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Abstract: The immense emergence of plug-in hybrid electric vehicles (PHEVs) is envisioned in the future. The rapid
proliferation of PHEVs and their charging triggers intense surges in the load during load peak hours. A sophisticated
controlled charging station is developed for PHEVs to alleviate grid load during peak demand hours. A novel feedback
linearization embedded full recurrent adaptive NeuroFuzzy Legendre wavelet control (FBL-FRANF-Leg-WC) technique
is employed to control the charging of PHEVs. The antecedent part of the NeuroFuzzy framework is based on recurrent
Gaussian membership function while the consequent part comprises of recurrent Legendre wavelet. The charging station
is integrated into a grid-connected microgrid hybrid power system. The charging station consists of five different PHEVs
with seven different modes of operation. The performance of the control scheme is tested for various power quality and
power system stability parameters. The effectiveness of the suggested control scheme is validated through simulation
results by comparing with adaptive NeuroFuzzy, adaptive PID, and conventional PID control scheme.
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θi recurrent weight of antecedent part FRANF full recurrent adaptive NeuroFuzzy
ns number of series panels ANN artificial neural network
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1. Introduction
Today’s society is facing a shortage of energy and mainly depends on fossil fuels to fulfill energy demand.
Increasing cost, high carbon emission rate, pollution issues, global warming, and limitation of supplies are some
critical problems related to the use of fossil fuels to produce energy [1–6]. These challenges can be contained
by sustainable consumption, efficient transformation of energy from one kind to another, and focusing on new
cost-effective, clean, and green non-conventional renewable energy resources (RES) instead of conventional
non-renewable energy resources [1, 7, 8].

The study and analysis of the energy demand of the globe have forced the engineers, scientists, and
companies to go for a never-ending search for sustainable energy. This search for sustainable energy is proceeding
in a specific way where it always tries not only to meet the ever-increasing demand for energy but focuses on
keeping the environment in its original form. The leading energy consumer automobile industry is growing
exponentially and is one of the main contributors to environmental issues. The estimate of greenhouse emission
from the transportation sector compels stakeholders to invest in the research and development of sustainable
and fuel-efficient transportation systems that reduce and replace conventionally non-renewable, fossil fuel-based
energy resources with that of RES [1, 7].

Plug-in hybrid electrical vehicles (PHEVs) consume electrical energy from the electrical grid. However,
they can be operated only on electric power in urban localities; thus, they give zero-emission and contribute to
a safer environment. However, large-scale integration of PHEVs creates potential problems and advantages for
the grid. The critical impact of a large number of PHEVs integration on the electric grid is the increase in peak
demand that may lead to a destabilized performance and fluctuations in electric energy on the overall electrical
power system. On the other hand, charging and discharging of PHEVs act as an elastic load and benefit the
grid by shaping the load profile [9].

In recent years, smart micro-grid hybrid power system (SMG-HPS) technology integrated with RES has
been developed, which provides clean energy to the electrical power system and encourage the use of PHEVs.
The natural abundance of wind and photovoltaic (PV) on the earth makes them first as RES. Both wind and
PV depend on weather conditions, which gives variable output power [10]. This property of RES requires the
integration of energy storage systems in SMG-HPS. The bidirectional power flow between the electric grid and
the PHEV charging station (CS) integrated into the SMG-HPS ultimately enhances the power reliability of
SMG-HPS. However, a suitable control algorithm and appropriate energy management system are required for
reliable performance of CS and creates new room for research [3, 11–13]. In CS, the unpredictable number
of PHEVs and their energy demand can create instability in transmission and distribution systems especially
during peak hours [14]. Thus, a comprehensive control scheme is required to enhance SMG-HPS power system
stability.

Two types of techniques are in practice for PHEV’s charging. A unidirectional power flow technique
known as an uncoordinated technique in which PHEVs are charged directly from the utility grid till their
maximum state of charge (SOC) limit reaches. However, in this technique, PHEV’s act as a simple load
that destabilizes the electric grid during peak hours and causes power quality issues. On the other hand, a
bidirectional power flow technique known as a coordinated technique is also in practice and is preferred over
uncoordinated technique due to its capability of grid support in terms of power back up during peak hours.
Other benefits of coordinated technique include the reduction in SMG-HPS operational cost, high reliability of
SMG-HPS, and the frequency regulation [3, 15–17].

In literature, many articles are presented regarding the control of PHEVs charging/discharging via
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CS, connected with RES or grid and their impact on the overall electrical power system. [12, 18] presents
a PI control, [19] explored dynamic, and quadratic programming based control method, [5] presents the
quadratic optimization scheme, [20] describes linear programming, and [21] gives linear programming based
charging/discharging control of PHEVs. All these techniques are conventional control techniques intended for
specific operating conditions and are not suitable for a wide-range of varying system conditions [3]. [13] studies
fuzzy logic (FL) control scheme for PHEV charging/discharging through RES, while [11] describes scheduling
of PHEVs charging/discharging phenomena based on microgrid’s day-a-head load curves using FL and artificial
neural network (ANN) and [10] describe day-ahead optimization of prosumer using feed-forward ANN. However,
FL has problems with exponential growth in the number of membership functions and if-then rules. It needs to be
redefined whenever the system parameters change; whereas, ANN requires periodic training for its convergence
[15, 22].

In [9] the author describes a novel scheme for charging/discharging of PHEVs based on peer-to-peer
communication between charging stations. However, the scheme lacks practical considerations of the electrical
power system. In [23] an equivalent consumption minimization strategy is described and the forthcoming energy
consumption prediction for all-electric range. However, the optimization technique requires certain assumed
constraints and an ideal environment for its application. Also application of particle swarm optimization and
ANN for optimization and prediction makes it complex and bulky. In [16], the author presents multiple model
predictive control for charging/discharging of PHEVs and microgrid frequency stabilization. However, the
control scheme has difficulties with the operation, high maintenance cost, and lack of flexibility. [3, 24] practices
adaptive PID (aPID) control for charging/discharging of PHEVs connected to HPS. However, aPID suffers
performance loss in the varying environment and cannot deal well with large systems as presented.

This paper demonstrates a feedback linearization embedded full recurrent adaptive NeuroFuzzy Legendre
wavelet control (FBL-FRANF-Leg-WC) technique for bidirectional charging/discharging of PHEVs in a CS
connected to an SMG-HPS. The grid-connected SMG-HPS has several RES and other sources for power
generation. The bidirectional charging/discharging is taken for seven different scenarios. Gaussian function
and Leg-wavelet is used to approximate the nonlinear functions of FBL control through full recurrent adaptive
NeuroFuzzy structure having seven-layers. The gradient-descent method is used for online learning to update
adaptive parameters of FRANF structure. The performance of the suggested control scheme is compared against
adaptive NF, conventional PID, and aPID control schemes for charging/discharging of PHEVs, AC-bus active
and reactive power, %SOC of PHEVs, active and reactive power of CS’s inverter, total harmonic distortion
(THD), voltage, and frequency fluctuations on the load side.

After the introduction in Section 1 the article is arranged as follows: Section 2 presents the complete
details of microgrid hybrid power system and charging station used for this investigation. Section 3 explains the
proposed closed-loop adaptive FBL-FRANF-Leg-WC scheme for CS. Section 4 provides the detail of computer
simulation studies and CS operation modes. Section 5 discusses the simulation results. Finally, Section 6
concludes the findings of this research work.

2. Microgrid hybrid power system and charging station subsystem

A schematic of the overall proposed MG-HPS is illustrated in Figure 1. It includes a DC-bus and an AC-bus,
which are interconnected via the main inverter. All RES like electrolyzer, wind-turbine (WT), solid oxide fuel
cell (SOFC), PV, super-capacitor (SC), and batteries are connected to a DC-bus. While other power sources
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like utility grid (UG) and micro-turbine (MT) are connected to AC-bus. All the loads are connected to AC-bus.
A CS capable of bidirectional charging/discharging acts as load as well as source is also connected to AC-bus.
The power rating of all the sources is given in Table 1 [22]. Other details of SMG-HPS control, solar profile, etc.,
are given in [22]. aPID is used to control all source converters except CS. Table 2 gives the detail of PHEV’s
batteries [3, 24].

PV

Array

Wind Turbine Utility Grid

Charging Station

µ-turbine

Load

ElectrolyzerFuel tank

Fuel Cell

Batteries

Super Capacitors

MGCC

Main Inverter

AC-bus

DC-bus

Figure 1. Schematic of microgrid hybrid power system.

3. Adaptive feedback linearization embedded full recurrent adaptive Neurofuzzy legendre wavelet
control for charging station

Figure 2 shows the internal structure and control scheme of the CS. It consists of a battery storage system
(BSS) and five different PHEV models. Table 2 shows the detail of PHEV’s battery used for this research work.
Each PHEV and BSS are connected with a buck-boost converter and a voltage regulator. Buck-boost converters
are controlled by aPID controllers for buck mode and boost mode of operation, respectively. Adaptive FBL
embedded FRANF-Leg-WC is used to control the voltage regulator.

FBL is a technique that converts the nonlinear dynamics of the system into linear dynamics algebraically,
partly or fully; thus, linear control scheme can be applied easily [22]. Consider a nonlinear system:

yn = f(x) + g(x)uPHEV (1)
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Table 1. Parameters of the microgrid system.

Source Rating
UG 11 kV
PV 260 kW
WT 100 kW
Electrolyzer 150 kW
SOFC 260 kW
MT 200 kVA
SC 165 F
Batteries 200 Ah

Table 2. Parameters of PHEV’s batteries.

Vehicle Battery Battery Rated
Company Type Capacity Voltage

(kWh) (V)
Nissan Li-ion 24.0 360
Renault Li-ion 22.0 300
Mitsubishi Li-ion 16.0 20
Toyota Li-ion 6.7 300
Honda Li-ion 4.4 201

Where y ∈ ℜ is the plant output, f(x) and g(x) are the unknown nonlinear functions, n ∈ Z is the relative
degree of system, uPHEV ∈ ℜ is the control input, and x = [y, ẏ, , yn−1)]T ∈ ℜn is the state-space vector.
The control objective is to find uPHEV that forces y(t) to follow the desired trajectory yd(t) . The error matrix
e is:

e = y(t)− yd(t) (2)

The tracking error κ is given as [22]:

κT =
[
≀T 1

]
e (3)

Where ≀ =
[
∨1 ∨2 · · · ∨n−1

]
is the weight vector of FBL whose approximate choice ensures that poles of

sn−1 + ∨n−1s
n−2 + · · ·+ ∨1 in the left half of complex plane and e is given in (2). ≀ is updated at every step

using nLMS self-tuning algorithm. The derivative of (3) is:

κ̇T =
[
≀T 1

]
ė =

[
≀T 1

]
(ẏd(t)− ẏ(t)) = [yn]

T
+ [−ynd ]

T
+

[
0 ≀T

]
e = yn + κT

D∈ℜ1×n (4)

Using (1) in (4):

κ̇ = f(x) + g(x)uPHEV + κD (5)

Using κ = exp(−Ξt) ⇒ κ̇ = −Ξκ and constant Ξ > 0 , if κ is considered as input in (3) and e as output, then
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Figure 2. Closed-loop control of plug-in hybrid electric vehicles.

e → 0 as κ → 0 . (5) can be rewritten as:

−Ξκ = f(x) + g(x)uPHEV + κD (6)
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Now, if the nonlinear functions f(x) and g(x) are known, then according to the FBL mechanism the following
control law uPHEV can be obtained that can revoke the nonlinearities of the system and would bring κ to zero.

uPHEV =
1

g(x)
[−f(x) + Ξκ+ κD] (7)

However, identification of f(x) and g(x) is necessary for the implementation of the above control law. Therefore,

this study proposes the estimation of nonlinear functions f̂(x) and ĝ(x) through FRANF-Leg-WC for online
optimization of design parameters ≀ . (7) can be rewritten as:

uPHEV =
1

ĝ(x)

[
−f̂(x) + Ξκ+ κD

]
(8)

For the best approximation of f̂(x) and ĝ(x) in (8), a seven layer FRANF-Leg-WC is used in this research
work as shown in Figure 3 [22]. The inputs to the FRANF-Leg-WC is the difference between the output voltage
of PHEVs voltage regulator and AC-bus voltage. The output of FRANF-Leg-WC are estimated nonlinear
functions f̂(x) and ĝ(x) . Mean square error (MSE) is used as a cost function to update the parameters of the
antecedent and the consequent parts as given in equation (9):

E =
1

2
(ŷ − y)2 (9)

Where, ŷ = f̂(x) + ĝ(x)uPHEV and y = VPHEV . For fast convergence, gradient descent method is used as
follows:

℘(m+ 1) = ℘(m)− Γϱm (10)

Where, ϱm is the gradient of the cost function at mth iteration, Γ > 0 is the learning rate and m is the
iteration index. The gaussian membership function is used for antecedent part of FRANF and is given below:

O
(2)
i = µj(xi) = exp

[
−
(
xi (k) + µj(k − 1)θij +mij

σij

)2
]

(11)

Where Oi represents output of ith node, superscript (2) indicates layer number, ij subscript shows the j th
term of the ith input, xi is the input, µj (k − 1) is the past value of membership function, θij is the recurrent
weight, σij , and mij are the variance and mean of the ith input and j th membership function.

Legendre wavelet (Leg-W) is used as a variant of the consequent part in this research work. These are
also known as spherical harmonic wavelets. They are based on Legendre polynomial, compactly supported, and
orthonormal wavelets. They can be expressed as [25]:

Ψk
pq(x) =

{
2p+1

√
2k + 1Lk (2

px− q − 0.5) ,

0,

∀ q
2p ≤ x ≤ q+1

2p

otherwise
(12)

Where, p = 1, 2, ...m and q = 0, 1, ...2p − 1 shows decomposition level and integer translation, respectively. Lk

shows the Legendre polynomial as given in (13), with k being the degree of the polynomial [25].

Lp(x) =
1

2pn!

dn

dxn

(
x2 − 1

)p (13)
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Figure 3. Architecture of full recurrent adaptive NeuroFuzzy system.

Where, p ≥ 0, x ∈ [−1 1] . The first four Legendre polynomials for p = 0, ..., 3 used in this work are given
below [25]:

Lo(x) = 1, L1(x) = x, L2(x) = 0.5
(
3x2 − 1

)
, L3(x) = 0.5

(
5x3 − 3x

)
. (14)

Six Leg-W basis functions are used in this research work for p = 1 and i = 0, ..., 2 defined on [0 1] .
The signal propagation and operation function of nodes in each layer is given as under:

Layer 1: This layer receives input signals and transmit them to the next layer and have feedback connections

that add temporal relationship in-network. The output of this layer is: O
(1)
i = Ii .

Layer 2: This layer estimates membership degree and fuzzy set for all inputs using Gaussian membership
function according to (11).

Layer 3: This layer is also known as rule layer and gives product of membership functions. The number
of rules in this layer determines the number of nodes where each node corresponds to a fuzzy rule. The output
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of this layer is as follows:

O
(3)
i =

n∏
i=1

µj =

n∏
i=1

exp

[
−
(
xi + µi(k − 1)θij −mij

σij

)2
]

(15)

Layer 4: The consequent nodes compute the weighted firing strength of the rule layer and represent THEN-part
of fuzzy rules. The input to this layer is the error signal and weighted feedback signal of the same layer. The
output of this layer is given below:

O
(4)
i == Hi(k) + FiHi(k − 1) (16)

Where, Hi =
N

Σ
p=1

2p−1

Σ
q=0

K

Σ
k=0

wk
nmΨ

(k)
pq , wnm represents Legendre wavelet coefficients, and Fi is the feedback weight.

It is noteworthy that feedback weight of this layer is not adaptive but a closed loop fixed gain.
Layer 5: The first defuzzification layer produces sum of products of antecedent and consequent parts of

(15) and (16). The output of this layer is given below:

O
(5)
i =

n

Σ
i=1

O
(4)
i O

(3)
i (17)

Layer 6: The second defuzzification layer computes the sum of all the rules from equation (15). The output of
this layer is given below:

O
(6)
i =

n

Σ
i=1

Oi(3) (18)

Layer 7: The output layer gives the approximated nonlinear functions at its output. The output of this layer is
given below:

O
(7)
f = f̂(x) =

O
(5)
fi

O
(6)
fi

(19)

O(7)
g = ĝ(x) =

O
(5)
gi

O
(6)
gi

(20)

The update equations and other details of FRANF are given in [22].

4. Computer simulation studies
The performance of SMG-HPS and CS is evaluated with proposed adaptive FBL embedded FRANF-Leg-WC,
adaptive NF, aPID and PID in Matlab/Simulink R2015a. The details of MG-HPS are given in Table 1.
The ambient temperature (oC), solar irradiation (W/m2 ), and wind speed (m/s) are obtained from Pakistan
Meteorological Department (PMD) for a complete solar day at Islamabad station. The solar irradiance and wind
speed are shown in Figure 4. The converters installed at the charging station are responsible for bidirectional
charging and discharging. Bidirectional power flow between UG and CS takes place via the converter of CS and
is useful for various modes of operations described in Section 4.1.
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The simulation result are obtained for the power quality and power system stability parameters, like
oscillations in active/reactive bus-power, %∆THD, %∆VRMS , and %∆ f. These results are explained in the
Section 5 in detail.

4.1. Modes of charging station operation
Figure 5 shows the proposed modes of operation for CS. Seven modes of operation are considered to test the
reliability of the proposed model. These modes include V2G, G2V, BSS2G, G2BSS, V2BSS, BSS2V, and V2V.
Mode 1 (V2G): Peak time is considered in this mode of operation where PHEV and BSS have energy stored

Figure 4. Solar irradiance and wind speed.

in them while UG needs power, which flows from CS to the grid.
Mode 2 (G2V): In this mode of operation PHEV needs power due to low SOC and obtain power from the
AC-bus.
Mode 3 (BSS2G): It is similar to V2G mode of operation but in this mode, BSS is discharging instead of PHEV
and provides power to UG during peak hours.
Mode 4 (G2BSS): In this mode, BSS has a low SOC and is in charging mode thus UG is providing power to
BSS.
Mode 5 (V2BSS): In this mode, PHEV is providing power to BSS.
Mode 6 (BSS2V): In this mode, BSS is providing power to PHEV.
Mode 7 (V2V): In this mode, PHEV is providing power to another PHEV.
Figure 6 shows an energy management system for all the modes of operation of CS.

5. Results and discussion
The simulation results of the proposed control scheme are compared with adaptive NF, conventional aPID and
PID control schemes. The detailed discussion is given below:
Figure 7 and Figure 8 show the active and reactive power of AC-bus. The results reveal different modes of
operation during peak load time as well as valley time on power profile. The UG power absorbs power from CS
during peak hours and delivers power to CS to meet its power demand. It is clear from Figure 7 and Figure 8
that the proposed adaptive FBL embedded FRANF-Leg-WC tracks the reference active and the reactive power
of AC-bus more efficiently as compared with adaptive NF, aPID and PID control schemes.
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Figure 5. Operational modes of charging station.

The converter of CS is responsible for bidirectional charging/discharging and all the seven proposed modes
of operation in Section 4.1. Figure 9 and Figure 10 show the active and reactive power of the CS converter. The
CS contains a BSS and five PHEVs of different ratings. Each of BSS and PHEV has a buck-boost converter
that is controlled by aPID and a voltage regulator after the buck-boost converter as shown in Figure 2. The
charging of BSS and PHEV takes place in buck mode and discharging takes place in boost mode. The BSS
and each PHEV have a voltage regulator. The voltage regulator is controlled by the proposed adaptive FBL
embedded FRANF-Leg-WC. The UG absorbs power in G2V mode during the time intervals of 10 to 12 h, 14
to 15 h, and 16 to 17 h. During these time intervals, different PHEVs are in discharging mode. The UG also
absorbs power from BSS of CS in BSS2G mode during peak hours at the time interval of 18 to 22 h. In this
duration, the BSS is in discharging mode. On the other hand, CS absorbs power from UG to entertain its BSS
and PHEVs load. During time interval 1 to 2 h, the CS absorbs power from UG in G2BSS mode. Similarly,
during the interval 4 to 5 h, the CS absorbs power from UG in G2V mode. V2V mode of operation occurs during
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Figure 6. Flow chart of energy management system for charging station.

Figure 7. AC-bus active power.

interval 1 to 2 h, V2BSS mode of operation takes place during time interval 11 to 12 h, while BSS2V mode of
operation occurs during 13 to 15 h. It is clear from Figure 9 and Figure 10 that the proposed adaptive FBL
embedded FRANF-Leg-WC tracks the active and reactive power of CS’s converter more efficiently as compared
with adaptive NF, aPID, and PID control schemes.
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Figure 8. AC-bus reactive power.

The adaptive FBL embedded FRANF-Leg-WC gives steady state error = 0.0014 kW, overshoot = 0.4% ,
and undershoot = −0.1% in active power of CS. The aPID produces steady state error = 0.0289 kW, overshoot
= 26.3% , and undershoot = −41.8% in active power of CS. The PID generates steady state error = 0.0027

kW, overshoot = 2.3% , and undershoot = −9% in active power of CS. The adaptive NF gives steady state
error = 0.0662 kW, overshoot = 53.9% , and undershoot = −70.2% in active power of CS. The adaptive FBL
embedded FRANF-Leg-WC generates steady state error = 0.09 kW, overshoot = 0.105% , and undershoot =
−0.04% in reactive power of CS. The aPID produces steady state error = 0.1346 kW, overshoot = 11.2% , and
undershoot = −28.4% in reactive power of CS. The PID produces steady state error = 0.1157 kW, overshoot
= 4.6% , and undershoot = −5.6% in reactive power of CS. The adaptive NF gives steady state error = 0.1603

kW, overshoot = 14.8% , and undershoot = −22.3% in reactive power of CS.

Figure 9. Charging station converter active power.

The SOC of a battery determines its mode of operation as a load and a source. Each PHEV and BSS in
this research work is allowed to charge/discharge between specified limits, i.e., 20% < SOC < 90% . Figure 11
shows that the BSS is in charge mode during time intervals 0 to 2 h and 11 to 12 h. During 0 to 2 h, the BSS is
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Figure 10. Charging station converter reactive power.

absorbing power from UG under the G2BSS mode of operation, while during 11 to 12 h, the BSS is absorbing
power from PHEVs under V2BSS mode of operation. The BSS acts as a source during interval 13 to 15 h and
18 to 22 h and discharges to lower state of %SOC. The modes of operation are BSS2V and BSS2G respectively.
Figure 12 shows the %SOC profile of PHEV-1 and depicts that the PHEV-1 is in charge mode during interval
1 to 2 h to charge %SOC under the V2V mode of operation, while it acts as a source and discharges during
interval of 14 to 15 h under V2G mode of operation. Figure 13 shows the %SOC profile of PHEV-2 acting
as a source and discharges during interval 1 to 2 h under the V2V mode of operation. Figure 14 shows the
%SOC profile of PHEV-3 and reveals that it act as a load during interval 4 to 5 hour under G2V mode of
operation. It acts as a source during interval 10 to 11 h and performs under V2G mode of operation. Figure
15 shows the %SOC profile of PHEV-4. It acts as a load during interval 4 to 5 h and charges under G2V mode
of operation, while it acts as a source during 11 to 12 h and performs under V2G mode of operation. Figure
16 shows the %SOC profile of PHEV-5. This PHEV acts as a load from 13th to 14th h interval under BSS2V
mode of operation, while it acts as a source from 16th to 17th h under V2G mode of operation.

Figure 11. %SOC of BSS.
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Figure 12. %SOC of PHEV-1.

Figure 13. %SOC of PHEV-2.

Figure 17 shows the overall generation and consumption of power in the proposed MG-HPS during one
complete solar day. All the RES are working on their MPPT and are controlled by aPID control scheme. It can
be seen that overall load demand is fulfilled by the combined power generated from various RES. The storage
system also absorbs power during off-peak hours, while it supplies power during peak-hours of operation. To
ensure the power quality of microgrid, the %∆THD content must be zero. Figure 18 shows the %∆THD in
load current of SMG-HPS. It is clear from the figure that %∆THD produced by the proposed adaptive FBL
embedded FRANF-Leg-WC almost flat as compared to adaptive NF, aPID and PID controls, thus, ensure more
reliable operation of the power system. The content of %∆ f oscillations describes the power system stability.
The lower magnitude of %∆ f shows the higher stability of the electric grid. Figure 19 shows the %∆ f in the
load current. It is noteworthy that the %∆ produced by proposed adaptive FBL embedded FRANF-Leg-WC
is of much smaller value that adaptive NF, aPID and PID control schemes that improve power system stability.
The %∆VRMS is also a factor of power quality in the microgrid. Its lower magnitude guarantees the stable
operation of the microgrid. Figure 20 shows the %∆VRMS in load voltage profile. It shows that the minimum
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Figure 14. %SOC of PHEV-3.

Figure 15. %SOC of PHEV-4.

Table 3. Power quality and power stability parameters.

Control scheme %∆THD %∆VRMS %∆f
Absolute average Absolute average Absolute average

PID 0.7524 0.4512 0.0002861
aPID 0.6493 0.4366 0.0030580
NF 0.5733 0.4249 0.0034290
FBL-FRANF-Leg-WC 0.5070 0.4086 0.0015160

fluctuation is produced by the suggested control scheme and, hence, shows its superior performance over aPID
and PID controls. All the stability and quality parameters for MG-HPS are applied according to the IEEE
standard 1547 [26]. The absolute average numerical values of power system stability and power quality are
given in Table 3.

Figure 21(a) shows the estimated f̂(x) and Figure 21(b) shows estimated ĝ(x) for all the PHEV’s and
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Figure 16. %SOC of PHEV-5.

Figure 17. Generation and load power.

Figure 18. %∆THD in load current.

BSS. It is noteworthy that ĝ(x) should be greater than 0 due to its presence in denominator of (8. Therefore a
saturator is used with lower limit of 0.01 to avoid division of zero. Figure 21(c) shows the plot of original signal
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Figure 19. %∆ f of load current.

Figure 20. %∆VRMS of load voltage.

VPHEV = y shown using red colour lines and identified signal f̂(x) + ĝ(x)uPHEV = ŷ shown using various
colour. The results show that the PHEV’s are successfully adopted online using the proposed control scheme
and the nonlinear function are estimated correctly.

6. Conclusion
This article presents a grid-connected SMG-HPS having RES and MT as sources. RES are controlled by aPID
for their MPPT. A CS is included in proposed SMG-HPS in which bidirectional power can flow under seven
different scenarios. The proposed adaptive FBL embedded FRANF-Leg-WC is used to control the voltage
regulator of each sub-component of CS. The performance of the stated scheme is tested for various tracking
problems along with the reliability and stability of the power system. The %∆THD, and %∆VRMS , are
minimized to ensure the application of power quality to the microgrid and %∆ f is minimized to ensure the
stability and smooth operation of the microgrid during various modes of operation. It is established that the
performance of the proposed control schemes for all the scenarios is better than adaptive NF, conventional
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Figure 21. (a) f̂(x) (b) ĝ(x) (c) ŷ and y .

aPID, and PID control schemes in terms of power quality, reference power tracking, and power system stability.
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