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Abstract: In this paper, some characterizations for boundedness, essential norm and compactness of generalized Stevié-

Sharma type operators from Hardy spaces into nth weighted type spaces are given.
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1. Introduction

Let D be the open unit disc in the complex plane C and H(D) be the class of all analytic functions on D.
Every positive and continuous function on D is called a weight. Suppose that n € Ny = {0,1,2,...} and u be
a weight. The nth weighted type space Wﬁn)(]D)) = ,S’L) consists of all analytic functions on D for which the
following statement is finite

byyon (f) = sup p(2)[ F™)(2)].
“ z€D

The above statement is just a semi norm and W,S") is a Banach space equipped with the norm
n—1
— (2)
1F e = ZO | FO0) | +byyem (),
1=

See for example [1, 9, 10]. Let « > 0. Then W((11)7|z|2)“ = B*(Bloch type space), W((12)7|z|2)a = Z*(Zygmund
)

1—|2]2) log ﬁ

type space) and W(( coincides with the logarithmic Bloch space Biog. Also Wl(to) = H,, (weighted

type space), W,al) = B (weighted Bloch space) and W,(f) = Z, (weighted Zygmund space). For more informa-
tion about Bloch type spaces or Zygmund type spaces see [8, 15, 16].
For 0 < p < oo a function f € H(D) belong to the Hardy space HP if

1

1 2m " 1
p = 8 — NIPde) " < .
Il = s (5= [ 1fePan)” < o0
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where 0 <p < oo. If 1 <p < oo, H? is a Banach space and if 0 < p < 1, HP is nonlocally convex topological
vector space and in this case it is a complete metric space (see [4]).
For Banach spaces X and Y and a continuous linear operator T : X — Y, the essential norm is the

distance of T from the space of all compact operators, that is
IT|le =inf{||T — K| : K : X - Y is compact}.

T is compact if and only if |T||. = 0.
Let u,v € H(D) and ¢ € S(D), the set of all analytic self-maps of D. The Stevi¢-Sharma type operator
is defined as follows

Tuwef(2) =u(2)f((2)) +v(2)f'(¢(2)), feHD), zeD.

Indeed T, = uCyp +vC,D where D is the differentiation operator and C, is composition operator. More
information about this operator can be found in [7, 11, 12].

From the above definition we generalize the Stevié-Sharma type operator. Let m € N u,v € H(D) and
v € S(D). We denote the generalized Stevié-Sharma type operator with T, ., and define it as follows:

T of(2) = (WC, f)(2) + (DP,f)(z)  feHD), zeD,

XY

where D7, is the generalized weighted composition operator. When v = 0, then T} , = uC,, is the well-

known weighted composition operator. If u =0,, then, 17", , = D7’

— m 1Q 16—
o and for m =1, T"  is Stevi¢-Sharma

type operator.

For n,k € Ny and k < n, the partial Bell polynomials are triangulares

n! n—k+1 T
! t
B (1,22, ooy Tppy1) = D = ' 11 (g)]‘.

=1 Jt =1

In the above equation we take the sum over all sequences ji,j2, ..., jn_k+1 Of nonnegative integers with the

following properties

n—k+1 n—k+1

thzk and tht:n.
t=1 t=1

See [3, pp 134].

In this paper, first we obtain some characterizations for boundedness of operator T3, , : HY — W,(L").
Then estimations for the essential norm of these operators are given. Finally some equivalence conditions for
compactness of generalized Stevié-Sharma type operators from Hardy spaces into nth weighted type spaces
are presented. As some applications, we get some characterizations for boundedness, essential norm and

compactness of (generalized) weighted composition operators from the Hardy spaces into nth weighted type
spaces.

By A = B we mean there exists a constant C' such that A > CB and A =~ B means that A > B> A.

2. Preliminaries

This section is devoted to giving some lemmas we use in the next sections.
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Lemma 2.1 ([16], Propositions 7 and 8) Let o > 0 and H® = W((f),‘z‘z)a . Then HZ® = B**1. Moreover,

forany f € B* and n € N,

n

I £llse ~ > 1£D(0)] +81€15(1 — 2]}t fD (2)].
i=0 z

Lemma 2.2 ([5], Lemma 2.1) Let a > 0. The sequence {j* 27}5° is bounded in B§ and

. 2 «
lim 2 lge = (=)
j—o0 e

Lemma 2.3 ([4]) Let 0 <p < oo, n€ Ny and f € HP. Then

[Lf 1|22

(1 [z2)7 ™"

1F™ ()] < ., z€D.

Let w € H(D), ¢ and n be integer numbers. For simplicity in calculation, we set

o) = 2= (Du" () Bi(@ (2), .., 7D (2)) 0<i<neN,
b 0 otherwise

The proof of next lemma resembles to the proof of Lemma 4 [10], therefore it is omitted.

Lemma 2.4 Let f,u,v € H(D), p € S(D) and m,n € No. If T}, , =uCy, + D7, , then

P07
m (n) s (2) n,U n,v
(Ti,0f) ) = 30 FO @D+ 10 ) ().
=0
For any a € D and j € N; set
1—|al?)!
fale) = LWl )
(1—az)»™’

One can see that f;, € H?, for each j € N, sup,cp || fj.allr < 0o and f;, converges to 0 as |a| — 1.

Lemma 2.5 Let m,n € N such that n > m. For any 0 # a € D and i € {0,1,....,m + n}, there exists a
function g; o € H? such that

a’“éik

(k)
gia(a) = I )
7 (1—a|?)»*"

where 0;, is Kronecker delta. If i € {0,1,...,m — 1}, then g;q € span{fia,..., fm.a} and for i € {m,...,n},
Gia € SPa{ fim+1.as s fot1,a) also when i € {n+1,...m+n}

Gi.a € span{fn+2,aa EES) fm+n+1,a}~
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Proof For any fixed 0 # a € D and coefficients ¢y, ..., Cpini1 we set

m
elaaaclv-uzcnz (Z) = Z cjfj;a(z)
Jj=1

n—m+41

Citm
€2,a,6m 4 1r0rcn 1 (2) = 1 . ; fitm,a(2)
+1 +1 ; ;10 (m+]+%+t>

Cjtl4n
63,a,cn+2 ..... cm+n+1 Z Ht . n+ 1 +] +1 +t) fj+1+n,a(Z)7

where f;, are defined in (2.1). For each i € {0,1,...,m +n} the system of linear equations

m
€la,e1,.nem (@) = (1- |a‘ % z_: m
—m—1 m m—2 —m—1
(m—1) am 1 a™ "  Oi(m—1)
€1,a,c1,. . Cm (@) = —————— ch H (J+-+t)= P
' (1= a5 7= p (1= la)m=H%
_ n—m-+1 —m
(m) - a™ ] o a 5im
Smensrvenns @ =T e ; T A a
_ n—m-+1 —n
(n) o a” a 6zn
e2,a,c,,n+1,...,cn+1(a’) = W Z Cj+m H m+]+ + t) = W
(n+1) ( ) _ (—ln+1 in: ] - an+1(5i(n+1)
3,0,¢nt25sCmpni1 &) T (1-|a |2)n+1+% . 1C]+1+m o (1- | a |2)n+1+%
J:
(m+n) Em+n5i(m+n)

€3,a,0n 42,011, Cm+n+1(a) - o (1-|a ‘2)m+n+%

has a unique solution [9, Lemma 2.3] which is independent of the choice of a and therefore it can be shown by

(cl,¢hyesChyyni1) - Now we set

gi,a(z) = el,a,ci,.. ('m( ) + €2 ,a ('erl,..., 1 20 Crmt 41 (2)

The proof of the following lemma is similar to the proof of the previous lemma so it is omitted.
Lemma 2.6 Let m,n € N such that n < m. For any 0 # a € D and i € {0,...,n} U {m,...,m + n}, there
exists a function g; , € HP such that

. -
(= faR)rtt
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Also for i € {0,1,...,n} then g;q € span{fia,..., fat1,a} and when i € {m,m+1,...,m+n}
Gi,a € 3pan{fm+1,a7 sy fm+n+1,a}-

In Sections 3 and 4, m,n € N, 0 < p < 00, u,v € H(D), p is a weight and ¢ € S(D).

3. Boundedness
In this section, we give some necessary and sufficient conditions for the generalized Stevié—Sharma type operators
to be bounded.

Theorem 3.1 Let u € W,Sn). If n > m, then the following statements are equivalent.

(i) The operator T : HP — W( ") is bounded.

uvga
iy ; 1
(ii) If pj(z) = 27, then sup;~; j» ||T$v’ij|\w‘<‘n) < oo .

(iii) For each i € {0,1,...,m+n}, sup,cp ”T?TU#PfiJ"lva”WL") < oo and sup,ep ()| + I, ) (2)] < oo,

() (L] + 1T, S,;)(Z)
(iv) For each i € {0,1,...,m+n}, sup,cp . < oo0.
(1*\@(Z)|2)”

Proof (i) = (éii) For i € {0,1, ...,

up || T o Fisra Ioager < T Doy S99 sl < 00,
a

Applying the operator 1}, , to p; (2) = 27 for j =0,1,...,m+n respectively and using Lemma 2.4, we obtain
the other part of (iii).
(#4i) = (iv) For any ¢ € {0,1,...,m +n} and @(a) # 0, by using Lemmas 2.4 and 2.5, we obtain

pula) | p(a) 'l (L0 + 15, )(a) | =
< sup g n < cz sup " .1, ) < 00.
(1— | ¢(a) [2)"t> aE]D)H e ie(a) “W ; a i NHW”

From the previous inequality,

pa) | (L7, + IZ“JW)( (R

Sup - 1 — Z |C |SU.p|| uvcpf]ﬂ”y\;(”) < 00,
w@l>3 (1= | e(a) |27 "

and from (ii7), we get

lp(a)l <3 (1—|<p(a) |2)’+P T le(a)l<d =

Hence from last inequalities, we get (iv).
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(iv) = (i) For any f € HP, by using Lemmas 2.4 and 2.3, we have

m—+n

(=) |[(T28, 1) (2)| < \Zf@ DU ) + 1, o ()]
mn ()| E) + 1, ()
<|Iflae S 3.1
| ”ngﬁ (- | 9(c) P+ )
Also for each k <n
m+k
(T, o 5P O)] < 1120 2 I+ 15, )0 (3:2)

Hence, from (3.1) and (3.2), the operator T,  : HP — W;(Ln) is bounded.

[RORI

(#4) = (4t1) For each ¢ € {0,...,m +n} and a € D

+z+1+]) o
- z) = a H'l p 0 YGd,d
firra(2) = (1= jaf) Z P
So,
. oLl . s
HTzTu,@ ) =(1- |a‘2)1+1 Z]H—p \a|3||Tva,¢Pj||Wgt> < itl max{||u|\WL7L),§1i;1)jp ”TiTv,ijHW;ﬁ")}'

=0

(i) = (ii).

Therefore, sup,cp || 77"

uU,v,p

(iv) = (i) Let p;(z) = 27(j > n). By using Lemmas 2.1, 2.2 and 2.4, we get

m+n ) il ‘SD(Z)V Zl|(-l‘n’u LY )(Z)|
1 E 1 (9 7
. Tm . (n) P 1 2\ 5 +i J: id = map
JPN'(Z)K u,v,sapJ) pard N ‘ | ) (] Z)' . (1 ‘ (p(Z) |2)p

@+ I ) ()]

Lo ,

SSQPJPHZ]HB%HZ %P i m<;0+i
J = (-le) )7

2l+1 149 m+n Inu+Inv P
j ( (p ))P Z |( 1— nlgp)( ’L)| (33)
¢ izo (1=1e(2) |2)p
For any k < n, we have
. 203 + D\ 50 |+ 1, ) (0)]
J (T3, o) M (0)] = (—E—— v R (34)
" =) = A-leP)r*
From (3.3) and (3.4), we obtain (i#¢). The proof is completed. O

In the same way as in the proof of Theorem 3.1 we can prove the following theorem, just use Lemma 2.6

instead of Lemma 2.5.

Theorem 3.2 Let u € W(n) If n < m, then the following statements are equivalent.
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1) The operator T : HP — W( 2 is bounded.
(i) D

uvgp
(ZZ) If p]( ) - ZJ then SupJ>1]T’ ||Tuv Ap'll,pJ”W(") < .

(i) For each i € {0,1,...,n}U{m,...m+n}, sup,ep |T,7, safHLaHWg”) < oo and

sup u(2)| (17 + 1125, ) (2)] < o
z€D

n(2) |7+ 125, )(2)

i—m,p

(1-le(z)) 7

(iv) For each i € {0,1,...,n}U{m,....m+n}, sup,cp < 0.

4. Essential norm
In this section, we obtain some estimates for the essential norm of generalized Stevié—Sharma type operators
from Hardy spaces into nth weighted type spaces. Then we give some equivalence conditions for compactness

of such operators.

Theorem 4.1 Let T)", ,: H? — W;(Ln) is bounded. If n > m, then

[RORE

I plle & max{ A G~ max{B;}15",

where

4 T ol 51 ()| (2) + 15, o (2)
; = limsup [| T3, fit1,all,0m0 ; = lim sup T
la—>1 7 W =1 (1= | p(2) [2)rH

Proof For all ¢ € {0,...,

subsets of D as |a|] — 1. Using Lemma 2.10 [13], for any compact operator K from H? into W,g"), we get

hm ||Kfi+17a||WL") = 0

la]—1
Thus, for any i € {0,...,m + n}
” u,v,p K||Hp_>w(") = thllpH( w,v, )fiJrl,ll”W(")
la]—1 "

> limsup || T}, ., — limsup || K fit1, a||W(n> A;.
|a]—1 la]—1

So,

|| uvap”e lan [RIRZ) K||Hp_>WEL") = maX{Al};iJan

Now, we prove that

max{B; 75" < || (4.1)

uvap”e
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Let {z;}jen be a sequence in I such that |p(z;)] = 1 as j — oo. Since T, : HP — W( ") is bounded, using

uvcp

Lemmas 2.4 and 2.5 for any compact operator K : HP — W(n) and ¢ € {0,...,m +n}, we obtain
” U, Q K||Hp_>w("> = 11;1’1 sup H w,v <p(gi,cp(zj))|‘wf‘") - llgs(‘:ip ”K(gi,ga(zj))”yvﬁ")

Zj 2i) [ 5 () + 1Y ;
iy ) [0 P 5) + 12,5 |

— — B
jeo (1= Te(z) )

From the last inequality, we get (4.1).
For each 0 < r < 1 we consider the compact operator K, on H? given by K, f(z) = f.(2) = f(rz). Let

{r;} € (0,1) be a sequence such that r; — 1 as j — oco. Since f, — f uniformly on compact subsets of D as

r — 1 then for any positive integer j, the operator 77", K, : HY — W(") is compact. So

<limsup||T;", , — Ty, oK) |- (4.2)

|| UV, H uU,U,p
_]—)OO
Hence, it is sufficient to prove that

lim sup || u,v,p T;nv R e || = mln{max{Al}ﬁEn’ maX{BZ}ﬁEn}
j—o0

For any f € HP such that ||f|lgr <1,

||(Tuvtp qunvw Tj)f||W£7L) <

m—+n

fj (et =5:0) O+ s 0|3 0= 1) O (2 + ) )
=0 p(z)|<rn k=0
St H,
m—+n
+ s w(e) S = L) P @) (I + 1, ) ()], (4.3)
e(z)|>rN k=0

H>

where N € N such that r; > % for all j > N. Since (f — fr].)(s) — 0 uniformly on compact subsets of D as

j — o0, for any nonnegative integer s, then Theorem 3.1 implies that

limsup H; = limsupS; =0 (¢=0,...,n—1). (4.4)
j—o0 Jj—oo
Also
m—+n

Hy <Y swp @) P eI+ L, ) ()]

= le(2)>rn

Ms i
m-+n
+ > sup u()r P eI, + I, ()] (4.5)
o le)I>ry
Na ke

1550



ABBASI et al./Turk J Math

For My, k€ {0,...,m+n}, from Lemmas 2.3, 2.4 and 2.5, we get

Myp= sup p(xy LRG| PGPS + ) ()

o (2) [>T lo(2)[* (1~ Jp(2)[2)*s
m—+n
= ||fHH" sup HTuv Ik, :,a(z)HW(") = Z |C]+1| sSup || 1Tv,<pfj+1,a||w(")
lo(2)[>rn =0 la|>ry :

As N — oo, we obtain

m-+n
limsup My 5, < Z limsup || 73", (pfz+1,a||w(n) =< max{Ai}?j)” and lim sup Ms j; < By,.
j—o0 =0 la|—1 Lt j—o0
A;
Similarly, we get
m+n
lim sup Np j; < Z lim sup 1T, gOfZJrLaHW(n) =< maX{AZ-}?;En and limsup N i, < By.
Jj—oo i—o lal— s j—o0
A
Thus, by using (4.3), (4.4), (4.5), (4.6) and (4.7), we obtain
lir‘nﬁsup [ TJHHPHW(,L) = llnisup ”f‘slupq I(Tas o = Ti o ”j)fHWf;'” < max{ A}t
J—00 J—00 HP
and
hmsup” u,v,p T;nvcp "‘j||Hp_>W£") j maX{Bl}zn;_gn
j—o0o
Hence, from (4.2),
1T o lle = min{max{A,;}}"5", max{B;}["}.
The proof is completed.

(4.6)

(4.7)

O

The proof of the next theorem is similar to the proof of Theorem 4.1, except that we use Lemma 2.6

instead of Lemma 2.5.

Theorem 4.2 Let T)", ,: H? — W;(Ln) is bounded. If n < m, then

u,v,p

T o lle A max{{A;}/_g U{A: 1T}~ max{{Bi};_o U{Bi};2,'},

where

p2)| (L + L5 ) (2)

A; =limsup | T3, , fir1,allyon, Bi = limsup
jal+1 W e@l=1 (1= | g(z) [2)7 T

and i €4{0,1,..n}U{m,...m+n}.
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Theorem 4.3 Let T, , : HY — W,(f') is bounded. If n > m, then the following statements are equivalent.
(i) The operator T;'", , : HP — W,(,") is compact.
. ; . 1
(it) If p;(z) = 27 then, lim; o j7» ||T1Tv’%upj||W£n> =0.

(iii) For each i € {0,1,....,m+n}, lmsup,_ |13, ,

@ = 0.
p

n(z >\<I" S i ¢><z>

(i) For each i € {0,1,....,m +n} Hmsup|, 1 =0.
(1—|e(2)]? )p

Proof By using Theorem 4.1, (i), (i74) and (iv) are equivalent.
(#4) = (4it) For any given € > 0, there exists N € N such that for k > N,

1
kv ||T$v,¢pk||wﬁ"> < €.

For any j € {0,1,...,m +n}

N-1 00
S+ +14k)
fitra(2) = (1 = a?) ]H( +) > k.
: |
= = kT (L —|—j—|—1)
So,
P(L+N+j)

N +1
I3 o fitrallyyen < 2maxlug®]yen ey (1= lal*) (1 — |al™) N,F( 7 e

+1 . . . .
Hence, limsup)q|_,1 || WwaH,QHWLn) < 27t1e. Since € is arbitrary, we obtain

lim sup HTtTv,gafj"FLa”W(") =0.
|a]—1 "

(iv) = (i1) For any given € > 0 and k € {0,1,...,m 4+ n} there exists a positive constant ¢ such that
5 <lp(2)] <1,

p(2) (I + 175 ) (2)

k—m,p
lim sup (4.8)
le)=1 (1= | o(2) [2)»HF
Let p;(z) = 27(j > n). By using Lemma 2.4, we have
m
]pHTum,gapj”WIa") S
® £ .1 ] j—k n,u n,v
S (Timops) O+ swp pu(z ) 3 3 G O + B )
t=0 lp(2)|<rNn
S, Pe
m—+n . n,u n,v
L ik .7‘ ‘7k;|(lk,ap+lk mgp)(z)l
+ sup p(z) ) g (1= e(z))?) e — lp(2)l (4.9)
lp(2)[>rn kz (7 —&)! (1 - lo(z)2)» "

H>
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From Theorem 3.1, it is obvious that

limsup H; = limsupS; =0 (t=0,....,n—1). (4.10)

j—o0 Jj—o0

By using Lemma 2.1, 2.2 and (4.8), we obtain

PTG SR (s /= W
z S ooes (1 gz )
which implies that
lim sup Hy = 0. (4.11)
j—o0
From (4.9), (4.10) and (4.11), we get (ii). The proof is completed. O

Using the same method as in the proof of Theorem 4.3 we can get the following theorem.

Theorem 4.4 Let T)", ,: HP — W,Sn) is bounded. If n < m, then the following statements are equivalent.

u,v,p
(i) The operator T,7, ,: H? — W,S") 18 compact.

. ; . 1
(ii) If pj(z) = 27 then lim; o0 j7 ||T1Tv,w,upj”vv,§"> =0.

(iii) For each i € {0,1,.n} U{m,..,m+n}, lmsup,_q |13 ,fit1,a

|W£Ln) =0.

. W), )
(i) For each i € {0,1,..n}U{m,...,m+n}, imsup,) 1 . = 0.
(I=le(2)?)?

Remark 4.5 By putting v =0 in Theorems 3.1, 3.2, 4.1, 4.2, 4.3 and 4.4, we obtain some characterizations

for boundedness, the essential norm and compactness of operator uC, : HP — W,S") (see [2]).

Remark 4.6 By setting u =0 in Theorems 3.1, 3.2, 4.1, 4.2, 4.3 and 4.4, we get some characterizations for

boundedness, the essential norm and compactness of generalized weighted composition operator D', : HP —

W (see [6]).

Remark 4.7 By taking m = 1 in Theorems 3.1, 3.2, 4.1, 4.2, 4.3 and 4.4, we find some characterizations
for boundedness, the essential norm and compactness of Stevié-Sharma type operators from Hardy space into

nth weighted type spaces (see [14]).
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