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Abstract: Let J, be the Bessel function of the first kind of index v > 1/2, p € R and (pr)ren be a sequence of distinct
nonzero complex numbers. Sufficient conditions for the completeness of the system {:pr*l\/xkay(:Epk) ke N} in
the weighted space L*((0;1);x*Pdx) are found in terms of an entire function with the set of zeros coinciding with the

sequence (pr)ken -
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1. Introduction

Let v € R and L?((0;1);t7dt) be the weighted Lebesgue space of all measurable functions f : (0;1) — C,
satisfying

1
/t7|f(t)\2dt<+oo.
0
Let
e DR
Jy(z)f];) FT( +h 1) z=x+ iy =re'?,

be the Bessel function of the first kind of index v € R. Tt is well known that (see [5, p. 94], [7, p. 350]),
for v > —1 the function J, has an infinite set {pk ke Z} of real roots, among which p, k € N, are the
positive roots and p_i := —pi, k € N, are the negative roots. All roots are simple except, perhaps, the root
po = 0. A system of elements {ek (k€ N} in a separable Hilbert space H is called complete ([6, p. 131]) if
W{ek:kEN}:H.

Various approximation properties of the systems of Bessel functions has been studied in many papers (see,
for instance, [1-5, 7-13]). In particular, it is well known that the system {\/z.J, (zpy) : k € N} is an orthogonal
basis for the space L2(0;1) if v > —1 and (pi)ren is a sequence of positive zeros of .J, (see [1, 3], [7, pp.
355-357]). From this, it follows that if v > —1 and (px)ken is a sequence of positive zeros of J,,, then the system
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{x7"J,(zpk) : k € N} is complete and minimal in L?((0;1); z***'dx). The system {\/zJ,(zpi) : k € N} is
also complete ([7, pp. 347, 356]) in L2(0;1) if (px)ren is a sequence of zeros of the function .J/,. Besides, from
[2] it follows that if v > —1/2 and (pg)ken is a sequence of distinct positive numbers such that py < w(k+v/2)
for all sufficiently large k € N, then the system {\/EJy(zpk) ke N} is complete in L2(0;1).

Basis properties of the above systems of Bessel functions with an arbitrary sequence of complex numbers
(pk)ken has been studied in [4, 8-13]. In particular, in [9] the authors obtained the necessary and sufficient
conditions for the completeness and minimality of system {\/mJu(xpk) :k eN } in the space L?(0;1) if
v > —1/2 and (pg)ren is a sequence of distinct nonzero complex numbers. In [12], it was proven that if the
system {\/mJl,(xpk) ko€ N} is complete and minimal in L?(0;1), then its biorthogonal system is also
complete and minimal in L2?(0;1), where v > —1/2 and (pg)ren is a sequence of nonzero complex numbers
such that pi # p2, for k # m. In addition, in [13] (see also [10]) the authors found a criterion of unconditional
basicity of the system {,/ZpyJ,(zpi) : k € N} in L?(0;1), where v > —1/2 and (pi)ren is a sequence of
distinct nonzero complex numbers. Moreover, in [11] has been established a criterion for the completeness
and minimality of more general system {@k,u,p NS N}, Ok p(x) == a P~ /TprJ,(zpi), in the space
L2((0;1); 2?Pdz), where v > 1/2, p € R and (px)ren is a sequence of distinct nonzero complex numbers.
Besides, in [4] it was proven that the system {©y,, : k € N} is complete in L?*((0;1); #*’dz) if and only if
Yoreq 1/|pk] = 400, where v > 1/2, p € R and (pg)ren is a sequence of distinct nonzero complex numbers
such that |Im pi| > 6|px| for all £ € N and some § > 0. Those results are formulated in terms of sequences of

zeros of functions from certain classes of entire functions.
The aim of this paper is to prove Theorems 3.1-3.4, where we obtained some other sufficient conditions

for the completeness of system {© ., : k € N} in the space L?((0;1);2?Pdz) in terms of entire functions. This

complements the results of papers [4] and [8-13].

2. Preliminaries
An entire function G is said to be of exponential type ¢ € [0;400) ([6, p. 4]) if for any & > 0 there exists
a constant c(e) such that |G(z)| < ¢(e) exp((o + €)|z]) for all z € C. To prove our main results, we need the

following auxiliary lemmas.

Lemma 2.1 ([11]) Let v > 1/2 and p € R. An entire function 2 has the representation
1
Q(2) :z*”/ VT, (t2) P g(t) dt (2.1)
0

with some function q € L*((0;1); 2?Pdx) if and only if it is an even entire function of exponential type o < 1
such that z=v+t1/2(22vQ(2))" € L?(0; +00). In this case,
+oo

q(t) =t7? Vizd,_1(t2) 27" 2 (27 Q(2)) dz.
0

Let EP’Q be the class of the entire functions Q that can be represented in the form (2.1), and let E, o
be the class of even entire functions © of exponential type o < 1 such that z=**1/2(22*Q(z))" € L*(0; +0).

In view of Lemma 2.1, we remark that Epg =Fpo.
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Lemma 2.2 ([11]) Let v > 1/2, p € R and (pr)ren be a sequence of mnonzero complex numbers such that
pi # p2 for k #n. For a system {@k,,,,p ke N} to be incomplete in the space L*((0;1);x*Pdx) it is necessary
and sufficient that a sequence (pr)rez\{oy, where p_y := —py, k € N, is a subsequence of zeros of some nonzero

entire function € By, 4.

Lemma 2.3 ([11]) Let v > 1/2, p € R and an entire function Q be defined by the formula (2.1). Then for all

z =z +iy =re'? € C, we have (here and so on by C; we denote positive constants)
20(2)] < C1(1 + [2[) ™" exp(| Im 2]).

Let n(t) be the number of points of the sequence (pi)reny C C satisfying the inequality |px| < ¢, i.e.
n(t):= >, 1, and let

lpr| <t

N(r) ::/OTnEf)dt7 r>0.

Lemma 2.4 ([4]) Let v > 1/2, p € R and (pg)ren be a sequence of distinct nonzero complex numbers. If

2
lim sup (N(r) Ly vlog(l+ 7")) = 400,
™

r—-+00
then the system {Oy,, : k € N} is complete in L*((0;1); 2*Pdx).
3. Main results
Theorem 3.1 Let v > 1/2, p € R and (pr)ren be a sequence of distinct nonzero complex numbers such that
pi # p2, for k #m. Let a sequence (Pr)kez\f0y » where p_y = —pi, be a sequence of zeros of some even entire

function G of exponential type o < 1 for which on the rays {z : argz = ¢;}, j € {1;2;3;4}, ¢1 € [0;7/2),
w2 € [w/2;m), @3 € (m;37w/2], w4 € (37/2;27), we have

|G(2)] = Co(1 + |2])~ exp(| Im 2), (3.1)
with some o < v. Then the system {Oy,, : k € N} is complete in L*((0;1); 2?Pdx).

Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function
Q) € E,» for which the sequence (pi)rez\ {0} is a subsequence of zeros. Let V(z) = Q(2)/G(z). Then V is an

even entire function of order 7 < 1, for which by Lemmas 2.1 and 2.3, we obtain
V()| < C3(L+[2))*7", argz=¢;, j€{1;2;3;4}. (3.2)

Therefore, according to the Phragmén—Lindel6f theorem (see [6, p. 39]), we get V(z) = 0. Hence, 2(z) = 0.

This contradiction proves the theorem.

Theorem 3.2 Let v > 1/2, p € R and (pr)ren be a sequence of distinct nonzero complex numbers such that

pi # p2, for k # m. Let a sequence (Pr)kez\j0y, where p_p := —py, be a sequence of zeros of some even

892



KHATS’/Turk J Math

entire function G ¢ Ep, o of exponential type o < 1 for which on the rays {z : argz = ¢;}, j € {1,2;3;4},
w1 €[0;7/2), w2 € [1/2;7), w3 € (m;31/2], pa € (37/2;27), the inequality (3.1) holds with oo < 5/2. Then
the system {©p,.p : k € N} is complete in L*((0;1); x*Pdx).

Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function
Q) € E,» for which the sequence (pi)rez\ {0} is @ subsequence of zeros. Let V(z) = Q(2)/G(z). Then V is an
even entire function of order 7 < 1, satisfying (3.2) (see the proof of Theorem 3.1). Since a —v < a—1/2 < 2
and V is an even entire function, then, according to the Phragmén—Lindel6f theorem, the function V is a
constant. Hence, Q(z) = C4G(z) and Q ¢ E, 2. Thus, we have a contradiction and the proof of the theorem
is completed. O

Theorem 3.3 Let v > 1/2, p € R and (pr)ren be a sequence of distinct nonzero complex numbers such that
pi # p2, for k #m. Let a sequence (Pr)kez\{o} » where p_y := —py,, be a sequence of zeros of some even entire

function F ¢ E, o of exponential type o <1 such that for some o <2 and h € R
|F(x +th)| > §lz|7, 6>0, |z|]>1. (3.3)
Then the system {Oy.p : k € N} is complete in L?((0;1); 2% dz).

Proof Let F' ¢ E, > and the inequality (3.3) is true. Suppose, to the contrary, that the system {@k’u’p ke N}
is not complete in L2((0;1); #?Pdz). Then, by Lemma 2.2, there exists a nonzero even entire function Q € E, -
which vanishes at the points p;. However, the sequence (px)rez\ {0} is a sequence of zeros of an entire function
F(z) ¢ E, 2 of exponential type o < 1. Therefore, E(z) = Q(z)/F(z) is an even entire function of order 7 < 1.

Since Q! € E, 5, then taking into account Lemma 2.3, we obtain

|Q(x + ih)| < Cs(1 + Va2 + h2) Vel < Cs < 400, z€R.

Using (3.3), we get

|E(z +ih)| < C7(1+ |z])*, =xeR.
In view of this, we have that F(z) is a polynomial of degree o < 2. Furthermore, since E is an even entire
function, then E(z) = Cs. Furthermore, F(z) = Cof2(z) and F(z) € E, 2. This contradiction concludes the
proof of the theorem. O

Theorem 3.4 Let v > 1/2, p € R and (pr)ren be a sequence of distinct nonzero complex numbers. Let
okl < Ak+ B+ ap for 0 < A<w/2, —A < < A(v—1/2), and the sequence (ay)ren such that ay >0,
ar =0(1) as k — +oo and

oo

-
; lagy1 — ag| < oo, kz_:l f < +o0. (3.4)

Then the system {Og ., : k € N} is complete in L*((0;1); 2?Pdz).

Proof Let pup =Ak+ B8+ ai, k€ N, and

ni(t) = Z 1, N1(7")=/OT m(t) dt, r> 0.
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Then n(t) > ny(t), N(r) > Ni(r) and ni(t) = m for Am+ B+ am <t < A(m+1)++ amy1 (n1(t) =0 on
(0; 1) ). Let 7 € [ps; prsg1). Then s = T +O(1) as 7 — +oo. Therefore, by analogy with [4, p. 9], we obtain

as r — 400

HESL o (F) "y ()
Ni(r) = Da+ | 2

k

Hk+1 ¢ T s—1
= k/ er/ fdt:Zklog@JﬁslogL
H t I t k=1 Hk

k=1 k s Hs
(3.5)
s—1
Ak +1)+ 8+ apqr r
= k1 -
; T AktBtar B Asifra
s—1 s—1
Ak+1)+ B+ apqr A(k+1)+5> : Ak+1)+p
= k|1 —log ————— | + klog ————— +0(1
2 ( Ak + B+ o Akt B ; Ak + 8 e
Furthermore (see [4, p. 9]),
s—1
Ak+D)+8 7 1 B
log————=——[=+—=]1 1 . .
;kog N A (2+A ogr+O(1), 7r— +0o0 (3.6)
Furthermore, using the Lagrange theorem, we get
Ak 4+ 1)+ B+ apqr Ak+1)+p
e = B+ log — X1+ 3
A+ apq1 — ag A
=1 1+ ——F"— | -1 1+ ———
Og( T AR At ) Og( +Ak+ﬁ)
1 (A+ak+1—ak_ A )
14+ \ Ak+Btar AR+
_ 1 ((Ak + B)(Oé]ﬁ.l - Oék) — OékA> C
= , k> 0.
1+ Cy (Ak+ B+ ag)(Ak+ B)
Therefore,
Alk+1)+ 8+ ar1 Ak+1)+p Qg
1 —log———— || < — —_" .
‘k‘( A+ B+ o %8 AL T B _C(|C¥k+1 ak|+k)7 ¢>0
Hence,
s—1
A(k+1) 4 B+ apq1 Ak+1)+p
1 —1
;k(og Ak + B+ oy ©8 Ak +p
(3.7)
s—1 0o
o (673
SZC(|ak+1—ak|+?)SZC(|ak+1—ak|+?).

k=1 k=1

Thus, combining relations (3.4)—(3.7), we obtain

r 1 B
> (=4 L& .
Ny(r) > A (24—A>log7“+0(1)7 T — 400
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In view of this, for 0 < A < 7/2 and —A < 8 < A(v —1/2), we have

2 2
lim sup (N(r) . vlog(1l + r)) > lim sup <N1 (r) — i vlog(1l + r))
™ ™

r—+00 r—4o00

r 1 g 2r
> 1li ——(=+=]1 - — 1 o) | = .
> irililif(A (2+A) ogr— — +vlogr+ O( )) +0o0

Finally, according to Lemma 2.4, we obtain the required proposition. The proof of theorem is completed. O

Corollary 3.5 ([4]) Let v > 1/2, p € R and (pr)ren be a sequence of distinct nonzero complex numbers. If
ol <K Ak+ 8 for 0 < A <7/2, —A < < A(v —1/2) and dll sufficiently large k € N, then the system
{Okp: k €N} is complete in L?((0;1);2%Pdz).

Indeed, this corollary follows directly from Theorem 3.4, because the sequence ap = 0 satisfies its

conditions.
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