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Abstract: We study the following partial differential equation (PDE)

(−∆)su+ g(x, u) = µ in Ω,

u = 0 in RN \ Ω,
(0.1)

where (−∆)s is the fractional Laplacian operator, Ω is a bounded domain in RN with ∂Ω being the boundary of Ω ,
g(., .) is a nonlinear function defined over Ω× R . Let (µn)n be a sequence of measure in Ω . Assume that there exists
a solution un with data µn , i.e. un satisfies the equation (0.1) with µ = µn . We further assume that the sequence of
measures weakly converges to µ , while (un)n converges to u in L1(Ω) . In general, u is not a solution to the partial
differential equation in (0.1) with datum (µ, 0) . However, there exists a measure µ# such that u is a solution of the
partial differential equation with this data. µ# is called the reduced limit of the sequence (µn)n . We investigate the
relation between weak limit µ and the reduced limit µ# and the dependence of µ# to the sequence (µn)n . A closely
related problem was studied by Bhakta and Marcus [3] and then by Giri and Choudhuri [15] but for the case of a
Laplacian and a general second order linear elliptic differential operator, respectively instead of a fractional Laplacian.
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1. Introduction and preliminaries

The problem we will address in this article is

(−∆)su+ g(x, u) = µ in Ω,

u = 0 on RN \ Ω, (1.1)

where Ω is a bounded C2 domain in RN , (−∆)su = c(N, s)
∫
RN

u(x)−u(y)
|x−y|N+2s dy , 0 < s < 1 , µ is a Radon measure,

and g is a given nonlinear function defined on Ω× R . We also assume that the nonlinearity of g satisfies the
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following conditions:
(a) g(x, u) ∈ C(R), g(x, 0) = 0,

(b) g(x, .) is non decreasing,

(c) g(., u) ∈ L1(Ω, ρs),

(1.2)

where L1(Ω, ρs) denotes the weighted Lebesgue space with ρ(x) = dist(x, ∂Ω) . The family of functions
satisfying (1.2) will be denoted by G0 . Observe that if g ∈ G0 , then the function g∗ given by g∗(x, t) =

−g(x,−t) is also in G0 .
Not much evidence is found in the literature, which addresses the problem of existence of a solution to

the equation (1.1) with measure data and, hence, the reader is suggested to refer to Brezis [4], which is one of
the earliest attempts made in studying the non-linear equations with measure data. In fact, he considered the
equation for s = 1 of the type

−∆u+ |u|p−1u = f(x) in Ω,

u = 0 on ∂Ω,
(1.3)

where p > N
N−2 , Ω is a bounded smooth domain in RN and 0 ∈ Ω with f a given function in L1(Ω) or a

measure. A detailed study of non-linear elliptic partial differential equations of the above type with measures
can be found in Brezis et al [5]. Here, they have used the notion of ‘reduced measure’. Readers will need to refer
to Marcus and Véron [20] for its richness in addressing problems concerning the existence of a solution to the
nonlinear, second order elliptic equations involving measures. Some other pioneering contributions to nonlinear
local operators with L1 data or measure data, which is worth mentioning, are due to Brezis & Strauss [6],
Kozhevnikova [18], Marcus & Ponce [19], Véron [23] and the references therein. The motivation for studying
such problems have been discussed in the preface of [6].

Recently, a great attention has been given to study the non-linear equations involving fractional Laplacian
or more general integro-differential operators, see [7–10, 16, 21] and the references therein. By using the duality
approach, the authors in [17] studied the problem

(−∆)su = µ in RN , (1.4)

where µ is a Radon measure with compact support. In [13], the authors used the sub-super solutions method
to obtain the existence of solution to the problem

(−∆)su = f(x, u) + µ, in Ω,

u = 0 in RN \ Ω,

where f : Ω × R → R is a Caratheódory function and µ is a Radosn measure in Ω . Also, it extends some
results in Chen & Véron [11]. The present work draws its motivation from Bhakta and Marcus [3], Giri and
Choudhuri [15], who have considered the problem (1.1) for a Laplacian and a general second order linear elliptic
differential operator, respectively with g satisfying the assumptions in (1.2) (a)− (c) .

We denote the dual space of C0(Ω̄) = {f ∈ C(Ω̄) : f = 0 on ∂Ω} to be the space of finite Borel measures,
which will be denoted by M(Ω) endowed with the norm

||µ||M(Ω) =

∫
Ω

d|µ|.
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We denote the space M(Ω, ρs) to be the set of signed Radon measures µ in Ω such that ρsµ ∈ M(Ω) where
ρ(x) = dist (x, ∂Ω) . The norm of a measure µ ∈ M(Ω, ρs) is defined as

||µ||Ω,ρs =

∫
Ω

ρsd|µ|.

We denote M(Ω̄) to be the space of bounded Borel measures over Ω̄ whose elements are measures µ|Ω extended
continuously to Ω̄ . It is also denoted as M(Ω)×M(∂Ω) .

Definition 1.1 Let (µn)n be a bounded sequence of measures in M(Ω, ρs) and ρsµn is extended to a Borel
measure in M(Ω̄) defined as zero on ∂Ω . We say that (ρsµn)n converges weakly in Ω̄ to a measure τ ∈ M(Ω̄)

if (µn)n converges weakly to τ in M(Ω̄) , i.e.∫
Ω

φρsdµn →
∫
Ω̄

φdτ ∀ φ ∈ C(Ω̄).

We denote this convergence by ρsµn −⇀
Ω̄

τ .

We denote Mloc(Ω) to be the space of set functions µ on B(Ω) = {E ⋐ Ω : E Borel} such that µχK is
a finite measure for every compact K ⊂ Ω .

Definition 1.2 Let (µn)n be a sequence in Mloc(Ω) . We say that (µn)n converges weakly to µ ∈ Mloc(Ω) if
it shows convergence in the distribution sense, i.e.∫

Ω

φdµn →
∫
Ω

φdµ ∀ φ ∈ Cc(Ω).

We denote this convergence by µn −⇀
d

µ where

Cc(Ω) = {φ ∈ C(Ω̄) : supp(φ) is compact in Ω, φ|∂Ω = 0}.

Definition 1.3 Let (µn)n be a bounded sequence of measures in M(Ω) . We say that (µn)n converges weakly
in Ω to a measure τ ∈ M(Ω) if (µn)n converges weakly to τ in M(Ω) , i.e.∫

Ω

φdµn →
∫
Ω

φdτ ∀ φ ∈ C0(Ω̄).

We denote this convergence by µn −⇀
Ω

τ . The topology defined via this weak convergence is metrizable and a

bounded sequence with respect to this topology is precompact, i.e. contains a weakly convergent subsequence, and
every weakly convergent sequence is bounded.

Definition 1.4 A sequence (µn)n in M(Ω, ρs) converges ‘weakly’ to µ ∈ M(Ω, ρs) if∫
Ω

φdµk →
∫
Ω

φdµ, ∀ φ ∈ C0(Ω̄, ρ
s),
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where C0(Ω̄, ρ
s) = {f ∈ C0(Ω̄) : f

ρs ∈ C(Ω̄)} . The weak convergence in this sense is equivalent to the weak

convergence ρsµk ⇀ ρsµ in M(Ω) . In this case, also the topology of weak convergence is metrizable, and
the properties mentioned above persist. Hereafter, for the sake of simplicity, we will often use the simplified
notation

∫
Ω
f instead of

∫
Ω
f(x)dx when referring to integrals when no ambiguity on the variable of integration

is possible.

Remark 1.5 From the notions of convergence in measure defined so far, we can summarize the following.

µn −⇀
d

µ ⇔ ρsµn −⇀
d

ρsµ,

ρsµn −⇀
Ω

τ ⇒ ρsµn −⇀
d

τχΩ,

µn −⇀
Ω

µ ⇒ µn −⇀
Ω

µ,

µn −⇀
Ω

µ ⇒ µn −⇀
d

µ.

For this and other properties of weak convergence of measures, we refer to the book by Marcus and Véron
[20]. In this paper, we consider the problem (1.1) with µ ∈ M(Ω, ρs) . We begin by stating, in the language
of Yang [16], the following integration by parts formula from Theorem 1.3 in [16], which has been obtained
for the regional fractional Laplacian which are generators of symmetric 2s -stable processes on a subset of RN

(0 < s < 1) and for u ∈ L1
(
Ω, dx

(1+|x|)N+2s

)
. When restricting the integral kernel of fractional Laplacian to a

subset G of RN , we obtain the nonlocal operator ∆s
G for 0 < s < 1 (see Definition 1.6 below).

Definition 1.6 Let u ∈ L1
(
Ω, dx

(1+|x|)N+2s

)
. The regional fractional Laplacian ∆s

G is defined by the following

formula

∆s
Gu(x) = lim

ϵ↓0
∆s

G,ϵu(x), x ∈ G, (1.5)

∫
Ω
w1(−∆)sw2dx

=


∫
Ω
w2(−∆)sw1dx− CN,s

∫
∂Ω

w2F
2−2sw1 m(dx) +

∫
∂Ω

w2F
2−2sw1 m(dx), 1/2 < s < 1,

∀w1, w2 ∈
⋃

β≥2s

Dβ(Ω̄)∫
Ω
w2(−∆)sw1−CN,s

∫
∂Ω

w2F
2−2sw1 m(dx), 0 < s ≤ 1/2,∀w2 ∈

⋃
β≥2s

Dβ(Ω̄),∀w1 ∈ C2(Ω̄)

where Ω is a C2 open set in RN , m(dx) is the notation used in [16] to denote the measure on the boundary
∂Ω , Dβ(Ω̄) = {u : u(x) = f(x)h(x) + g(x),∀x ∈ Ω, for some f, g ∈ C2(Ω̄)} ,

h(x) =

{
ρ(x)β−1 ∀x ∈ Ω′

δ, β ∈ (0, 1)
⋃
(1,∞)

ln ρ(x) ∀x ∈ Ω′
δ, β = 1

with Ω′
δ = {y ∈ Ω : 0 < ρ(y) < δ} , and

A(1,−s)

A(N,−s)
CN,s =


Cs, N = 1

2Cs

∫ π/2

0
coss θdθ, N = 2

2π
N−1

2

Γ(N−1
2 )

Cs

∫ π/2

0
coss θ sinN−2 θdθ, N ≥ 3
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where

Cs =

{
A(1,−s)
s(s−1) Cs

∫∞
0

|t−1|1−s−max{t,1}1−s

t2−s dt, s ∈ (0, 1)
⋃
(1, 2)

A(1,−s)
∫∞
0

ln(max{t,1})−ln(t−1)
t dt, α = 1

and A(N,−s) =
|s|2s−1Γ(N+s

2 )
πN/2(1− s

2 )
. Notice that Dβ(Ω̄) = C2(Ω̄) when β ≥ 2 and Ω is smooth.

We now give the following definition.

Definition 1.7 We will define u ∈ L1(Ω) to be a ‘very weak solution’ of the problem (1.1) , if g(x, u) ∈ L1(Ω, ρs)

and u satisfies ∫
Ω

(u(−∆)sφ+ g(x, u)φ)dx =

∫
Ω

φdµ , ∀φ ∈ W (RN ) (1.6)

where W (RN ) = {φ ∈ C1
1−2s(Ω̄) : φ = 0 on RN \ Ω and (−∆)sφ ∈ L∞(Ω)} . Here C1

1−2s(Ω̄) refers to the
collection of all those functions in C1

0 (Ω̄) for which φ
ρ1−2s |Ω have continuous extension to Ω̄ . Note that there

are no boundary integrals in the equation (1.6). To understand the absence of boundary integrals in (1.6), we
first give a definition due to Qing-Yang Guan [16].

Definition 1.8 Let Ω be a C1 domain in RN . For 0 ≤ γ < 2 , u ∈ C1(Ω) and x ∈ ∂Ω define operator F γ

on ∂Ω by F γu(x⃗) = − lim
t→0+

d
dtu(x⃗+ tn̂(x⃗))tγ , provided that the limit exists.

Once again, from the Theorem 1.3 in [16], we find that the boundary integrals are absent in 1.6 since

F 2−2sφ = − lim
t→0+

d

dt
φ(x⃗+ tn̂)t2−2s

= − lim
t→0+

(
∇φ(x⃗+ tn̂).n̂t2−2s + (2− 2s)

φ(x⃗+ tn̂)

t2s−1

)
= 0.

We will see that every weak solution to (1.1) is also a very weak solution to it. We will call a measure to be
good if ∃ u ∈ L1(Ω) , which satisfies (1.1) in the very weak sense (1.6) . The space of good measures will be
denoted by Mg(Ω) .
We will give an example where if (µn)n ⊂ Mg(Ω) and if the very weak solution corresponding to each µn be
denoted by un ∈ L1(Ω) of the problem (1.1) such that the sequence of measures converge in a weak sense in
Ω to µ , while (un)n converge to u in L1(Ω) , then, in general, u is not a very weak solution to the boundary
value problem (1.1) with data µ . However, if there exists a measure µ# , such that u is a very weak solution of
the boundary value problem (1.1) with this data, then this measure µ# will be called the ‘reduced limit’ of the
sequence (µn)n . The idea of reduced limit is in some sense related to the idea of reduced measure introduced by
Brezis [5], which is the largest good measure ≤ µ . In this paper, we will answer similar questions with respect
to sequence (µn)n ⊂ Mg(Ω) . Let un be a solution of (1.1) with µ = µn and suppose un → u in L1(Ω) . We
will show that there exists a Radon measure µ# such that u is a very weak solution of the boundary value
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problem

(−∆)su+ g(x, u) = µ# in Ω,

u = 0 on RN \ Ω,
(1.7)

where µ# is called the reduced limit of (µn)n .
In addition to this, for a given L1 data f , we will use a well known variational technique to show

existence of a weak solution in a subspace W̃ s,2(Ω) = {v ∈ W s,2(RN ) : v = 0 in RN \ Ω, (−∆)s/2v ∈
L2(Ω)} of the fractional Sobolev space W s,2(Ω) , equipped with a norm, which is defined as ||v||W̃ s,2(Ω) =(∫

Ω
|(−∆)s/2v|2dx

)1/2 . This seminorm is a norm here since v = 0 in RN \ Ω .
The paper has been organized into three sections with Section 1 being the introduction. In Section 2, we

begin by studying the semilinear boundary value problem with L1 data and will prove certain basic lemmas
and theorems. In Section 3, we continue the study by considering the nonlinear problem with measure data,
and we will prove the main result of this paper.

2. Semilinear problem with L1(Ω, ρs) data

In this section, we consider the semilinear boundary value problem with L1 data, which is as follows:

(−∆)su+ g(x, u) = f in Ω,

u = 0 on RN \ Ω.
(2.1)

We have the following result, the proof of which has been taken from the proposition 2.4 of [11].

Lemma 2.1 If f ∈ L1(Ω, ρs) and suppose there exists a unique very weak solution u ∈ L1(Ω) of the problem

(−∆)su = f in Ω

u = 0, on ∂Ω. (2.2)

, then for any φ ∈ W (RN ) such that φ ≥ 0 , we have∫
Ω

u+(−∆s)φdx ≤
∫
Ω

φfsign+udx. (2.3)

and ∫
Ω

|u|(−∆s)φdx ≤
∫
Ω

φfsign (u)dx (2.4)

where u+ = max{u, 0} , sign+u = χ{x:u(x)≥0} .

Proof Let (fn)n be a sequence in C∞
c (Ω̄) , which are continuously extended by zero in RN \ Ω̄ , such that

||fn − f ||L1(Ω,ρs) → 0 as n → ∞ . Let (un)n be a classical solution of

(−∆)sun = fn, in Ω

un = 0, in RN \ Ω. (2.5)
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These solutions have the representation un(x) =
Γ(N

2 −2s)
πN/222sΓ(s)

∫
Ω

fn(y)
|x−y|N−2s dy , (see [2]), which is also called as the

s−Riesz potential. Since each fn is a smooth function, which is compactly supported in Ω , we have un to be
at least continuous in Ω . We also have from [2] the inequality ||un||1 ≤ c||fn||1 for every n ∈ N and hence
un ∈ L1(Ω) .
For δ > 0 , define an even convex function γδ as

γδ(t) =

{
|t| − δ

2 if |t| ≥ δ
t2

2δ if |t| < δ.

Then for any t, s ∈ R , |γ′
δ(t)| ≤ 1 , γδ(t) → |t| and γ′

δ(t) → sign(t) when δ → 0+ . Moreover, γδ(s) − γδ(t) ≥
γ′
δ(t)(s− t) .

For φ ∈ W (RN ) such that φ ≥ 0 we have∫
Ω

γδ(un)[(−∆)sφ]dx =

∫
Ω

[(−∆)sγδ(un)]φdx

≤
∫
Ω

γ′
δ(un)(−∆)sunφdx =

∫
Ω

γ′
δ(un)fnφdx. (2.6)

Passing to the limit δ → 0 , we obtain∫
Ω

|un|(−∆)sφdx ≤
∫
Ω

sign(un)fnφdx ≤
∫
Ω

φ|fn|dx ∀n ∈ N. (2.7)

Let φ0 be the solution of (2.2) with f ≡ 1 . Then, from [21], ∃ c > 0 such that c−1 ≤ φ0

ρs ≤ c in Ω . Taking

φ ≡ φ0 in (2.7) , we get ∫
Ω

|un|dx ≤ c

∫
Ω

|fn|ρsdx. (2.8)

Thus, ∫
Ω

|un − um|dx ≤ c

∫
Ω

|fn − fm|ρsdx. (2.9)

Therefore, (un)n is a Cauchy sequence in L1(Ω) , and, hence, its limit v is in L1(Ω) . Since each un is a classical
solution to (2.5), we have ∫

Ω

φ(−∆)sundx =

∫
Ω

fnφ

⇒
∫
Ω

un(−∆)sφdx =

∫
Ω

fn
φ

ρs
ρsdx (2.10)

∀φ ∈ W (RN ) . Passing to the limit n → ∞ in (2.10) , we obtain∫
Ω

v(−∆)sφdx =

∫
Ω

f
φ

ρs
ρsdx

=

∫
Ω

fφdx. (2.11)
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Thus, v ∈ L1(Ω) is a very weak solution of (2.2). In fact, v = u since by our assumption, there exists a
unique very weak solution of (2.2). Further, passing to the limit n → ∞ in (2.7), we get

∫
Ω
|u|(−∆)sφdx ≤∫

Ω
f(signu)φdx . The inequality

∫
Ω
u+(−∆s)φdx ≤

∫
Ω
f(sign+u)φdx is proved by replacing γδ by γ̃δ(t) =

γδχ[0,∞) . 2

The following apriori estimate that has been used in the proof of the Proposition 3.1 [11] will be used here to
guarantee the unicity of the solution to (2.1).

Lemma 2.2 If ui ∈ L1(Ω) are very weak solutions of (2.1) corresponding to f = fi for i = 1, 2 , then we have
the following estimates:

||u1 − u2||L1(Ω) + ||g(x, u1)− g(x, u2)||L1(Ω,ρs) ≤ C||f1 − f2||L1(Ω,ρs) (2.12)

for some C > 0 .

Proof Since u1, u2 are very weak solutions of (2.1) , we have∫
Ω

ui(−∆s)φdx+

∫
Ω

g(x, ui)φdx =

∫
Ω

fiφdx

for all φ ∈ W (RN ) , i = 1, 2 . Consequently,∫
Ω

(u1 − u2)(−∆s)φdx+

∫
Ω

(g(x, u1)− g(x, u2))φdx =

∫
Ω

(f1 − f2)φdx

for all φ ∈ W (RN ) . This implies that u1 − u2 is a very weak solution of

(−∆)su = f1 − f2 − g(x, u1) + g(x, u2) in Ω,

u = 0 on RN \ Ω.
(2.13)

Therefore, by Lemma 2.1 , for any φ ∈ W (RN ) , φ ≥ 0∫
Ω

|u1 − u2|(−∆s)φdx ≤
∫
Ω

(f1 − f2 − g(x, u1) + g(x, u2))sign(u1 − u2)φdx (2.14)

Let φ ≡ φ0 be the same test function as used in Lemma 2.1. We use this φ in (2.14) to obtain∫
Ω

|u1 − u2|dx ≤
∫
Ω

(f1 − f2)φ0sign(u1 − u2)dx−
∫
Ω

(g(x, u1) + g(x, u2))sign(u1 − u2)φ0dx

This implies that

||u1 − u2||L1(Ω) +

∫
Ω

(g(x, u1)− g(x, u2))sign(u1 − u2)φ0dx ≤
∫
Ω

(f1 − f2)φ0sign(u1 − u2)dx

By the property of g , we have (g(x, u1)−g(x, u2))sign(u1−u2) = |g(x, u1)−g(x, u2)| . Thus from c−1 ≤ φ0

ρs ≤ c

it follows that

||u1 − u2||L1(Ω) + c−1||g(x, u1)− g(x, u2)||L1(Ω,ρs) ≤ c||f1 − f2||L1(Ω,ρs). (2.15)
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Thus, there exists a new constant c1 > 0 such that

||u1 − u2||L1(Ω) + ||g(x, u1)− g(x, u2)||L1(Ω,ρs) ≤ c1||f1 − f2||L1(Ω,ρs) (2.16)

Hence, the lemma is proved. 2

The above inequality also implies that if u ∈ L1(Ω) is a very weak solution of the boundary value problem 2.1 ,
then

||u||L1(Ω) + ||g(x, u)||L1(Ω,ρs) ≤ C||f ||L1(Ω,ρs) (2.17)

Next, the following comparison result will be used wherever necessary.

Lemma 2.3 (Comparison of solutions) Let u1 and u2 be the very weak solutions in L1(Ω) of the boundary
value problem (2.1) corresponding to f1 and f2 , respectively. If f1 ≤ f2 , then u1 ≤ u2 a.e.

Proof By the proof of Lemma 2.2 , u1 − u2 is a weak solution of the problem (2.13) . By taking φ ≡ φ0 , a
solution of (2.2) with f ≡ 1 , and by Lemma 2.1 , we have∫

Ω

(u1 − u2)+(−∆s)φ0 dx ≤
∫
Ω

(f1 − f2 − g(x, u1) + g(x, u2))sign+(u1 − u2)φ0 dx (2.18)

Then, from the equation (2.18) , it follows that

0 ≤
∫
Ω

(u1 − u2)+dx =

∫
Ω+

(u1 − u2)dx (2.19)

≤
∫
Ω+

(f1 − f2)sign+(u1 − u2)φ0 dx+

∫
Ω+

(g(x, u2)− g(x, u1))sign+(u1 − u2)φ0 dx (2.20)

where Ω+ = {x ∈ Ω : u1 > u2} . Since the test function φ0 ≥ 0 and f1 ≤ f2 , hence, the first integral in R.H.S
of (2.20) is less than or equal to zero. Now since g(x, .) is a nondecreasing function, we have∫

Ω+

(g(x, u2)− g(x, u1))sign+(u1 − u2)φ0dx ≤ 0. (2.21)

Thus, from (2.21) we get
∫
Ω
(u1 − u2)+dx ≤ 0 which shows that (u1 − u2)+ = 0 a.e. Therefore, u1 ≤ u2 a.e.

2

It is important to note a priori that a weak solution in W̃ s,2(Ω) of the problem (2.1) is also a very weak solution
in L1(Ω) over the test function space W (RN ) . Here, W̃ s,2(Ω) consists of functions in W s,2(RN ) , which are
extended by zero in RN \ Ω (see [12]). In order to show this, we let u ∈ W̃ s,2(Ω) be a weak solution of (2.1) .
Hence, u satisfies ∫

Ω

(−∆)s/2u(−∆)s/2vdx+

∫
Ω

g(x, u)vρsdx =

∫
Ω

fvρsdx (2.22)

∀v ∈ W (RN ) , f ∈ L1(Ω, ρs) . Since v ∈ W (RN ) we have (−∆)sv ∈ L∞(Ω) which is continuously embedded in
L2(Ω) . By applying integration by parts (see Theorem 1.3 in [16]) once more to (2.22) , we obtain∫

Ω

u(−∆)svdx+

∫
Ω

g(x, u)vρsdx =

∫
Ω

fvρsdx ∀v ∈ W (RN ). (2.23)
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, and, hence, every weak solution in W̃ s,2(Ω) is a very weak solution in L1(Ω) over the test function space
W (RN ) .

Theorem 2.4 (Existence of a unique very weak solution) The boundary value problem (2.1) possesses a
unique very weak solution u in L1(Ω) .

Proof We first prove the existence of a weak solution in W̃ s,2(Ω) with the test function space W (RN ) for
the case f ∈ L∞(Ω) . For each n ∈ N , define gn = min{|g|, n}sign(g) . Let Gn(x, .) be the primitive of gn(x, .) ,
i.e., G′

n(x, .) = gn(x, .) , such that Gn(x, 0) = 0 . Note that Gn is a nonnegative function for each n . We will
show the existence of a weak solution in W̃ s,2(RN ) to the problem

(−∆)su+ gn(x, u) = f in Ω,

u = 0 in RN \ Ω, (2.24)

which satisfies ∫
Ω

(−∆)s/2u(−∆)s/2vdx+

∫
Ω

gn(x, u)v ρ
sdx =

∫
Ω

fv dx, ∀ v ∈ W (RN ). (2.25)

Let us consider the functional

In(u) =
1

2

∫
Ω

|(−∆)s/2u|2dx+

∫
Ω

Gn(x, u) ρ
sdx−

∫
Ω

fu dx

=
c(N, s)

2
[u]2

W̃s,2(Ω)
+

∫
Ω

Gn(x, u) ρ
sdx−

∫
Ω

fu dx

defined over W̃ s,2(Ω) . Here, [·] denotes the Gagliardo norm [12]. Since u ∈ W̃ s,2(Ω) which is continuously
embedded in L2(Ω) and L2(Ω) is continuously embedded in L1(Ω) , we have

In(u) =
c(N, s)

2
[u]2

W̃ s,2(Ω)
+

∫
Ω

Gn(x, u) ρ
sdx− ||u||1 · ||f ||∞

≥ c(N, s)

2
[u]2

W̃s,2(Ω)
+

∫
Ω

Gn(x, u) ρ
sdx− c5[u]W̃s,2(Ω) · ||f ||∞

=

(
c(N, s)

2
[u]W̃s,2(Ω) − c5||f ||∞

)
[u]W̃s,2(Ω) +

∫
Ω

Gn(x, u) dx,

where c5 > 0 constant. Since Gn is a nonnegative function, it shows that lim
[u]W̃s,2(Ω)→∞

In(u)
[u]W̃s,2(Ω)

= ∞ . Therefore,

the functional In(u) is coercive.
Now we will show that the functional In(u) is weakly lower semi continuous. For this, let vm ⇀ u weakly in
W̃ s,2(Ω) . By the nonnegativity of Gn , we get by Fatou’s lemma the following inequality:∫

Ω

Gn(x, u) ρ
sdx ≤ lim

m→∞
inf

∫
Ω

Gn(vm) ρsdx.

Due to the weak convergence of vm to u in W̃ s,2(Ω) , we have < (−∆)s/2vm, (−∆)s/2v >→< (−∆)s/2u, (−∆)s/2v >

as n → ∞ for every v in W−s,2(RN ) and, hence, for every v ∈ W̃ s,2(RN ) . Thus, < (−∆)s/2vm −
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(−∆)s/2u, (−∆)s/2v >→ 0 for every v ∈ W̃ s,2(Ω) and, hence, < (−∆)s/2vm − (−∆)s/2u, (−∆)s/2vm −

(−∆)s/2u >→ 0 as n → ∞ . Thus, ||(−∆)s/2vm−(−∆)s/2u||2 → 0 . Hence, lim
m→∞

∫
Ω

|(−∆s/2)vm|2dx =

∫
Ω

|(−∆s/2)u|2dx .

So we have

In(u) ≤ lim inf
m→∞

[vm]2
W̃ s,2(Ω)

+ lim inf
m→∞

∫
Ω

NGn(vm) ρ
sdx− lim inf

m→∞

∫
Ω

fvm

≤ lim inf
m→∞

In(vm).

Thus, In(u) is weakly lower-semi continuous and coercive. Hence, the variational problem min
u∈W̃ s,2(Ω)

{In(u)}

possesses a weak solution ũn ∈ W̃ s,2(Ω) by a result in [24]. The minimizer ũn ∈ W̃ s,2(Ω) is also a weak solution
of the boundary value problem (2.24) . Since every weak solution is a very weak solution, so by the estimate
in (2.17) , the sequences (ũn)n and (gn(x, ũn))n are bounded in L1(Ω) and L1(Ω; ρs) , respectively. Assume
for a moment that f ≥ 0 . We will show that ũn ≥ 0 a.e. in Ω . If not, then f ≥ 0 implies ũn < 0 . As a
consequence, we have f − g(ũn) ≥ 0 . We also have the following∫

Ω

∫
Ω

(u(x)− u(y))(u−(x)− u−(y))

|x− y|N+2s
dydx ≤ −[u−]2W s,2(Ω), (2.26)

obtained from the real value inequality (a− b)(a− − b−) ≤ −(a− − b−)2 for every a, b ∈ R . Since ũn is a weak
solution on the test function space W (RN ) , we have∫

Ω

∫
Ω

(−∆)s/2ũn(−∆)s/2vdx =

∫
Ω

(f − g(ũn)vdx (2.27)

In particular, for v = ũ−
n ≥ 0 , we have

0 ≥ −[ũ−
n ]

2
W s,2(Ω) ≥

∫
Ω

∫
Ω

(ũn(x)− ũn(y))(ũ
−
n (x)− ũ−

n (y))

|x− y|N+2s
dydx (by 2.26))

=

∫
Ω

(−∆)s/2ũn(−∆)s/2ũ−
n dx

=

∫
Ω

(f − g(x, ũn))ũ
−
n dx (by (2.27))

=

∫
{x∈Ω:ũn(x)<0}

(f − g(x, ũn))ũ
−
n dx ≥ 0. (2.28)

This shows that [ũ−
n ]W̃ s,2(Ω) = 0 and, therefore, ũ−

n = 0 a.e. in Ω . Thus, ũn ≥ 0 a.e. in Ω . We also have that
ũn satisfies

(−∆)sũn + gn(ũn) = f in Ω,

ũn = 0 on RN \ Ω.
(2.29)

in the weak sense (2.25) . A slight manipulation of (2.29) gives the following

(−∆)sũn + gn+1(ũn) = f + gn+1(ũn)− gn(ũn) in Ω,

ũn = 0 on RN \ Ω.
(2.30)
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If f∗ = f+gn+1(x, ũn)−gn(x, ũn) , then, due to the monotonically nondecreasing nature of gn , we have f∗ ≥ f

a.e. on Ω . We also have ũn+1 , which is a solution to the problem

(−∆)sũn+1 + gn+1 ◦ ũn+1 = f in Ω,

ũn+1 = 0 on RN \ Ω.
(2.31)

As f∗ ≥ f , hence from (2.30) , (2.31) and the comparison result, in Lemma 2.3 , we have ũn+1 ≤ ũn . Thus,
(ũn)n is a L1 - bounded and bounded, nonincreasing sequence and so, by the dominated convergence theorem,
we have ũn → u in L1(Ω) . Therefore, there exists a subsequence, which we will still denote as ũn that converges
to u pointwise a.e. and hence ũn → u in L1(Ω) . Further,

gn(x, ũn) = min{|g(x, ũn(x))|, n} sign(g(x, ũn))

= min{g(x, ũn(x)), n} sign(g(x, ũn))

= g(x, ũn(x)), for n ≥ n0 ≥ k(x) a.e. on Ω

From (1.2a) , we have gn(x, ũn(x)) = g(x, ũn(x)) → g(x, u(x)) a.e. for n ≥ k(x) . This also implies that
gn(x, ũn) → g(x, u) in L1(Ω) and hence in L1(Ω, ρs) . Now, by [2], there exists a solution V of

(−∆)sv = f in Ω,

v = 0 on RN \ Ω.
(2.32)

Since un ≥ 0 , we have gn(x, ũn) ≥ 0 . Thus,

(−∆)sũn = f − gn(x, ũn) ≤ f = (−∆)sv in Ω,

where ũn = 0 and v = 0 on RN \ Ω.

Therefore, by the definition of the fractional Laplacian, we can compare the solutions from which we have ũn ≤ V

and hence g(x, ũn) ≤ g(x, V ) . In other words, if V is a solution of (2.32) , then the sequence (g(x, ũn))n is dom-

inated by g(x, V ) . Since ũm → u and g(x, ũn) → g(x, u) in L1(Ω) , hence
∫
Ω

ũn(−∆)sφdx →
∫
Ω

u(−∆)sφdx

and
∫
Ω

g(x, ũn)φdx →
∫
Ω

g(x, u)φdx for all φ ∈ W (RN ) . Thus, it can be concluded that u ∈ L1(Ω) is a very

weak solution of

(−∆)su+ g(x, u) = f in Ω,

u = 0 on RN \ Ω.
(2.33)

We now drop the condition f ≥ 0 . Let zn be a very weak solution of (2.33) corresponding to |f | . Then zn ≥ 0

and

(−∆)sun + gn(x, un) = f ≤ |f | = (−∆)szn + gn(x, zn) in Ω,

un = 0 zn = 0 on RN \ Ω.
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Hence, by the Lemma 2.3, we have un ≤ zn , where un is a weak solution. We have gn(x, zn(x)) = −gn(x, zn(x))

by definition of gn and

(−∆)s(−ũn) + gn(x,−ũn) = −|f | in Ω,

−(ũn) = 0 on RN \ Ω.
(2.34)

Since −|f | ≤ f , we obtain by Lemma 2.3 that −zn ≤ un . Therefore, |un| ≤ zn . Furthermore, by (2.32) the
sequence (zn)n is bounded a.e. and hence (un)n is also bounded a.e. in Ω . This also implies that the sequence
(un)n is bounded in W̃ s,2(Ω) . If not, then by coercivity, we have 0 =< I ′(un), un >≥ k||un||W̃ s,2(Ω) and hence

0 ≥ 1 which is a contradiction. Thus, (un)n is also bounded in L1(Ω) and hence, by continuous embedding of
W̃ s,2(Ω) in L1(Ω) , there exists a subsequence such that un → u in L1(Ω) . So, there exists a subsequence such
that un(x) → u(x) a.e., thereby, implying g(x, un) → g(x, u) in L1(Ω) and hence in L1(Ω, ρs) . Therefore, u is
the unique very weak solution of (2.33) for f ∈ L∞(Ω) . Now suppose f ∈ L1(Ω, ρs) , then, by approximation
of f with smooth functions and using (2.12) , we obtain existence of a unique very weak solution for every
f ∈ L1(Ω, ρs) . 2

3. Semilinear problem with measure data

In this section, we prove the main result of this paper, which is as follows.

Theorem 3.1 Assume that (µn) ⊂ Mg(Ω̄) and ρsµn −⇀
Ω̄

τ . For each n , let un be the corresponding solution

of (1.1) for µ = µn and suppose that

un → u in L1(Ω).

Then,
(i) ρsg(x, un)n converges weakly in Ω̄ and
(ii) there exists µ# ∈ M(Ω, ρs) , such that u is a very weak solution of

(−∆)su+ g(x, u) = µ# in Ω

u = 0 on RN \ Ω.
(3.1)

Furthermore, if µn ≥ 0 for every n , then µ# ≥ 0 .

The measure µ# is called the reduced limit of the sequences of measures (µn)n . Before the proof of Theorem
3.1 , we consider some auxilliary results.

Lemma 3.2 Consider the boundary value problem (1.1) with g ∈ G0 , µ ∈ M(Ω, ρs) . If ui ∈ L1(Ω) are very
weak solutions corresponding to µ ≡ µi for i = {1, 2} , then we have the following estimate

||u1 − u2||L1(Ω)+||g(x, u1)− g(x, u2)||L1(Ω,ρs) ≤ C||µ1 − µ2||M(Ω,ρs) (3.2)

Furthermore, if µ1 ≤ µ2 , then u1 ≤ u2 .
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Proof The proof runs along the same lines as that of the corresponding Lemmas 2.2 , 2.3 and Theorem 2.4

in the previous section. 2

The following result is an immediate consequence of the definition of a good measure and Lemma 3.2 .

Corollary 3.3 Assume that µ ∈ Mg(Ω̄) . Then the boundary value problem (1.1) possesses a unique weak
solution in L1(Ω) .

We now give an example to show that if (µn)n ⊂ Mg(Ω) and if the very weak solution corresponding to each
µn be denoted by un ∈ L1(Ω) of the problem (1.1) such that the sequence of measures converge in a weak
sense in Ω to µ while (un)n converges to u in L1(Ω) . Then, in general, u is not a very weak solution to the
boundary value problem (1.1) with data µ .

Example 3.4 Consider the problem for p = 3/2 and N > 6 .

(−∆)
1
2u+ |u| 12u = 1 in Ω,

u = 0 in RN \ Ω. (3.3)

We prove a theorem motivated by the Proposition 1 of [5]

Theorem 3.5 Given any measure µ ∈ M(Ω, ρs) , let un be the unique very weak solution of

(−∆)sun + gn(x, un) = µ in Ω

un = 0 on ∂Ω, (3.4)

where (gn(x, t))n is a sequence of nondecreasing, real valued, continuous functions in the variable t defined over
R such that gn(x, 0) = 0 and gn(x, t) → g(x, t) ∀t ∈ R . Then un ↓ u∗ in Ω as n ↑ ∞ , where u∗ is the largest
subsolution of

(−∆)su+ g(x, u) = µ in Ω

u = 0 on ∂Ω. (3.5)

Proof From the estimate in (3.2) , we have

||gn(x, un)||L1(Ω,ρs) ≤ C||µ||M(Ω,ρs).

From the estimate (3.2) , we also have

||un||L1(Ω) ≤ C||µ||M(Ω,ρs). (3.6)

Therefore, (un)n weakly tends to, say, u∗ in L1(Ω) . By Dini’s theorem, gn ↑ g uniformly on compact
sets; thus, gn(x, un) → g(x, u∗) a.e. in Ω . Thus, we have g(x, u∗) ∈ L1(Ω, ρs) and from (3.6) we have
||u∗||L1(Ω) ≤ C||µ||M(Ω,ρs) .
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By Fatou’s lemma, we have

∫
Ω

u∗(−∆)sφ+

∫
Ω

g(x, u∗)φ ≤ lim inf
n→∞

∫
Ω

un(−∆)sφ+ lim
n→∞

∫
Ω

gn(x, un)φ

= lim inf
n→∞

∫
Ω

un(−∆)sφ+ lim inf
n→∞

∫
Ω

gn(x, un)φ

=

∫
Ω

φdµ ∀ φ ∈ W (RN ) such that φ ≥ 0. (3.7)

Hence, u∗ is a subsolution of (3.5) . We now claim that u∗ is the largest subsolution to (3.5) . For this, we
consider any subsolution v of (3.5) . Then, by the nondecreasing nature of the sequence (gn)n , we have

(−∆)sv + gn(x, v) ≤ (−∆)sv + g(x, v)

≤ µ

= (−∆)sun + gn(x, un) in the very weak sense. (3.8)

Thus, by comparison, we have v ≤ un a.e. in Ω and as n → ∞ v ≤ u∗ . 2

Now coming to our example (3.3) , it is evident that if we have a Dirac measure, then the largest subsolution

u∗ = 0 . So, we choose µk as a linear combination of Dirac measures, i.e. µk = k−1|Ω|
∑k

i=1 δai , where ai are

uniformly distributed points in Ω . It is easy to see that hn,k = ρn ∗ µk
∗−⇀ 1 in M(Ω, ρs) . This is because

∣∣∣∣∫
Ω

φρs[

∫
Ω

ρn(x− y)µk(y)dy − 1]dx

∣∣∣∣ ≤ ||ρsφ||∞

(∫
Ω

k−1|Ω|
k∑

i=1

ρn(x− ai)− |Ω|

)
= 0

for every φ ∈ C(Ω̄) . To each hn,k let the solution corresponding to it be denoted by un,k . Then by Theorem
3.5, un,k → 0 in L1(Ω) . Hence, for each k , choose Nk > k sufficiently large so that ||un,k||1 < 1/k . So, we see
that hNk,k converges to 1 in a weak sense in Ω but uNk,k → 0 and certainly 0 is not a solution to the problem
in (3.3) .
We will now show the existence of a reduced limit to a sequence of measures, under some conditions. We begin
with the following result.

Lemma 3.6 Let (µn)n be as in Definition 1.1 and assume that ρsµn −⇀
Ω̄

τ. Then

lim
n→∞

∫
Ω

φdµn =

∫
Ω

φdµint

for all φ ∈ W (RN ) .
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Proof Take φ̄(x) =

{
φ
ρs , x ∈ Ω ,

0 , x ∈ ∂Ω

Then φ̄ ∈ C(Ω̄) and using remark 1.5 , we have,

lim
n→∞

∫
Ω

φdµn = lim
n→∞

∫
Ω

ρsφ̄dµn

=

∫
Ω̄

φ̄dτ [∵ ρsµn −⇀
Ω̄

τ ]

=

∫
Ω̄

φ̄χ∂Ωdτ +

∫
Ω̄

ρsφ̄dµint [∵ τ = ρsµint + τχ∂Ω]

=

∫
∂Ω

φ̄dτ +

∫
Ω

ρsφ̄dµint

=

∫
Ω

φdµint

Hence the lemma. 2

Now, consider the sequence (µn)n ∈ Mg(Ω) and the corresponding problem

(−∆)sun + g(x, un) = µn in Ω,

u = 0 on RN \ Ω.
(3.9)

Theorem 3.7 Assume that g ∈ G0 and (µn)n ∈ Mg(Ω) is a sequence of measures such that ρsµn −⇀
Ω̄

µ .

Let un → u in L1(Ω) where un is a very weak solution of the problem (3.9) . Then there exists a measure
µ# ∈ Mg(Ω) such that u is a very weak solution of

(−∆)su+ g(x, u) = µ# in Ω,

u = 0 on RN \ Ω
(3.10)

Proof By (3.2) , we have
||g(x, un)||L1(Ω,ρs) ≤ C||µn||M(Ω,ρs)

for some C > 0 . Since ρsµn −⇀
Ω̄

µ , the sequence (ρs g(x, un))n is also uniformly bounded in L1(Ω) . Since

un → u in L1(Ω) , ∃ a subsequence such that un → u pointwise a.e. in Ω . Thus, by a consequence of the
Egorov’s theorem, we have

∫
Ω
ρs g(x, un))nφdx →

∫
Ω
ρs g(x, u))φdx in that subsequence for each φ ∈ W (RN )

and hence
ρs g(x, un) −⇀

Ω̄
λ .

This implies that g(x, un) −⇀
Ω

λ
ρsχΩ = λ̃ . Therefore, by the lemma 3.6 ,

∫
Ω

g(x, un)φdx =

∫
Ω

φdλ̃
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for all φ ∈ W (RN ) . Since un is a very weak solution of the problem (3.9) , we have

∫
Ω

un(−∆)sφdx+

∫
Ω

g(x, un)φdx =

∫
Ω

φdµn

for all φ ∈ W (RN ) . Passing to the limit n → ∞ we have,

∫
Ω

u(−∆)sφ+

∫
Ω

φdλ̃ =

∫
Ω

φdµ

for all φ ∈ W (RN ) . Now this equation can be written as

∫
Ω

u(−∆)sφ+

∫
Ω

g(x, u)φdx =

∫
Ω

g(x, u)φdx−
∫
Ω

φdλ̃+

∫
Ω

φdµ

for all φ ∈ W (RN ) . This shows that u is a very weak solution of the problem (3.10) , with µ# = g(x, u) −
λ
ρsχΩ + µ and hence µ# ∈ Mg(Ω) . 2

4. Conclusion
The nonlocal, semilinear, elliptic, boundary value problem involving a Radon measures has been studied. The
existence of very weak solution may in general fail for a general measure data input. However, we proved that
the boundary value problem considered here with L1 data possesses a unique very weak solution. We studied
the reduced limits of the sequences (µn) of measures for a nonlocal operator (−∆)s with a nonlinearity. Our
main result (Theorem 3.1) is obtained for any s ∈ (0, 1) , which extend the Theorem 4.1 of Bhakta & Marcus
[3] for the case when s = 1 and the boudary measure ν = 0 on ∂Ω . Since the fractional laplacian (−∆)s is
nonlocal in nature, it is not possible to assume a nonzero boundary measure ν to the problem (1.1) on the
boundary ∂Ω of the domain.
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