STAT1 are both core DEGs and hub proteins in the PPI 
network. The rest of the reporter biomolecules are TFs 
and miRNAs having transcriptional regulatory and 
posttranscriptional regulatory functions. 

From a generic network, it was revealed resultant 
reporter biomolecules interact within themselves. We 
obtain some of the scenarios (Figure 4) such as regulatory 
biomolecules GATA2 and miR-124-3p interacted with 
COL1A1 (Figure 4a). It was determined the interaction of 
AR, GATA3 as a reporter TFs and EGFR which is both a 
hub protein in the PPI and a core DEG (Figure 4b). In the 
other interesting scenario, TOR1AIP1 interacts with ESR1, 
GATA2, GATA3 which are reporter TFs and miR-192-5p 
(Figure 4c). Similarly, ESR1, GATA2 and GATA3 interact 
with STAT1 which is both a hub protein in the PPI and a 
core DEG (Figure 4d). Table 2 represents description of 
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Figure 1. Differentially expressed genes (DEGs) in breast and ovarian tumor stroma. a) The distribution of DEGs in 
stromal cells of breast and ovarian cancer. Downregulation and upregulation of DEGs were represented by orange 
and blue colors, respectively. b) Venn diagram representation for the comparison of DEGs among stromal cells of 
breast and ovarian cancer. Core DEGs in all samples. c) PANTHER classification of core DEGs according to their 
biological process. d) PANTHER classification of core DEGs according to their molecular function.

Figure 2. Statistically significant biological pathways in each datasets containing breast and ovarian cancer stroma samples. Down- 
and upregulated gene list of each dataset was used to obtain down- and up-egulated pathways. Downregulation and upregulation of 
pathways were represented by pink and green colors, respectively. Both up- and downregulated pathways were represented by grey color.
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Table 1. Reporter molecules in the mutual tumor stroma of breast and 
ovarian cancer.

p-value Reporter TFs p-value Reporter 
receptors p-value

miR-192-5p 3.00E-05 AR 2.17E-07 BMX 0.0032
miR-124-3p 4.50E-05 ESR1 9.35E-05 CCR5 0.0038
miR-33b-3p 0.0001 GATA2 0.0055 EP300 0.0006
miR-519e-3p 0.0002 GATA3 0.0002 LCK 0.0052
miR-515-3p 0.0002 MYF6 0.0025 MTOR 0.0007
miR-145-5p 0.0002 MYOD1 0.0025 NCOA2 0.0097
miR-548n 0.0004 MYOG 0.0025 PTPRJ 0.004
miR-27a-3p 0.0004 SP1 0.0067
miR-4650-5p 0.0005 SP7 0.0025
miR-215-5p 0.0005 TP53 0.0016
miR-143-3p 0.0007 ZBTB7B 0.0051
miR-9-5p 0.001 ZNF384 0.0051

Figure 3. Reconstructed tumor microenvironment generic network and hub biomolecules.
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hub biomolecules using by GeneCards database (Safran et 
al., 2010). It was suggested that these ten hub biomolecules 
may be significant novel molecular signatures in stroma 
targeted cancer treatment.
3.4. Potential prognostic targets in the tumor 
microenvironment
Stromal content of TCGA datasets of breast and ovarian 
cancer were identified via Estimation of STromal and 
Immune cells in MAlignant Tumours using Expression 
(ESTIMATE) data method. According to the results, the 
relatively high stromal score was found in breast carcinoma 
and high-grade serous ovarian carcinoma (Yoshihara et 
al., 2013). Kaplan–Meier graphs for estimating the survival 
curve, the log-rank test to compare two groups statistically 
were used to determine the prognostic potential of hub 
genes in the generic network. According to the analysis, 
statistically significant results could be obtained for all 
datasets (Figures 5a–5c). Furthermore, gene expression 
profiles of the hub genes were represented via heat maps 
(Figures 5d–5f). ESR1, TOR1AIP1, STAT1, COL1A1 were 

identified as high expression, while EGFR, AR, GATA2 
were identified as a low expression in both cancer types. 
Only GATA3 represented different expression profiles 
including the high expression for breast cancer (Figure 
5d) and low expression for ovarian cancer (Figures 5e and 
5f). Kaplan–Meier graphs of hub miRNAs, miR-124 and 
miR-192 were also represented (Figure 6). Although miR-
124 was identified as prognostic miRNAs for both cancer 
type, miR-192 was determined as prognostic biomolecule 
for only ovarian cancer, it was not obtained statistically 
significant result for breast cancer. It was suggested that 
hub biomolecules of the tumor microenvironment generic 
network obtained from breast and ovarian cancer stroma 
samples represent prognostic biomolecule potentials in 
patients with breast and ovarian cancer. 

4. Discussion
Understanding of the pathogenic mechanism and 
molecular signatures of tumor stroma should provide 
valuable insight into cancer initiation and progression. We 

Figure 4. Scenarios of interactions among mutual hub biomolecules in breast and ovarian tumor stroma. a) interaction of transcriptional 
regulators and core DEG, b) interaction of transcriptional regulators and both hub protein in PPI network and core DEG, c) interaction 
of transcriptional regulators and core DEG, d) interaction of transcriptional regulators and both hub protein in PPI network and core 
DEG.
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studied differential gene expression in breast and ovarian 
cancer stroma with the common regulatory patterns, 
common key pathways, cancer stroma associated PPI and 
tumor microenvironment generic network to identify 
central molecular signatures that may serve as potential 

prognostic or therapeutic targets in breast and ovarian 
cancer. The difference of this study from other current 
studies is to analyze the ovarian cancer stroma and breast 
cancer stroma datasets separately, then to identify the 
common molecular signatures, to determine the common 

Table 2. The biological importance and descriptions of hub biomolecules in the present study.

Hub 
biomolecules Biological importance

AR The protein function of AR is a steroid-hormone activated TF that affect proliferation and differentiation in target 
tissues.

GATA2 GATA2 is a TF involved in stem cell maintenance with important roles in hematopoietic development.
miR-124 Among its related pathways are MicroRNAs in cancer and Alzheimers Disease.
TOR1AIP1 The protein of this gene is responsible for nuclear membrane integrity.
ESR1 Nuclear hormone receptor. ESR1 is clinically relevant in breast, endometrial, ovarian and other cancer types.

EGFR It is a transmembrane glycoprotein and its amplification and mutations have been shown to be driving events in 
many cancer types.

STAT1 Signal transducer and TF that mediates cellular responses to interferons, cytokines and growth factors.
miR-192 Among its related pathways are MicroRNAs in cancer.

GATA3 GATA3 is a TF and an important regulator of T-cell development. It is required for the T-helper 2 differentiation 
process in the immune response.

COL1A1 It is a fibril-forming collagen found in most connective tissues.

Figure 5. Prognostic potential of the hub biomolecules in the tumor microenvironment generic network. a) Kaplan–Meier plot for 
breast cancer patients obtained from the TCGA database, b) Kaplan–Meier plot for ovarian cancer patients obtained from the ICGC 
database, c) Kaplan–Meier plot for ovarian cancer patients obtained from the TCGA database. The p-values are computed via the long-
rank test (p < 0.05). Heat map represents the expression of hub genes (rows) along with samples (columns) in risk groups for d) breast 
cancer samples, e) ovarian cancer samples obtained from ICGC database, f) ovarian cancer samples obtained from TCGA database. 
The green and red grades represent the downregulated and upregulated expression, respectively. Two stars (**) marks genes represent 
p-value <0.05 and no stars represent p-value is >0.05. The difference of gene expression between risk groups compare using a t-test were 
presented by box plots.
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network structures and to discover some stromal features 
that can guide the prognosis and treatment. These features 
can give a holistic view of breast cancer stroma and 
ovarian cancer stroma, as well as the hub biomolecules 
obtained, which can be used as guiding target molecules 
in prognostic and therapeutic applications. 

Analyzing the gene expression patterns of each dataset 
were enriched common pathways in immune systems 
related pathways, signaling pathways, and stroma associated 
pathways such as proteoglycan in cancer, collagen 

formation, extracellular matrix organizations. Moreover, 
the core DEGs were enriched in different biological 
processes and molecular functions such as binding and 
catalytic activity. PPI network provides a comprehensive 
framework for exploring the basic mechanisms behind 
human disease (Sevimoglu and Arga, 2014). The cancer 
stroma specific network was reconstructed by using 
reporter receptors, regulatory reporter molecules, TFs 
and miRNAs, interacted with target core DEGs (Table 
1). Through a holistic approach, it was determined that 

Figure 6. Kaplan–Meier graphs of hub miRNAs in the tumor microenvironment generic network according to KM plotter tool 
result (p < 0.05).
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hub biomolecules of tumor microenvironment generic 
network and hub proteins of PPI network interact within 
themselves. These hub biomolecules of tumor stroma 
network, AR, GATA2, miR-124, TOR1AIP1, ESR1, EGFR, 
STAT1, miR-192, GATA3, COL1A1, may give crucial 
information about tumorigenesis (Table 2). Because 
stroma associated cells and factors have a supportive 
role in carcinogenesis they are expressed during cancer 
initiation and progression (Bhowmick and Moses, 2005). 
Thus, altered and highly interacted hub biomolecules 
may provide key information on the dysregulation of 
gene expression in the carcinogenesis of ovarian and 
breast tissues. Moreover, the resultant biomolecules were 
also identified as prognostic biomolecules in the tumor 
samples. 

Prognostic stroma-related genes were subject to 
literature data mining in terms of association with tumor 
stroma and malignancies. Henshall et al. (2001) reported 
that AR expression in tumor epithelium and stroma that 
is associated with a poor clinical outcome in prostate 
cancer, on the other hand, AR is emerging as a potential 
new therapeutic target for the treatment of breast cancer 
(Giovannelli et al., 2018). Epidemiological and preclinical 
studies have been made showing the crucial potential 
involvement of AR signaling in ovarian tumorigenesis 
(Mizushima and Miyamoto, 2019). GATA2 gene has 
been identified in stroma-related studies in colon cancer 
prognosis (Uddin et al., 2019), and also reported as 
a molecular signature in ovarian cancer via network 
medicine perspective (Gov et al., 2017). Wang et al. (2016) 
reported that miR-124-3p is a tumor suppressor in breast 
cancer. Various research has shown that miR‐124 may 
act as a tumor suppressive by regulating different target 
genes in several cancers such as prostate cancer (Shi et 
al., 2013), and head and neck cancer (Zhao et al., 2017). 
It is widely known that the use of inhibitors of ER (ESR1) 
in the treatment of patients with estrogen-positive breast 
cancer has offered a good prognosis (Tong et al., 2018). 
Moreover, the ESR1 gene is frequently methylated in 
many types of gynecological malignancies such as highly 
expressed in epithelial ovarian cancer (Giannopoulou et 
al., 2018). EGFR is the other well-known cancer-related 
protein. Wang et al. (2016) recently reported that high 

expression of EGFR in tumor stroma has a correlation 
with aggressive clinical properties in epithelial ovarian 
cancer, and is a prognostic factor. On the other hand, 
that upregulated expression of EGFR protein has been 
reported to occur in 16%–36% of breast cancers (Bhargava 
et al., 2005). Zellmer et al. (2017) showed that STAT1 
expression in stroma promotes tumor progression and it 
is a potential target for breast cancer treatment. STAT1 is 
a tumor suppressor gene in breast cancer (Koromilas and 
Sexl, 2013) and upregulated STAT1 expression with better 
response to chemotherapy in patients with ovarian cancer 
(Josahkian et al., 2018). Hu et al. (2013) reported that miR-
192 expression is significantly downregulated in breast 
cancer tissue and the miR-192/215 family is upregulated 
in mucinous ovarian tumor samples (Agostini et al., 
2018). GATA3 takes a crucial role in normal mammary 
gland development, and its expression demonstrates high 
correlation with the estrogen receptor α (ERa) in human 
breast tumors (Eeckhoute et al., 2007). Moreover, it was 
showed that GATA3 expression is related to poor prognosis 
of high-grade serous ovarian carcinoma patients (Chen et 
al., 2018). Recently it was reported that COL1A1 secreted 
by fibroblasts promoted stromal cells and facilitates the 
metastasis of ovarian cancer, which may provide a novel 
approach for ovarian cancer therapeutics (Li et al., 2020).

Considering the potential role of identified molecular 
signatures in the tumor microenvironment, two 
biomolecules, GATA2 and TORYAIP1, might be a novel 
candidate for the treatment in the breast and ovarian 
cancer. To the best of our knowledge there has been no 
published report that explained they would be utilized 
as a novel candidate for molecular signatures in tumor 
stroma and the treatment of these cancers. We suggest 
experimental studies to identify the possible role of these 
proteins. The present study shares a novel approach 
regarding the molecular mechanism and identification of 
potential molecular signatures and candidate drug targets 
for the stroma targeted cancer therapy applications. 
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