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Abstract: In this paper, we characterize various local forms of T4 constant filter convergence spaces and investigate the
relationships among them as well as showing that the full subcategories of the category of constant filter convergence
spaces consisting of local Ty constant filter convergence spaces that are hereditary. Furthermore, we examine the
relationship between local Ty and general Ty constant filter convergence spaces. Finally, we present Urysohn’s lemma

and Tietze extension theorem for constant filter convergence spaces.
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1. Introduction

In 1978, Schwarz [14] introduced the category ConFCO whose objects are constant filter convergence spaces
and morphisms are continuous maps, and he showed that ConF CO is isomorphic to the category FILTER
whose objects are filter spaces and morphisms are continuous maps. He also showed that it is a bireflective
subcategory of FFCO whose objects are filter convergence spaces and morphisms are continuous maps. Hence,
Schwarz proved that ConFCO is the natural link between FILTER and the category FCO.

In 1991, Baran [3] introduced the local 77 separation property that is used to define the notion of
strongly closed subobject of an object of a topological category, which are used in the notions of compactness
[8], connectedness [10], and normal objects [3].

In general topology, one of the most important uses of separation properties is theorems such as the
Urysohn’s lemma and the Tietze extension theorem. In this regard, it is useful to be able to extend these
various notions to arbitrary topological categories.

The main goals of this paper are as follows:

(1) to give characterizations each of various forms of local T, constant filter convergence spaces,

(2) to investigate the relationships among these various forms as well as the general form of Ty constant
filter convergence space,

(3) to show that the subcategories of local Ty constant filter convergence spaces are productive and
hereditary,

(4) to present Urysohn’s Lemma and Tietze Extension Theorem for constant filter convergence spaces.
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2. Preliminaries

Let B be a nonempty set and F(B) be the set of filters on B. A filter « € F(B) is called proper (resp.,
improper) iff 0 ¢ « (rvesp., § € ). Let o, 8 € F(B). We denote by awU 8 the smallest filter containing both «
and g3, i.e.

aUf={MCB:UNV CM for some U € o and V € 8}.
If the map K : B — P(F(B)) satisfies
(1) [{z}] = [z] € K(x) for each z € B, where [U]|={VCB:UCV},UCB,

(2) if « € K(x) and 8 D «, then § € K(x),
then (B, K) is called a filter convergence space [13, 14]. If K is a constant function, then (B, K) is called a
constant filter convergence space [13, 14].

Let (B,K) and (C,L) be constant filter convergence spaces. A map f : (B,K) — (C,L) is called

continuous if f(a) € L for each a € K, where

fla)={U Cc C :3V € a such that f(V) Cc U}.

Let ConFCO be the category consisting of all constant filter convergence spaces and continuous maps

which is a normalized topological category [1, 14].

Fact 2.1 Let {(B;, K;),i € I} in ConFCO, B be a set, and {f; : B— B;,i € I} be a source in Set,
the category of sets and functions. {f; : (B,K) — (B;, K;),i € I} in ConFCO is an initial lift iff o € K
precisely when f;(a) € K; for all i € T [13].

Fact 2.2 Let {(B;,K;),i € I} in ConFCO, B be a set, and {f; : B — B,i € I} be a sink in Set.
An epi sink {f; : (B;, K;) = (B,K),i € I} in ConFCO is a final lift iff & € K implies that there exist ¢ € I
and §; € K; such that f;(5;) C a [13].

Lemma 2.1 ([2]) Let o, 3 € F(A), 6 € F(B) and f: A— B be a function. Then,
(1) flanp)=fla)Nf(B).
(2) f@uB) > fla)Uf(B).
(3) flfaca.
(4) 5C ff 1o,

Let U : E — Set be a topological functor, X be an object of E with p € U(X) = B, F be a nonempty subset
of B, and X/F be the final lift of the epi U-sink

q:U(X) = BJF = (B\F) U{x},

where ¢ is the identity on B/F and identifying F' with a point x [3].
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Lemma 2.2 (/2, 6]) Let B be a set, D # F C B, a,f3,0 € F(B), and q: B— B/F be the identification map.
(1) For a ¢ F, qa C [a] iff a C [a].
(2) qo C [#] iff aU[F] is proper.
(3) If aUIF] is not proper, then qo C qa iff 0 C «.
(4) If a UIF)] is proper, then qo C qo iff o U[F)] is proper and o N[F] C «.
(5) ¢B U qa is proper iff U« is proper or BUI[F| and aU[F] are proper.
3. Local T, constant filter convergence spaces

Let B be a set, p € B and the wedge at p is two disjoint copies of B identified at p and is denoted by B \/p B

[3]. A point  in B\/, B will be denoted by z1 (resp., x2) if z is in the first (resp., second) component of
B\/, B. Note that pi = p>.

Define S, : B\, B — B? by

(x,x) ifi=1
S i) = )
b(@) {(p,x) ifi=2
and 7, : B\, B — B by
Vp(z:) ==
for i =1,2 [3].

The infinite wedge V;°B is formed by taking countably many disjoint copies of B and identifying them

at the point p, where B = B x B X ... is the countable cartesian product of B [5].
Define A° : V°B — B> by
A;o(xl) = (p7 < Py Ty Py Py )
where z; is in the i-th component of V;°B and v,°: V,;°B — B by
V(i) =z
for all i € I', where I is the index set {i: z; is in the i-th component of the infinite wedge V;°B} [3].
Definition 3.1 (/3/) Let U : E — Set be a topological functor, X be an object of E with pe U(X)=B, F

be a nonempty subset of B, and X/F be the final lift of the epi U-sink q:U(X) =B — B/F = (B\F) U {x},

where q is the identification map defined above.

(1) If the initial lift of the U -source S, : B\, B — U(X?)=B? and v, : B\,B—=U(D(B)) =B is
discrete, then X is called Ty at p, where D is the discrete functor, a left adjoint of U .
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(2) If the initial lift of the U -source
{Ay VB — U(X*>)=B> and V,°:V,°B-— U(D(B)) = B}
is discrete, then {p} is said to be closed.
(3) If {x} is closed in X/F, then F C X is said to be closed.

(4) If X/F is Ty at , then F is said to be strongly closed.

(5) If X is Ty at p and X/F is T3 at * for all closed (resp., strongly closed) F in U(X) containing
p, then X is called Ty (resp., ST4) at p.

(6) If X is Ty at p and X/F is T4 at * for all closed (resp., strongly closed) F in U(X) containing
p, then X is called Ty (resp., ST, ) at p.

Note that if (B, ) is a topological space and p € B, then by Theorem 2.1 of [4], all of various local T}
structures in Definition 3.1 are equivalent. The notion of closedness coincides with the usual closedness and if
(B,T) is T1, by Theorem 2.2.16 of [3], the notions of closedness and strongly closedness coincide.

Theorem 3.2 ([5]) Let (B,K) € ConFCO, p< B, and ) # F C B. Then,

(1) {p} is closed iff [x]N[p] ¢ K for all x € B with x # p.

(2) (B,K) is Ty at p iff for any x € B with v #p, [z]N[p| ¢ K.

(3) The following are equivalent.

(a) F is strongly closed.

(b) F is closed.

(c) a & [a] or aU[F] is improper for every proper filter « € K and a € B with a ¢ F.
Theorem 3.3 ([11]) Let (B, K) be a constant filter convergence space with p € B. Then:

(1) The following are equivalent.

(a) (B,K) is ST} at p.

(b) (B,K) is Ty at p.

(c) [z]N[p] ¢ K for all x € B with x # p and K, = {[p]} for p ¢ F where F is a nonempty closed
subset of B.

(2) The following are equivalent.

(a) (B, K) is ST3 at p.
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(b) (B,K) is T3 at p.

(c) The following conditions are satisfied:

(i) For any x € B with x #p, [z]N[p ¢ K.

(it) If o, B € Kp,, then anp e K,, where Ky ={a:a Cp| and a € K}.

(iit) For any oo € Kp,, B € K and nonempty closed subset F' of b is closed with p ¢ F, if « U is proper
or BUI[F] and aU[F] are proper, then BN [p] € K.
Theorem 3.4 Let (B, K) be a constant filter convergence space with p € B. The following are equivalent.

(1) (B,K) is T at p.

(2) (B,K) is ST at p.

(3) [z]N[p] ¢ K for all x € B with x # p and for any nonempty disjoint closed subset Fy of B with
p € F1 and for any proper filter o € K, if a U[F] is proper, then F| € «.

Proof By Theorem 3.3 and Definition 3.1, (B, K) is STy at p iff (B,K) is T; at p. Hence, (1) < (2).

Suppose (B, K) is T; at p. By Definition 3.1, in particular, (B, K) is 77 at p and by Theorem 3.3,
[z]N[p] ¢ K for all z € B with = # p.

Suppose F) is nonempty disjoint closed subset of B with p € F}, « € K and aU[F}] is proper. o € K
implies g € K’, where K’ is the final structure on B/F) induced by the map ¢ : B — B/F}.

By Lemma 2.2(2), o U [F] is proper implies ga C [*]. Since (B/Fi,K’) is T3 at %, by Theorem 3.3,
go € K., ie. gqa = [+] and by Lemma 2.1,
a>q tq(a)=q ] = [F]
and consequently Fi € «.

Suppose that the conditions hold and 2 € B with 2 # p and by the assumption, [z] N [p] ¢ K, by
Theorem 3.2, (B,K) is T7 at p.

Next, we show that (B/Fy, K') is T4 at *, where F} is a closed subset of B with p € F} and K’ is the
final structure on B/F; induced by the map ¢: B — B/F;. Let a € B/F; with a # *. If [a] N [*] € K, then
by Fact 2.2, there exists o € K such that « C [a] N [«].

By Lemma 2.1(1),
[a] N [+] = q(la] N [F1])

and by Lemma 2.2,
aN[F1] C [a] N [Fy]
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and
al [Fl]

is proper since ([a] N [F1]) U [Fy] = [F1] is proper.

Note that a C [a], a ¢ Fy and o U [F}] is proper, a contradiction to the fact that Fj is closed. Hence,
[a] N [*] ¢ K’ for all a € B/F; with a # % and by Theorem 3.2, (B/Fy,K’) is T} at x.

Finally, we need to show that K| = {[x]} for * € Fy, where F, is a nonempty closed subset of B/F}.

Let 8 € K’ and 8 C [«]. By Fact 2.2, there exists @ € K such that gqo« C § and by Lemma 2.2, o U [F7] is
proper. Since = ¢ Fy, F; N F» = () and by the assumption F; € «. Hence, * = q(F}) € qo i.e. [¥] =qa C B
implies 8 = [#]. As a result, by Theorem 3.3, (B/Fy, K') is T4 at * and by Definition 3.1, (B, K) is T, at p.
O

Theorem 3.5 Let (B, K) be a constant filter convergence space with p € B. (B, K) is T4 at p iff the following

are satisfied.
(1) Forall x € B with x % p, [x]N[p] ¢ K.

(2) If a, 8 € K with aU[Fy] and BU[F1] are proper for any closed subset Fy of B containing p, then
there exists § € K, such that § N [F1] C aN B and § U[Fi] is proper.

(3) Suppose that aU[Fy] is proper for any closed subset Fy of B with p € Fy and F» for any nonempty
closed subset of B disjoint from Fy and for any o, 8 € K. If aUp is proper or SU[F1] is proper or aU[Fy] and
BU[F] are proper, then there exists § € K, such that §U[Fy] is proper, 6N[F1] CanNp or §N[F] C SNI[F1].

Proof Suppose (B,K) is T4 at p. By Definition 3.1, (B, K) is Ty at p and by Theorem 3.2, [z] N [p] ¢ K
for all © € B with x # p. This shows that (1) holds.

Suppose «, 8 € K with a U [Fy] and U [F}] are proper for any closed subset F; of B containing p.
Then qga, g8 € K', where K’ is the final structure on B/F; induced by the map ¢ : B — B/F; and by Lemma
2.2, ga C [¥] and ¢B C [#]. Since (B/Fy, K') is T3 at %, by Theorem 3.3, gaNgB € K. and by Fact 2.2, there
exists § € K such that
g6 C qaNgB = gq(an p).

Since g(a N B) C [¥], by Lemma 2.2, (a« N ) U [F}y] is proper and by Lemma 2.2, 6 N [F}] C aN B and
0 U [F1] is proper. This shows that (2) holds.

Suppose «, 3 € K, aU[F}] is proper for any closed subset F} of B with p € F} and F5 is any nonempty
closed subset of B disjoint from Fj. Note that gqa, ¢S € K’ and by Lemma 2.2, ga C [%] and * ¢ F». Suppose
a U is proper. Then by Lemma 2.2, qa U gf is proper and by Theorem 3.3, ¢8 N [«x] € K’ and by Fact 2.2,
there exists § € K such that

46 C BN [x] = qB Nq[F1] = q(B N [F1]).

Since (8N F1) U [Fy] = [F1] is proper, by Lemma 2.2, § N [Fy] C SN [Fy] and § U [Fy] is proper.
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Suppose a U [F3] and U [Fy] are proper. By Lemma 2.1,
qa U [qF3] = qa U [F3]

and ¢B U [gF3] = ¢S U[Fy] are proper. By Theorem 3.3, g8 N[*] € K’ and by Fact 2.2, there exists § € K such
that
6 C gB N [¥] = q(BN[F]).

Since (BN[F1])U[Fy] = [F1] is proper, by Lemma 2.2, §N[F] C SN [F;] and §U[F}] is proper. Suppose
aU[F;] and SU[F}] are proper. Note that qa, g8 € K’ and by Lemma 2.2, qo C [#] and ¢8 C [*]. By Lemma
2.1, gaNgpf € K. and by Fact 2.2, there exists § € K, such that ¢d C gaNgB = g(anN ). Since (aNB)U[F}]
is proper, by Lemma 2.2, § N [F}] C aN B and § U [Fy] is proper.

Suppose that the conditions hold and x € B with x # p. By Part (1), [z] N [p] ¢ K and by Theorem

3.2, (B,K) is Ty at p. We show that (B/Fy,K’) is T3 at x for every closed subset Fy of B containing p,
where K’ is the final structure on B/F; induced by the map ¢ : B — B/F;. Suppose a € B/F; and a # *.
If [a] N [*] € K', then by Fact 2.2, there exists o € K, such that ga C [a] N [*]. It follows that qa C [%]. By
Lemma 2.2, aU [F}] is proper and « C [a], a ¢ Fi, a contradiction since Fj is closed. Hence, [a] N [«] ¢ K’
for all @ € B/F, with a # x and by Theorem 3.2, (B/Fy,K’) is Ty at x.

Suppose a, 3 € K., then by Fact 2.2 and Lemma 2.2, there exist a1, as € K such that qa; C a, gas C 8
with ay U[Fy] and ag U[Fy] are proper. By condition (2), there exists 6 € K such that 6 N [F] C oy Nag and
0 U [F] is proper. It follows by Lemma 2.1 that

g0 =q(6N[F1]) =qdN[x] Cglas Nag) =qag Ngas Canp

which implies aN g € K.

Suppose « € K., 8 € K’', and F; is any nonempty closed subset of B/F; with * ¢ F» such that a« U
is proper or aU [F3] and U [Fy] are proper. By Fact 2.2 and Lemma 2.2, there exist a;,as € K such that
qoy C a, qae C B and «g U[F] is proper. Suppose aU S is proper. Then, gay Ugas is proper and by Lemma
2.2, a3 Uy is proper or o U [F;] and ay U [F}] are proper, and by(3), there exists 6 € K such that 6 U [F}]
is proper and

SN[F] CaiNas

or
on [F1] C as N [Fl]

Let’s apply ¢ to each extension. By Lemmas 2.1 and 2.2,
qd = qd N [x] = qd Nq[F1] = (6 N[F1]) C q(a1 Nag) = gy Ngag C [%] N qae
90 = 6 N [+] = g6 NqlF] = q(6 N [F]) C q([FA] Naz) = g[Fi] Ngas C [x] N gas.
Since ¢d € K’ [*] N gas € K’ and consequently, [*] N3 € K’.
Suppose a U [Fy] and U [Fy] are proper. By Lemma 2.1

qaq U [Fp] = qaq U q[Fy]
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and
qop U [Fy] = qag U q[F5]

are proper and by Lemma 2.2, ay U [F5] and «ag U [Fy] are proper since [Fy] U [Fy] is improper. By (3), there
exists ¢ € K such that 6 U[F}] is proper and
(;Q[Fl] C a1 Nasg

or
onN [F1] C as N [Fl]

By Lemmas 2.1 and 2.2, we have

@0 = qd N [x] = qgd Nq[F1] = q(6 N [F1]) C g(ar Nag) = gag Ngae C [%] N gas
qd = qd N [x] = qd Nq[F1] = q(6 N [F1]) C ¢([F1] Naz2) = q[F1] Ngas C [*] N qae.

Since ¢d € K', [¥] Ngas € K’ and consequently, [¥x] N 8 € K’. Hence, by Theorem 3.3, (B/Fy,K’) is
T3 at * and by Definition 3.1, (B, K) is T4 at p.
O

Remark 3.6 (1) In Top, the category of topological spaces and continuous functions, by Theorem 2.2.14 of

[3], Ty at p, Ty at p, STy at p, and STy at p are equivalent. Also, in Top, the notion of closedness coincides
with the usual closedness and if (B,7) is T1, by Theorem 2.2.16 of [3], the notions of closedness and strongly

closedness coincide.
Let TyTop be the full subcategory of Top consisting of all local Ty topological spaces. Then the cate-

gories TyTop, T4Top, ST;Top, and ST4Top are isomorphic.

(2) For the category ConFCO, by Theorems 3.4 and 3.5, T} at p (resp., T4 at p) and ST, at p (resp.,
ST, at p) are equivalent and Tj at p implies Ty at p. Moreover, in ConFCO, by Theorem 8.2, the notions

of closedness and strongly closedness coincide.

(3) Let T4yConFCO be the full subcategory of ConFCO whose objects are the local Ty constant filter
convergence spaces, where Ty =T, , ST, Ty or STy. Theorems 3.4 and 3.5 yield the following.

(a) T,ConFCO and ST;ConFCO are isomorphic categories.

(b) T4ConFCO and ST4ConFCO are isomorphic categories.

Theorem 3.7 (1) Let (A,L) be a constant filter convergence space. If M C N and N C A is closed, then
M C A is closed.

(2) Let (Bi, K;) be constant filter convergence spaces for all i € I and p = (p1,pa,...) € B = HBZ"
il

FEach F; C B; is closed, i € I, iff F = HFZ C B is closed, where K is the product structure on B.
i€l
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Proof (1) is proved in [12].

(2) Suppose F; C B; is closed, for each ¢ € I, for any proper filter « € K, where K is the product
structure on B, and a = (a1, as,...) ¢ F. There exists j € I such that a; ¢ F; and 7o € K. Since F; C B;
is closed, by Theorem 3.2, mja ¢ [a;] or wjce U [F}] is improper. If mja U [7;F = F;] is improper, then, by
Theorem 3.2, 7;(a U [F]) is improper and 7rj717rj(a U [F]) is improper. Therefore, by Theorem 3.2, o U [F] is
improper. If m;a ¢ [m;a], then o ¢ [a] and by Theorem 3.2, F' C B is closed.

Conversely, suppose F' C B is closed, for each i € I, a; € K; is proper and a; ¢ F;. Let a =
{UCB:U>DU; xUz x..,.U; € aj} and a = (a1,az,...). Note that a ¢ F = HF’ and by Fact 2.1,

il

a € K is proper. F is closed implies a ¢ [a] or a U [F] is improper. If a ¢ [a], then ma = a; ¢ [a4].
(Indeed, if U € m;a, then there exists W € a such that U C mW. W € « implies W D Wy x Wy X ...,
W; € a;. It follows easily that =W D W;, m;W € «;. Hence, m;a C «;. Conversely, suppose U; € a;. Then
7 Y U;) = By Xx By X ... X Bi_1 x U; X Bj11 X ... € a. If we apply 7; to expression, then m—w{lUi =U,; € m«.
Hence, «; C m;a. Consequently, ma = «;).

If « U [F] is improper, then by Lemma 2.2, m;«a U [F;] is improper. By Theorem 3.2, for each i € I,
F; C B; is closed.

Theorem 3.8 Let (B, K) be a constant filter convergence space with p € B.
(1) (B,K) is Ty at p iff {p} is closed.
(2) (B,K) is Ty iff (B,K) is Th at p forall p€ B.
(3) (B, K) is Ty iff all points of B are closed.
(4) (B,K) is preTy iff (B,K) is preTy at p for all p € B.
(5) (B,K) is Ty iff (B,K) is T, at p for all p € B.
(6) (B,K) is T4 iff (B,K) is T4 at p for all p € B.
Proof (1) follows from Theorem 3.2.
(2) follows from Theorem 3.2 and Theorem 2.1 of [7].
(3) follows from Part (1) and Part (2).

(4) If (B, K) is preTy [3], then by Theorem 2.8 of [6], (B, K) is preTy at p for all p € B since ConFCO
is normalized.

Conversely, suppose (B, K) is preTy at p for all p € B and « € K is proper. Note that for every U € «,
[U] C [a] for some a € U, and [U] € K,. By Theorem 3.6 of [11], [a] = [U] and consequently, o = [a]. Hence,
by Theorems 2.1 and 2.7 of [7], (B, K) is preT}.
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(5) Suppose (B, K) is T;. Since the category ConFCQO is normalized, by Theorem 2.8 of [6] and by
Theorem 2.7 of [7], (B, K) is T} at p for all p € B.

Suppose (B, K) is T at p for all p € B. By (2), and by Theorem 3.2, (B, K) is T;. Suppose « is any
proper filter in K, and F; and Fy are any nonempty disjoint closed subsets of B. If p € Fy (resp., p € Fy)
and aU[Fy] (resp., o U [F]) is proper, then, by Theorem 3.4, F; € o (resp., Fz € a).

Suppose a U [Fy] is improper and p € F;. Since aU [F1] C aU [p] for all p € Fy, it follows that o U [p]
is proper and consequently, o ¢ [p] for all p € Fy. Also a ¢ [a] for all a ¢ Fy. If o C [a] for some a ¢ Fi,
then by Theorem 3.2, {a} € a. By Theorem 3.2, a is closed. If o ¢ [a] for all a ¢ Fy, a must be improper, a
contradiction.

By similar argument, if o U [Fy] is improper and p € Fy, then o = [a] for some a ¢ F,. Hence, by
Theorem 2.4 of [9], (B, K) is Ty.

(6) If (B, K) is T4, by Theorem 2.8 of [6], (B, K) is T4 at p for all p € B since ConFCO is normalized.

Conversely, suppose (B, K) is T4 at p for all p € B. By Definition 3.1, (B, K) is Ty at p for all p € B
and by Part (2), (B, K) is T1. Suppose that for any proper filters «, € K and for any nonempty disjoint
closed subsets Fy and Fy, aUp is proper or both aU[F;] and BU[Fy] are proper or both aU[F3] and U [Fb]
are proper. By Theorem 3.5, since (B, K) is T4 at p and there exists 6 € K such that § N[F;] C an B and
§ U [Fy] is proper or § N [F2] C aN B and § U [Fy] is proper. Hence, by Theorem 2.3 of [9], (B, K) is Ty.

O

Theorem 3.9 (1) If a constant filter convergence space (B,K) is T4 at p and M C B is closed with p € M ,
then M is Ty at p.

(2) If (B= HBmK), where K is the product structure on B is Ty at p = (p1,pa, ), then for all i € I
iel

and p; € By, (B“KIL) 18 T4 at p; .

Proof (1) Let (B, K) be a constant filter convergence space, Kjs be the initial structure on M induced
from the inclusion map i : M — B, and [z] N [p] € K for some z € M with z # p, p € M. By Fact 2.1 and

Lemma 2.1,
i([z] 0 [p]) = i[]) Ni([p]) = [z] N [p] € K,
a contradiction since (B, K) is Ty at p. Thus, [z] N [p] ¢ Ky for all x € M with z #p and p € M.
Suppose «, 8 € Kj; with « U [F1] and U [Fy] are proper for any nonempty closed subset F; of M

containing p. Note that i(a),i(5) € K and 4 is a monomorphism (one to one map) implies
ifaU[R]) =i(e) Vi([R]) and i(BU[F]) =i(B) Ui([Fi])

are proper, where i(p) = p € F; = i([F1]). Since F; C M and M C B are closed, by Theorem 3.7, F; C B is
closed. Since (B, K) is T4 at p, by Theorem 3.5, there exists 6 € K such that ¢ N [i(F})] C i(a) Ni(B) and
0 U [i(F1)] is proper.

By Lemma 2.1, i(i~*(8§)) D 4, and i(i~*(d)) € K. Since i is an initial lift and i(i71(5)) € K, by Fact
2.1, we get i~1(8) € K. Since

dN[i(F)] Ci(a)Ni(B) =i(anB) and U [i(Fy)]
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is proper, by Lemma 2.2,
THEONAD = O NEED) =i (@) N[FA] i (i(a) ni(F) =i (i(an f)) =anp

and i~1(0) U [F] is proper.
Suppose «, 8 € Ky, a U [Fy] is proper, for any closed subset F with p € F; and Fy is a nonempty

closed subset of M disjoint from F; with U S is proper or 8 U [Fi] is proper or a U [F3] and U [F3] are
proper.

It follows that i(a),i(B) € K, i(a) U [F1] = i(a) U [i(F1)] is proper, i(p) =p € i(Fy) = Fy and F, is a
nonempty (strongly) closed subset of B. Hence,

() Ui(8) = i(a U B)
is proper or
i(B)Vi([F]) = (B U [F1])

is proper or
(o) Ui(F2)] = iU [F2]) and i(B8) U [i(F)] = i(B U [F2])

are proper. Since F; and F, are closed subsets of M and M C B is closed, by Theorem 3.7, i(Fy) and i(F)
are closed subsets of B.
Since (B, K) is T4 at p, by Theorem 3.5, there exists § € K such that

S U fi(F)]

is proper. Moreover,

o N [i(F1)] Ci(a) Ni(B) =i(anp)

or
SN [i(Fr)] Ci(B) N ik1] = i([F1]).
It follows that i~1(8) U [F1] is proper. Hence,
HEN[F) = ENEF)]) i (i(a) ni(B) =i Hi(an B) =anp
or
i) N[F] C BN[F).
Hence, by Theorem 3.5, (M, Ky;) is T4 at p.
(2) Suppose that (B = HBi,K) is T4 at p. By Theorem 3.8, each (B;, K;) is isomorphic to a closed
i€l

subspace of (B, K) and by Part (1), (B;,K;) is T4 at p; for all i € I. O

Theorem 3.10 (1) If a constant filter convergence space (B, K) is T) at p and M C B is closed with p € M,
then M is T, at p.

(2) If (B= HBZ-,K) is Ty at p = (p1,pa, ), where K is the product structure on B, then (B;, K;) is
i€l

T, at p; foralli €1 and p; € B;.
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Proof

(1) Let (B, K) be a constant filter convergence space, K be the initial structure on M induced from
the inclusion map i : M — B. Suppose F' C M is closed with p € F' and a € K); with o U [F] is proper.
By Theorem 3.7(1), F C B is closed, and, by the same argument used in the proof of Theorem 3.9, we get
[]N[p] ¢ K for all x € M with p e M and x # p.

Suppose « is any proper filter in Kj; and « U [F] is proper, where p € F and F is closed in M. By
Fact 2.1, i(o) € K, i(p) € i(F), and since ¢ is a monomorphism, i(a U [F]) = i(a) Ui([F]) is proper. Since
(B,K) is T} at p, i(F) € i(a) and consequently, i~1(i(F)) = F € i~!(i(a)) = a. Hence, by Theorem 3.4,
(M,Ky) is Ty at p.

(2) Suppose that (B = HB“ K) is Ty at p. By Theorem 3.8, each (B;, K;) is isomorphic to a closed
iel
subspace of (B, K) and by Part (1), (B;, K;) is Ty at p; for all i € I. O

Theorem 3.11 (Tietze extension theorem) If (B,K) is a T constant filter convergence space and A is
closed subset of B, then every morphism f : (A, Ka) — (R,L), where R is the set of real numbers, L is
any constant filter structure on R, and K, is the initial structure on A induced from the incusion map

i:A— (B,K), has an extension morphism (continuous function) g : (B,K) — (R, L).

flx), if z€A
0, if ¢ A

is a morphism (continuous) i.e. if o € K, then g(a) € L.

Proof Define g: B— R by g(z) = { Note that g is an extension of f. We show that ¢

If a € K is improper, then g(«) is improper. Suppose « is proper. Since (B, K) is a Tj, by Theorem
2.4 of [9] and by Theorem 3.8, either A € a or A° € a or a = [a] for some a € B.

If A€ a,then i '(A) €i l(a)e Ka,

and

since f is a morphism (continuous).
If A° € «, then g(A°) = {0} € g(«), i.e. g(a) =10] € L.

If a = [a] for some a € B, then g(a) = g([a]) = [g(a)] € L. Hence, g is an extension morphism of f.
O

Theorem 3.12 (Urysohn’s lemma) If (B, K) is a T, constant filter convergence space, Fy and Fy are any
nonempty disjoint subsets of B, then there exists a morphism f: (B,K) — ([0,1],L), where [0,1] is the unit
interval and L is any constant filter structure on [0,1], such that f(x) =0 if x € Fy and f(x) =1 if x € Fy.
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0, if z€F

. We show that if o € K, th elL.
L oif wd B e show that if « en f(«)

Proof Define f: B — [0,1] by f(x) = {
If « is improper, then f(«) is improper. Suppose « is proper, by Theorem 2.4 of [9] and by Theorem

38, F1 €aor Fy € a or a = [a] for some a € B.

If Iy € a, then f(Fy) = {0} € f(a) and consequently, f(a)=[0] € L.
If F5 € a, then f(Fy) = {1} € f(a) and consequently, f(a)=[1] € L.

If a = [a] for some a € B, then f(a) = [f(a)] € L. Hence, f is a morphism such that f(z) = 0 if
rze€F and f(z)=11if z € F;.
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