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Abstract: In this paper, the conventional estimation-based receding horizon control paradigm is enhanced by using
functional approximation, the adaptive modifications on state estimation and convex projection notion from optimization
theory. The mathematical formalism of parameter adaptation and uncertainty estimation procedure are based on the
redesign of optimal state estimation in discrete-time. By using Lyapunov stability theory, it is shown that the online
approximation of uncertainties acting on both physical system and state estimator can be obtained. Moreover, the
convergence criteria for online parameter adaptation with fully matched and partially matched cases are presented and
shown. In addition, it is shown that the uniform boundedness of tracking and adaptation errors can be maintained by
projection-based parameter update laws in discrete-time with adequate sampling times. Finally, the proposed method
is implemented to quadrotor case study and the gradual recovery of feasible sub-optimal solutions are presented despite
actuation, modeling and measurement errors. By using the proposed method, the uncertainty estimates are successfully
converged to their prescribed values and both state prediction and command tracking of model predictive controller are
corrected within the convergence bounds.

Key words: Adaptive control, optimal control, kalman filtering, radial basis function networks, lyapunov stability,
discrete-time systems

1. Introduction
In many practical applications physical constraints on system inputs and the states may occur and they are
crucial especially for the safety of mission. Moreover, while satisfying these constraints a certain performance
index might be required to be minimized or maximized in order to accomplish the mission within a predefined
operation time or with a minimum control effort which fulfill the low energy requirements such as orbital
approach of spacecraft, coasting phase of guided missiles or descent guidance of rocket stages [1–3]. This
requirements lead designers to use celebrated optimal controllers which, in general, generate a control sequence
that optimizes a mission-specific performance index while satisfying the constraints [4–7]. Model predictive
control (MPC) is a receding horizon control formulation which is extensively used and developed over few
decades [8, 9] for such optimal control problems. Basically, MPC uses a system model to predict or generate
future state trajectories via forward sequential simulations inside the prediction horizon. Then, the future input
trajectories are optimized to minimize certain cost function which usually consists of set-point tracking errors
and control efforts. In linear formulation with quadratic costs, the optimization of future trajectories turns out
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to be quadratic programming (QP) which can be efficiently solved in both unconstrained and constrained cases
[10, 11].

The effect of uncertainties in physical systems affects the performance of optimal controllers in a disruptive
manner. Besides, the states fed to the controller may not be available by direct measurements all the time. In
many industrial applications MPC is used along with a state estimator which is usually a variant of Kalman
filter (KF). Disturbances acting on the system can be formulated as unmeasured states and are left to KF to be
estimated. This approach works well especially in the input uncertainty or disturbances case. However, when
the KF itself has uncertainties coming from the faulty measurements then the estimates will also be deteriorated.
Consequently, this faulty estimation will lead to the loss of feasibility and optimality of the feedback control as
well. Thus, the estimation of output uncertainties or measurement errors play a vital role almost all the time
in constrained optimal control problems.

There are several studies that focus on the estimation of output disturbances. Chen et al. [12] showed
that both system states and measurement errors can be concurrently estimated via linear parameter varying
(LPV) sliding mode observers (SMO). Sufficient conditions for asymptotic stability of fault estimation were also
discussed. Pyrkin and Bobtsov [13] worked on the design of an adaptive controller in the presence of input
delays and output disturbances. They claimed that the frequencies of disturbance can be identified via simpler
adaptive schemes such that the disturbances are assumed to be harmonic functions. Using H∞ robust control
theory, Lee et al. [14] worked on the estimation of output disturbances with SMO for singularly perturbed
uncertain systems. In addition, Pannocchia and Bemporad [15] proposed a method which combines the design
of both disturbance model and the observer for MPC. Their approach relied on H∞ theory to design a dynamic
observer which minimizes the effects of unmeasured disturbances and they showed that to achieve offset-free
MPC, the design of observer is in fact equivalent to the design of disturbance model. A novel work on min-
max type MPC for uncertain dynamical systems was done by Limon et al. [16]. Rather than estimating the
uncertainties, they analyzed the stability and feasibility of min-max type MPC in the presence of input and
state dependent uncertainties via Lyapunov-like approaches and practical stability notions. Similarly, Shi et al.
[17] were focused on the predictive control of uncertain systems with input saturations. They proposed a new
design method for robust MPC which particularly handles the input constraints by using parameter-dependent
Lyapunov functions.

As a predecessor of this work, Altıntaş and Turgut [18] proposed a novel uncertainty estimation method
which particularly deals with the sensor bias in the operation of KF. They used a universal approximator
structure to estimate sensor bias and Lyapunov-based stability criteria to derive a parameter adaptation law.
However, the convergence criteria, parameter bounds and error analysis were not studied intensively. Moreover,
the cases with mismatched uncertainties were not included in the detailed analysis. Based on the corollaries of
the detailed analysis in thesis work of Altıntaş [24], the challenges in MPC can be overcome by the proposed
Lyapunov redesign approaches which can be extended to aerial robotics applications.

In this study, an online adaptive method which eliminates the deteriorations caused by input, output and
modeling uncertainties is proposed. The proposed method uses an external reference measurement to redesign
the correction step of traditional KF which is used alongside a linear MPC. Then, the input, output and
modeling uncertainties are lumped into a single output uncertainty whose functional approximation is sought
to be done via radial basis function networks. It is observed that both reference tracking and feasibility of MPC
are recovered as the disruptive effects of uncertainties are estimated and eliminated. Moreover, the corollaries of
Lyapunov-based analysis of online learning procedure are investigated and the parameter update laws are derived
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for the fully matched and the partially matched cases of functional approximation. The proposed method, in
fact, unifies the correction dynamics of traditional KF with the notion of approximation-based discrete-time
adaptive control and shows that uncertainties acting to the system on different locations can be estimated via
sufficiently few regression parameters. Hence, it is shown that the challenges of constrained optimal control
under uncertain or defected state estimation can be overcome by using online adaptive techniques particularly
on the state estimator part.

2. Background

In this section, the general theories behind recursive state estimation and model predictive control are sum-
marized. In addition, the reflections of both state and disturbance estimation to model predictive control are
presented by giving detailed background knowledge.

2.1. State estimation with Kalman filtering

Consider a discrete-time stochastic dynamical system with additive Gaussian white noise.

xk = f(xk−1,uk) +wk, yk = h(xk) + vk, (1)

where the system states x ∈ Rn , the system inputs u ∈ Rm and the system outputs y ∈ Rl . The
functions f : Rn × Rm → Rn and h : Rn → Rl are assumed to be Lipschitz-continuous and solution of the
dynamical system (1) exists and it is unique. The additive Gaussian white noise in the system dynamics is
represented by wk ∼ N (0, Qk) and in the measurement is represented by vk ∼ N (0, Rk) . The symmetric
positive semi-definite matrices Q = Q⊤ ≥ 0 ∈ Rn×n and R = R⊤ ≥ 0 ∈ Rl×l are the covariance matrices of
process and measurements noise, respectively.

The original formulation of Kalman filtering consists of linear stochastic dynamics to iterate both mean
values of states and state prediction covariance under Gaussian noise assumption. In each prediction step, the
new states are computed from previous states and inputs by passing through system (i.e. process) dynamics
while the prediction covariance is iterated and dispersed based on the linear process dynamics and the covariance
of process noise. Moreover, in each correction (update) step, the error between predicted outputs from linear
model (1) and the measured outputs from actual dynamics is decreased by a normalizing Kalman gain. The
normalizing gain is computed based on whether the predictions or measurements are statistically more reliable
by putting a weight on prediction and measurement covariances.

The linearity assumption of Kalman filter can be relaxed by various celebrated approaches such as
extended Kalman filter (EKF), unscented Kalman filter (UKF) and multihypothesis Kalman filter (MHKF).
In this study, EKF is preferred over other filtering techniques since the point-wise linearization procedure of
process dynamics is highly compatible with the linear MPC formulation. The EKF formulation consists two
main parts namely prediction and correction which are given below.

Here the identity matrix is I ∈ Rn×n , the symmetric positive definite matrix P = P⊤ > 0 ∈ Rn×n

denotes the prediction error covariance matrix. The linearization of process dynamics gives Jacobian matrices
Fk ∈ Rn×n and Hk ∈ Rl×n which are defined as Fk = ∂xf |x̂k−1|k−1,uk

and Ck = ∂xh|x̂k|k−1
, respectively.

The alternative way of updating prediction covariance is given by Joseph form which restricts the positive

1838



ALTINTAŞ and TURGUT/Turk J Elec Eng & Comp Sci

definiteness of prediction covariance.

Pk|k = (I −KkCk)Pk|k−1 (I −KkCk)
⊤
+KkRkK

⊤
k (2)

The Joseph form of prediction update is computationally less efficient than the standard form given in
Table 1, however, it guarantees to preserve the positive definiteness (i.e. Pk|k > 0 ∀k ) in each filter recursion.

Table 1. KF prediction and correction steps.

Prediction Correction
x̂k|k−1 = f(x̂k−1|k−1,uk) Kk = Pk|k−1C

⊤
k

(
CkPk|k−1C

⊤
k +Rk

)−1

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk x̂k|k = x̂k|k−1 +Kk

(
yk − Ckx̂k|k−1

)
Pk|k = (I −KkCk)Pk|k−1

2.2. Model predictive control

The MPC formulation is based on a system model which predicts the future behavior of the actual system
and optimizes the future sequence of control inputs to minimize some certain performance index (i.e. cost
function). The prediction of future system states is usually done by sequential simulations over the discrete-
time linear system model known as the prediction model. Utilizing the linearity between the current states and
future outputs, finding the optimal sequence of controls turns into a QP which needs to be solved at each step.
Moreover, linear constraints on input variables and state variables may make the problem inequality-type QPs.

2.2.1. Prediction model
Consider a discrete-time linear time-invariant (LTI) system in the following form

xk+1 = Fxk +Guk, yk = Cxk +Duk, (3)

where the system states x ∈ Rn , system inputs u ∈ Rm and system outputs y ∈ Rl . In addition, the
corresponding state-space matrices are F ∈ Rn×n , G ∈ Rn×m , C ∈ Rl×n and D ∈ Rl×m . Then, by using the
states at kth sample and a sequence of control inputs, the future outputs within prediction horizon, Np can be
obtained by the following sequential simulation matrices.

Yk =


yk

yk+1

yk+2

...
yk+Np

 , Uk =


uk

uk+1

uk+2

...
uk+Np

 , Φ =


C
CF
CF 2

...
CFNp

 , Γ =


D 0 0 . . . 0
CG D 0 . . . 0
CFG CG D . . . 0

...
...

... . . . ...
CFNp−1G CFNp−2G CFNp−3G . . . D

 (4)

In a compact form the prediction model is expressed as Yk = Φxk+ΓUk , where the input and output variables
of the prediction model are Uk ∈ RmNp and Yk ∈ RlNp , respectively.

1839



ALTINTAŞ and TURGUT/Turk J Elec Eng & Comp Sci

2.2.2. Optimal control problem

The synthesis of future input sequence in MPC is, in fact, a parametric optimization problem such that the
minimum of some certain cost function is searched and the minimizer is applied to the actual system over
the control horizon. Consider a linear quadratic (LQ) performance index to be minimized over the prediction
horizon, then, the LQ receding horizon optimal control problem, or MPC in our case, can be presented as
follows.

Theorem 1 Consider the LTI system given in (3), then Np -step optimal control problem with a control horizon
of unity and a terminal cost of zero is

minimize Jk =

Np∑
i=0

∥∥yk+i − yd
k+i

∥∥2
R1

+ ∥uk+i∥2R2

subject to xk+1 = Fxk +Guk, yk = Cxk, D = 0, uk ∈ U , xk ∈ X ,

(5)

where yd ∈ Rl is the desired set-points on output variables, ∥·∥R is the standard weighted Euclidean
norm with R1 = R⊤

1 ≥ 0 , R2 = R⊤
2 ≥ 0 , and the feasible sets U = {uk ∈ Rm : W1uk ≤ z1} and X =

{xk ∈ Rn : W2xk ≤ z2} . Furthermore, using the prediction model (4), the original optimal control problem (5)
is converted to inequality constrained QP such as

minimize J̃k =
1

2
U⊤

k QUk + f⊤k Uk subject to Uk ∈ Ωk, (6)

where Q = 2(Γ⊤R̃1Γ + R̃2) and fk = 2Γ⊤R̃1(Φxk − Yd
k) with Yd

k := 1Np ⊗ yd
k , R̃1 := INp ⊗ R1 and

R̃2 := INp
⊗ R2 . Then, the control sequence at kth step that solves the optimal control problem in (5) is

U∗
k = argminU∈Ω J̃k .

In the operation of MPC, the QP defined in (6) is required to be solved at each sample time and the
minimizing input sequence U∗

k is fed to the actual system, then, the whole procedure is repeated by shifting
time horizon with new states.

3. Methodology

Standard MPC formulation requires the full state information while solving QP defined in (6). In many practical
applications having a full state information is, unfortunately, not possible and needs to be estimated. There are
plenty of methods which estimate the states and feed them to the MPC optimization step. Even if the states
are available or they are estimated, the uncertainties or disturbances on the states degrade the performance of
the controller.

There are mainly two approaches to estimate disturbances. The first approach assumes the disturbances
as an augmented state and estimates it via standard state estimation procedures [19]. On the other hand the
second tries to find the functional approximation of these disturbances. However, these methods are valid only
for specific cases where the disturbances or uncertainties are assumed to be acting on the inputs or outputs
separately. In the proposed method the disturbances acting on the different parts of the closed-loop system are
estimated and eliminated concurrently in a generalized manner.
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3.1. MPC with disturbance estimation
Consider the discrete-time system in (1) with additive input and output uncertainties as Lipschitz-continuous
functions of available states such that di : Rn → Rm and do : Rn → Rl , respectively.

xk = f(xk−1,uk + di(xk−1)) +wk, yk = h(xk) + do(xk) + vk, (7)

where wk and vk are the process and measurement noise with aforementioned definitions. Now, consider
a linear prediction model of the above system with Jacobian matrices similar to the LTI system in the form (3)
and suppose that d̂i

k ∈ Rm and d̂o
k ∈ Rl are the estimated images of di and do at k th sample instance.

x̂k|k−1 = F x̂k−1|k−1 +Guk +Gdd̂i
k−1|k−1, d̂i

k|k−1 = d̂i
k−1|k−1, ŷk = Cx̂k|k−1, (8)

where Gd = G since the input uncertainty is assumed. Here, the input uncertainty is also assumed
to be constant at each prediction step. Then, the estimate of input uncertainty d̂i can be augmented as the
unmeasured portion of state estimates and the new prediction model can be written as follows.

[
x̂

d̂i

]
k|k−1

=

[
F G
0 I

] [
x̂

d̂i

]
k−1|k−1

+

[
G
0

]
uk, yk =

[
C 0

] [ x̂
d̂i

]
k|k−1

(9)

Moreover, the augmented prediction model can be also written in a compact form with ẑ :=
[
x̂ d̂i

]⊤
such as ẑk|k−1 = F̃ ẑk−1|k−1 + G̃uk, ŷk = C̃ẑk|k−1 . Then, the same filter recursions can be made to estimate
input uncertainties as well as the system states by using the augmented prediction error covariance matrix and
the process noise covariance matrix P,Q ∈ R(n+m)×(n+m) , and the estimation of uncertainty requires an initial
guess on the distribution of the augmented states.

Standard MPC formulation can be unified with this augmented estimation procedure to make controller
more robust to input uncertainties. This is nothing but using MPC with KF of augmented input uncertainty
states. The synthesis of control sequence via (6) is unchanged except the prediction model created from (9) such
that Ŷk = Φ̃x̂k+Γ̃Uk . Then, the optimal control sequence can be found by solving another constrained QP with
the augmented prediction model matrices U∗

k = argminU∈Ω 1/2 U⊤
k HUk+ f̃⊤k Uk , where H := 2(Γ̃⊤R̃1Γ̃+ R̃2)

and f̃k = 2Γ̃⊤R̃1(Φ̃ẑk −Yd
k) .

The aforementioned estimation-based control procedure uses the estimation of input uncertainties and
optimizing the control sequence based on the approximate knowledge of input uncertainties. A similar approach
can be used to estimate the output uncertainties (e.g., augmenting d̂o

k to the original states), however there are
several issues that make the problem to be handled more extensively which is also described in [19].

3.2. Functional approximation of disturbances

Consider the correction step of traditional Kalman filter where the probability distribution of predicted states
is combinated with the probability distribution of measurements and normalized with the Kalman gain. Con-
sequently, both the mean and variance of predicted states are updated according to information gathered from
external measurements. Then, an uncompensated output uncertainty appears on the information coming from
external measurements and degrade the correction performance (as well as the estimation performance) of the
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filter. Thus, the uncertainty in measurements which are fed to KF (i.e. output uncertainty of the system (7))
should be eliminated.

Consider the update step of KF with input disturbances as augmented states and also consider the
uncertain external measurements yk such that ẑk|k = ẑk|k−1 +Kk(yk −Cẑk|k−1) and convert it to a discrete-
time dynamical system using an associative rule as ẑk|k = (I −KkC)ẑk|k−1 +Kkyk . Suppose that the output
uncertainty is a function of augmented state estimates which is bounded above and below (i.e. supk∈N |do(ẑk)| <
∞). Let y∗

k ∈ Rl be the true measurements then, the correction dynamics can be written in terms of true
measurements and an additive bounded uncertainty function as ẑk|k = (I − KkC)ẑk|k−1 + Kk(y

∗
k + do(ẑk)) .

Noting that for the system defined by this approach, it is possible to create an analogy between input uncertainty
case such that do is the additive input uncertainty to correction dynamics. Now, consider a reference model
for the correction step which consists of true augmented state estimates ẑ∗k|k ∈ Rn+m and true measurements

which is given by ẑ∗k|k = (I −KkC) ẑ∗k|k−1+Kky
∗
k . Then, the functional approximation of uncertainty function

do needs to be obtained in order to steer the values of actual augmented state estimates to the true ones.
The idea behind approximation of do is, basically, expanding it on a space of known basis functions

Φ : Rn+m → RN and superposing them via regression coefficients (or weights) Θ ∈ RN×l which need to be
found. As a universal approximator radial basis function neural networks (RBFNN) can be used to approximate
the unknown disturbances or uncertainty functions [20], [21].

Definition 1 Let the Gaussian function ϕ : Rp → R be in the form of ϕ(x; c, R) = exp
{
−∥x− c∥2R

}
with the

input argument x ∈ Rp , the given arguments c ∈ Rp , R ∈ Rp×p and R = R⊤ > 0 and the weigthed Euclidean
norm ∥·∥R . Suppose that ϕ is integrable on Rp , then, it is called radial basis function (RBF). Consider the

linear combination of RBFs, Θ⊤Φ(x) =
∑N

i=1 θiϕi(x; ci, Ri) + b , where Φ ∈ RN+1 is the array of regressors,
Θ ∈ R(N+1)×q are the weights, b ∈ Rq are the bias terms with the centers of reception ci , then, the combination
is called radial basis function neural network.

Definition 2 Consider a Gaussian function ϕ with the weight matrix Ri = 1/2σ2
i , where σi denotes the width

of ith basis function. Then, the RBF is called isotropic if the width of Gaussian is fixed according to the spread

of centers ci with σi = dmax/
√
2N and is in the form ϕi(x) = exp

{
− N

d2
max

∥x− ci∥2
}

, where N is the number

of centers and dmax is the maximum distance between centers.

Using the definitions of RBFNNs, the universal approximation theorem for RBFNNs [21] can be adapted
to the functional approximation of output uncertainty with isotropic RBFNNs.

Theorem 2 Let ϕ : Rp → R be a bounded and integrable function such that
∫
Rn ϕ(x; c, R)dx ̸= 0 . Then,

for any function d ∈ C1(Rp) which represents the uncertainty and ball with radius ϵ > 0 , there exists an
isotropic RBFNN structure with the approximation tolerance ε > 0 of order O(N−1/2n) such that d̂(x) =∑N

i=1 θiϕi(x, ci, Ri) = Θ⊤Φ(x) with Ri = dmax/
√
2NIn for i = 1, . . . , N such that

∫
Bϵ

|d(x)− d̂(x)|2dx ≤ ε .

Returning back to the correction dynamics with output uncertainty do , define a Lyapunov redesign
term [22] which approximates and eliminates the uncertainty such that ẑk|k = (I −KkC) ẑk|k−1 + Kk(yk −
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Θ̂⊤
k Φ(ẑk|k−1)) where Θ̂k ∈ R(N+1)×l denotes the estimates of the true regression coefficients which are initially

unknown.

3.3. Adaptive Lyapunov redesign on state estimator

It was shown that the output uncertainty do can be expanded in terms of known RBFs within a sufficiently
small approximation radius such that do(ẑk) ≈

∑N
i=1 θ

∗
i ϕi(ẑk|k−1) + b∗

k = Θ∗⊤Φ(ẑk|k−1) where Θ∗ ∈ R(N+1)×l

are the true regression parameters (or weights) which approximate the uncertainty and are initially unknown.
Consider the new measurement law defined in Lyapunov redesign and note that the actual measurements can
be written in terms of uncertainty function and the true measurements. Thus,

ẑk|k = (I −KkC)ẑk|k−1 +Kk

(
y∗
k + do(ẑk)− Θ̂⊤

k Φ(ẑk|k−1)
)
. (10)

Suppose now the true correction dynamics is a reference model to (10) with the tracking error êk|k :=

ẑk|k − ẑ∗k|k and the parameter adaptation error Θ̃k := Θ∗ − Θ̂k , and let Φk|k−1 := Φ(ẑk|k−1) . Then, the error
dynamics relating the uncertain augmented state estimates to the true augmented state estimates with the
functional approximation of do can be defined as

êk|k = (I −KkC) êk|k−1 +KkΘ̃
⊤
k Φk|k−1. (11)

In order to approximate the output uncertainty function while estimating the augmented states which
also includes the input uncertainties, the stability of estimator must be preserved. Then, a proper stability and
convergence analysis should be maintained.

First, the following mathematical concepts [23] which were adapted to discrete-time systems are redefined
in order to create a base to prove the stability of parameter adaptation and state estimation.

Definition 3 The equilibrium point x∗ = 0 of the system (1) is asymptotically stable if it is stable and the
solution trajectories stay bounded within the ball Bδ = {x ∈ Rp : ∥x0∥ < δ(k0)} such that xk → 0 ∀xk ∈ Bδ as
k → ∞ ∀k ∈ N . The equilibrium point x∗ is said uniformly asymptotically stable if it is uniformly stable and
the ball radius δ is independent of k0 .

Theorem 3 Let x∗ = 0 be an equilibrium point of the discrete-time system (1) with x0,x
∗ ∈ D ⊂ Rp and

k0 = 0 . Suppose that on the domain D there exists a continuously differentiable locally (globally) positive
definite Lyapunov function V : D → R whose backward difference along the system trajectories is locally
(globally) negative semidefinite such as ∆Vk := V (f(k,xk−1)) − V (xk−1) ≤ 0 ∀x ∈ D ∀k ∈ N . Then, x∗

is locally (globally) uniformly stable and if ∆Vk is negative definite, then, it is locally (globally) uniformly
asymptotically stable.

Now, consider the error dynamics obtained in (11), then, in order to have a stable and convergent
parameter adaptation which steers the uncertain correction dynamics to the true ones the following theorem
must hold. Moreover, if the theorem holds then the concurrent estimation of the sequences of output uncertainty
{d̂o

k}∞k=0 and input uncertainty {d̂i
k}∞k=0 should be convergent. The theorem is restated for the sake of

completeness of the study and the original proof can be found in [24].
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Theorem 4 For the correction step of the state estimator as an uncertain discrete-time dynamical system
ẑk|k = (I −KkC)ẑk|k−1 +Kkyk with the measurement law yk = y∗

k + do(ẑk) − Θ̂⊤
k Φk|k−1 and the parameter

adaptation law Θ̂k = Θ̂k−1 + ΓΘΦk|k−1ê
⊤
k|kP

−1
k|kKk , where ΓΘ = Γ⊤

Θ > 0 is the diagonal learning rate
matrix and Pk|k,Kk are the prediction error covariance and Kalman gain matrices, the uncertain augmented
state estimates ẑk|k asymptotically track the true augmented state estimates ẑ∗k|k of the reference model

ẑ∗k|k = (I − KkC)ẑ∗k|k−1 + Kky
∗
k driven by any bounded true measurement y∗

k , while all the signals in the
closed-loop system remain uniformly bounded. Moreover, the closed-loop tracking error dynamics êk|k =

(I −KkC)êk|k−1 +KkΘ̃
⊤
k Φk|k−1 are globally uniformly asymptotically stable.

3.4. Parameter adaptation within approximation tolerances
In the previous section, the output uncertainty function do was assumed to be matched perfectly via sufficient
structure of RBFNN. On the other hand, the tolerance of approximation may cause regression coefficients
to grow unbounded while the tracking errors are still bounded at all times, hence, the parameter adaptation
process suffers from lack of robustness. This phenomenon is named as parameter drift and there are several
well-adopted techniques to prevent drift such as σ -modification, e -modification, dead-zone modification and
projection-based adaptation. These modifications, in essence, modifies the original parameter adaptation law
in such a way that the regression coefficients stay uniformly bounded in the presence of bounded approximation
errors (or external disturbances).

Consider the same RBFNN expansion of do with approximation error εk ∈ Rn+m and a constant upper
bound εmax ∈ R such that supk∈N |εk| ≤ εmax . Then, the function do can be represented via RBFNN

structure as do(ẑk) =
∑N

i=1 θ
∗
i ϕi(ẑk|k−1) + b∗

k + εk = Θ∗⊤Φ(ẑk|k−1) + εk . Consequently, the error dynamics
slightly differ and the bounded approximation error term occurs in such a way that êk|k = (I −KkC) êk|k−1 +

KkΘ̃
⊤
k Φk|k−1 + Kkεk . Now, focus on how to sustain the uniform boundedness of both tracking error and

the parameter adaptation error via modifying Theorem 4 by using projection-based adaptive law. Similar to
Theorem 4, the proof of the following theorem is given in [24] and some major points are restated.

Theorem 5 For the correction step of the state estimator as an uncertain discrete-time dynamical system
ẑk|k = (I −KkC) ẑk|k−1+Kkyk with the measurement law yk = y∗

k+do(ẑk)−Θ̂⊤
k Φk|k−1 and the projection-based

parameter adaptation law Θ̂k = Θ̂k−1 + ProjΓΘ
(Θ̂k,Φk|k−1ê

⊤
k|kP

−1
k|kKk) , where ProjΓ(·, ·) is the Γ-Projection

operator and Pk|k,Kk are the prediction error covariance and Kalman gain matrices, the uncertain augmented
state estimates ẑk|k asymptotically track the true augmented state estimates ẑ∗k|k outside the compact set

Ω := {(êk|k, Θ̃k) : ∥êk|k−1∥ ≤ c1 ∧ ∥Θ̃k∥ ≤ c2} where the positive scalars

c1 := 2
λmax(P

−1
k|k)

λmin(Nk|k−1)
∥I −KkC∥∥Kk∥εmax, c2 :=

1

∥Φk|k−1∥

√
κ(K⊤

k P−1
k|kKk)εmax.

Consequently, driven by any bounded true measurement y∗
k , all the parameter adaptation errors remain

uniformly bounded and asymptotically converge towards Ω within the set A := {Θ̃k : c2 ≤ ∥Θ̃k∥F ≤ c3} with a

positive upper bound c3 := ∥Θ∗∥F +
(∑l

i=1(Θ
i
max)

2 + ϵ
(γi)2(Θi

max)
3

2(1+γi)2(Θ̂i
k)

⊤xi
k

)1/2

, where xi
k := (Φk|k−1ê

⊤
k|kP

−1
k|kKk)

i ,
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Θi
max is the maximum allowed parameter error, ϵ is the relaxation of parameter bounds due to discretization

and γi is the projection tolerance for i = 1, 2, · · · , l . Moreover, the closed-loop tracking error dynamics
êk|k = (I −KkC) êk|k−1 +Kk(Θ̃

⊤
k Φk|k−1 + εk) are globally uniformly asymptotically stable in the presence of

bounded approximation error εk .

4. Simulation and results
The proposed method is applied to a widely encountered problem in engineering practice which is a concurrent
estimation of actuation and sensory uncertainties (or faults at some level). Moreover, how the capabilities and
stability properties of traditional estimation methods can be enhanced are shown by simulations via universal
approximators in the presence of exaggerated uncertain situations. In this section, a quadrotor motion in plane
is preferred as a case study to present how sensory and actuation faults and limitations can be handled via
adaptive Lyapunov redesign KF and estimation based MPC.

4.1. Modeling of case study

The modeling of quadrotor in planar motion can be obtained by using Euler–Lagrange equations. Supposing
that the reference frame attached to the center of gravity of quadrotor’s body is denoted by Fb and the inertial
frame of reference is set to Fe , also supposing that both reference frames are right-handed and orthogonal.
Body-fixed frame Fb is placed so that the unit vector b2 and b3 point quadrotor’s right and upward directions,
respectively. Now, considering the generalized coordinates placed on Fe , then the configuration space becomes

Q = R2 × SO(2) with coordinates q =
[
y z ϕ

]⊤ . Then, the Lagrangian function L : TQ → R to planar
quadrotor can be written as

L(q, q̇) =
1

2
m(ẏ2 + ż2) +

1

2
Ixxϕ̇

2 −mgz, (12)

where m, Ixx, g ∈ R+ are the mass and moment of inertia about b1 of quadrotor, and gravitational
acceleration, respectively. Then, the Euler-Lagrange equations with generalized forces acting on the quadrotor
are

d
dt

∂L

∂q̇i
− ∂L

∂qi
= fei , for i = 1, 2, 3. (13)

By using (12) and (13), the equations of motion for a planar quadrotor can be obtained. In addition, it
is more convenient to write forces acting on the quadrotor with the basis vectors of Fb rather than the ones of
Fe . By using the quadrotor geometry, the forces and moments can be rotated from Fe to Fb , i.e. transformed
via matrix Rbe ∈ SO(2) .

mÿ = −F b
2 sinϕ, mz̈ +mg = F b

2 cosϕ, Ixxϕ̈ = M b
3 (14)

Thus, the complete nonlinear state equations ẋ = f(x,u) to the planar quadrotor with states x ∈ R6 and
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inputs u ∈ R2 are obtained as


ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =


x4

x5

x6

0
−g
0

+


0 0
0 0
0 0

− 1
m sinx3 0
1
m cosx3 0

0 1
Ixx


[
u1

u2

]
, A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B =


0 0
0 0
0 0
0 0
1
m 0
0 1

Ixx

 , (15)

where the states x1 = y , x2 = z , x3 = ϕ , x4 = ẏ , x5 = ż , x6 = ϕ̇ and the inputs u1 = F b
2 ,

u2 = M b
3 . Then, considering the hovering flight condition as the equilibrium condition of the system (15) and

linearizing around x0 = 0 with u1,0 = mg and u2,0 = 0 . The linearization of state equations can be done by
ẋ = ∂xf |x=x0

(x−x0)+ ∂uf |u=u0
(u−u0) . Thus, the linearized system ẋ = Ax+Bu is obtained for hovering

flight with the Jacobian matrices given in (15). Assuming that all the states of quadrotor are available and there
is no direct feedthrough (i.e C = I and D = 0). Finally, in order to obtain the discrete-time LTI system in the

form of (3), matrices in (15) can be discretized via series expansions up to desired terms as F = I+
∑∞

k=1
Ak∆tk

k!

and G =
(∑∞

k=1
Ak−1∆tk

k!

)
B , where ∆t is the sampling time of the equivalent discrete-time system.

The effects of uncertainties in a planar quadrotor are investigated under the following input, output and
modeling uncertainty definitions: i) the absence of feedforward control which holds the quadrotor in hover (i.e.
u1,0 ̸= mg and u0 = 0) as additive input uncertainty, ii) exaggerated bias and noise in both positional and rate
sensors as additive output uncertainty, iii) imperfect knowledge about quadrotor mass and moment of inertia
as modeling uncertainty, and the discretization of system.

The proposed method estimates these mentioned input and output uncertainties based on bounded
external reference measurements (i.e. y∗

k ). The correcting external reference measurements can be considered
as either the equivalent readings from another sensor or states of reference model. For example, suppose that
output uncertainties on Euler angles need to be estimated, then at some steady portion of movement (e.g., level
flight) the accelerometers or gravity sensors can partially provide true Euler angle values. Consider another
illustrative example, suppose that the premade calibration of accelerometers shifts due to drastic environmental
changes (e.g., temperature, altitude) and consequently the attitude estimation from gyro-accelerometer leveling
will deteriorate. Then, suppose that there exists a sufficiently reliable external positional measurement such as
GPS or some broadcast signal, then, the deterioration on attitude estimation due to accelerometer uncertainties
can be eliminated via proposed concurrent uncertainty estimation solution which is a kind of composite sensor
fusion technique. Furthermore, suppose the jammed readings from magnetometers, then, the uncertainty on
magnetometer readings can be estimated and eliminated by using the computational results of a local (or global)
mathematical magnetic model as external reference measurements.

In this quadrotor case study, translational position and velocity states y, z, ẏ, ż are supposed to be
obtained from the integration of uncertain accelerometer measurements and rotational states ϕ, ϕ̇ are supposed
to be obtained from the integration of uncertain gyro measurements. Then, the uncertain measurements are
corrected with the external reference measurements directly coming from the ideal measurement counterparts
for simplicity.
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4.2. Simulation of case study

The planar quadrotor is simulated under additive input, output and modeling uncertainties. During simulations
planar quadrotor is equipped with a linear MPC to control its position while the states are estimated via KF.
In the MPC formulation input and state constraints are involved and both input magnitudes and input rates
are penalized to attain smooth transitions. The optimal control problem setup for the case study is given in
(16). The geometric properties of quadrotor are chosen as m = 0.5 [kg] and Ixx = 5 × 10−3 [kgm2] with
the standard gravitational acceleration of g = 9.81 [m/s2] . In addition the output tracking weights and input
magnitude weights are defined as R1 = I6 and R2 = 0.1I2 , respectively. The linear representation of quadrotor
dynamics around hovering equilibrium is discretized with ∆tc = 0.02 [s] and the simulation step size is set to
∆ts = 0.01 [s] .

min
u

100∑
i=0

∥∥yk+i − yd
k+i

∥∥2
R1

+ ∥uk+i∥2R2
+ 10 ∥uk+1+i − uk+i∥2

s.t. xk+1 = Fxk +Guk, yk = Cxk, |u1| ≤ 1 [N ], |u2| ≤ 0.5 [Nm],

|y| ≤ 100 [m], |ẏ| ≤ 1 [m/s], |z| ≤ 100 [m], |ż| ≤ 1 [m/s], |ϕ| ≤ 20 [◦], |ϕ̇| ≤ 90 [◦/s].

(16)

During the simulations MPC is fed by the state and input disturbance estimates of conventional KF
design with Joseph form of correction step. The KF assumes augmented states ẑ := [x̂ d̂i]⊤ ∈ R8 and the input
disturbance states are unmeasured. The process noise and measurement noise covariance matrices are chosen
constant as Q = I8 and R = 100I6 , respectively. The KF is initialized with z0 = 0 and P0|0 = diag(10I6, 100I2)
which represents more initial uncertainty in disturbance states. Next, 5 neurons (i.e. basis functions) are
used for each state along with 1 additional bias term. The isotropic Gaussian basis functions are spread
homogeneously over the state space between [−50, 50] [m] for y, z , between [−50, 50] [◦] for ϕ , between
[−10, 10] [m/s] for ẏ, ż and between [−50, 50] [◦/s] for ϕ̇ , respectively. The learning rate is adjusted to
Γ = diag(0.4, 0.4, 0.8, 1.2, 1.2, 1.6) and Θi

max = 0.5 with the projection tolerance of γi = 0.01 for i = 1, 2, · · · , 6 .
Finally, the additive input uncertainty is defined as di

k = [−mg 0]⊤ such that the feedforward control to
hold quadrotor in hover is, in fact, absent. The additive output uncertainties are normally distributed random
variables and given in the following table.

Furthermore, the modeling uncertainties are defined as percentage deviation of actual values from the
design values and assumed as +20% on the mass and +30% on the moment of inertia of quadrotor.

According to the simulation results, the estimation of uncertainties were converged to their prescribed
values given in Table 2. In Figures 1a and 1c the disruptive effects of uncertainties on command tracking and
constraint satisfaction can be seen when the proposed method was not used. After switching on the uncertainty
estimation, the command tracking was gradually recovered within 20 s (based on current learning rates) and
stayed within uniform bounds defined in Theorem 5. Moreover, in Fig. 1d, the velocity constraints were satisfied
as the uncertainties converged toward their true values as shown in Figures 2a and 2b. On the other hand, in
Figure 1c it is clearly seen that the constraints are violated due to uncertain measurements that cause biased
state estimates. It can be thought that the estimator bias shifts the actual constraint boundaries and it creates a
fallacy at the nominal operation of MPC. Observing that the initial violation of contraints is directly related to
the transient behaviour of both KF and RBFNN dynamics. In this manner, the initialization of KF prediction
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covariance matrix and the distribution of initial RBFNN weights gain a particular importance for the strictly
feasible real-life examples. In addition, the RBFNN weights also stayed bounded in Figures 2c and 2d despite
the mismatched portion of uncertainties thanks to the projection based learning.

Table 2. Output uncertainty definitions.

Measurement Mean, µ Deviation, 3σ Measurement Mean, µ Deviation, 3σ
Position, y [m] 1.0 0.2 Velocity, ẏ [m/s] –0.5 0.5
Position, z [m] –1.0 0.2 Velocity, ż [m/s] 0.5 0.5
Roll angle, ϕ [◦] 7.5 3.0 Roll rate, ϕ̇ [◦/s] 5.0 10.0
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(a) Learning switched off, degenerate position command
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Figure 1. Command tracking and constraint satisfaction with and without uncertainty estimation.
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(a) Learning switched on, estimation of input uncertainty

(blue), i.e. gradual recovery of the missing feedforward

action ( ≈ − 1.2mg ), with actual feedforward value (black,

dashed).

(b) Learning switched on, estimation of output uncertainties,

with actual values (black, dashed), i.e. bias valus given in

Table 2.

(c) Learning switched on, RBFNN parameters of positional

( y, z, φ ) states.

(d) Learning switched on, RBFNN parameters of rate

( ẏ, ż, φ̇) states.

Time [s] Time [s]
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Figure 2. Estimation of prescribed uncertainties and boundedness of regression coefficients.

5. Conclusion

In this paper, the state estimation used in MPC framework was enhanced by adaptive techniques and universal
approximators to recover both the tracking performance and the feasibility of MPC. By using Lyapunov-
based arguments stability, convergence and boundedness properties of proposed adaptive state and uncertainty
estimation method were studied in details.

It was shown that with an aid of reference measurement, it is possible to recover the correct state estimates
while rejecting the disruptive effects of uncertainties. The uniform bounds on adaptive parameters were obtained
and the effect of approximation tolerances on the stability and boundedness of regression coefficients is shown.
Finally, the method was implemented on a planar quadrotor case and its position tracking performance with

1849



ALTINTAŞ and TURGUT/Turk J Elec Eng & Comp Sci

MPC under the state and input constraints was observed. As a result both reference tracking and constraint
satisfaction were attained in the presence of stringent actuation, modeling and measurement errors.
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