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Abstract: We present a bagging ensemble of convolutional networks in combination with the test-time augmentation
technique to improve performance on the cross-dataset gender recognition problem. The bagging ensemble combines the
predictions from multiple homogeneous models into the ensemble prediction. Augmentation techniques are often used
in the learning phase of the CNNs to improve the generalization ability. On the other hand, test-time augmentation is
not a common method used in the testing phase of the learned model. We conducted experiments on models trained
using different hyperparameters. We augmented the test data and combine the predictive outputs from these network
models. Experiments performed on diverse gender datasets, including Adience, AFAD, CelebA, Gallagher, Genki-4K,
IMDb, LEW, Morph, VGGFace2, and Wiki, showed that the use of bagging ensemble of convolutional networks and
test-time augmentation outperforms standalone models. We obtained the highest cross-dataset accuracy in the literature
on seven out of eleven datasets. For the remaining four datasets we reported the cross-dataset results for the first time.
According to our experiments, VGGFace2, IMDb, and CelebA datasets provided the highest cross-dataset classification

results for most of the test datasets in the gender recognition problem.
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1. Introduction
Gender recognition is a two-class classification problem to classify given visual data as male or female classes.
Visual data can be a portrait face, 3D volume, gait, body, or even just hands [1] or ears [2]. Face based
gender recognition under unconstrained settings is getting more attention in recent years [3-5]. It contributes
to the other vision problems and research fields such as biometrics, face recognition, age prediction, targeted
advertising, recommendation systems, and human-computer interaction. Demographic studies showed that face-
based gender recognition in the wild is a challenging classification problem due to variations in appearances
such as age, head position, ethnicity, lighting, and facial expressions [6-8]. To overcome challenging situations,
there is a need for large-scale training sets with diverse identities, well representing the problem space by proper
feature selection method, using an optimized machine learning algorithm, and use of ensemble learning methods.
Among these, the two most important factors affecting classification accuracy are the selections of an error-free
dataset and the machine learning method.

Dataset selection plays an essential role in classification problems. Part of the datasets used in the gender
recognition domain, derived from face recognition research. These datasets are not well suited for the gender

recognition problems due to limited diversity and controlled scenes. The most obvious example for a controlled
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dataset is the Feret dataset [9], where the scene is completely controlled. The use of small-scale and scene-
controlled datasets eliminates many challenging situations and does not reflect the success of the classification
methods. According to [10], overoptimistic performances have been achieved for controlled datasets.

Having a large, error-free, and a diverse dataset is a must in supervised learning. Large-scale datasets
and visual variations provide different representations of the classes. For example, they enrich the soft-biometric
features, such as ethnicity, age, and pose distribution, within the classes. These datasets may reveal the actual
performance of the classification methods. The variations in the training data improve the generalization
ability of the classifiers. To increase the variations in the training samples, it is necessary to use augmentation
techniques (random rotations, translations, random brightness changes, horizontal flipping, etc.). Thus, it
covers the solution domain much more than a scene controlled dataset. As indicated by [11], ?There is a need to
assemble datasets with a larger number of images than what is being used now”. However, this is not a trivial
task due to the nature of the large-scale datasets. Automated systems and crawlers collect images from the web
to construct large-scale datasets. Any wrong class labels also affect the overall performance of the classifiers.
The fact that the ground truth labeling is correct is of great importance for supervised learning. An incorrect
class label, when used in conjunction with augmentation techniques, reduces the success of the methods. For
this reason, the training data must be as clean as possible.

A clean dataset, in combination with a powerful machine-learning method, is a key point for successful
classification. Deep learning methods and their derivatives are successful examples that can be used for the
gender recognition problem. These methods start solving the problem from random locations by using random
weights (if transfer learning is not applied) and iteratively approach the solution domain using an optimization
algorithm. Using random weights enables different training models to be obtained, where training models can
also be called hypotheses. In supervised learning, there are many hypotheses existing in the solution space
which can perform acceptable prediction, thus the learned model is subject to variability. However, finding the
optimal hypothesis is a difficult optimization problem. To overcome part of this problem, ensemble methods
can be used.

Ensemble classifiers offer more flexibility to represent the solution domain by combining multiple hypothe-
ses. Therefore, they give better predictive performance than individual use of standalone classifiers. Ensembles
can be implemented through bagging, boosting, and stacking methods. Bagging (bootstrap aggregating), pro-
duces an ensemble model that is more robust than the individual standalone models composing it. In bagging,
the learning process is independent of all other learning processes thus provides more flexibility (e.g., parallel
learning), while boosting learns in a sequential and dependent way. Bagging and boosting methods use homo-
geneous classifiers, while the stacking method use heterogeneous classifiers. Table 1 shows the main features of

ensemble methods.

Table 1. Ensemble methods and their features.

Method | Dependency | Learning Weight Classification Expected result
Bagging | Independent | Parallel Equal Deterministic averaging | Lower variance
Boosting | Dependent Sequential | Model’s performance | Deterministic Lower bias
Stacking | Independent | Parallel Learning Meta-classifier Lower bias

A proper evaluation protocol is an important factor for evaluating the performance of different methods.

When the size of the training set is small, researchers tend to use n-fold cross-validation based evaluation within
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the same dataset to measure the predictive performance of their method. In n-fold cross-validation, the data is
randomly sampled into n equal size folds. n — 1 folds are used for training and one fold is left for validation,
where each fold is used once as validation data. Averaging the results of n validation tests provides a better
estimation of the predictive performance of the method [12]. However, its joint application with oversampling
on imbalanced datasets results in biased and overly-optimistic estimates [13, 14]. A better solution is to use
cross-dataset evaluations to present the generalizability of the methods.

The main purpose of the study is to perform bagging ensembles of convolutional networks, in combination
with test-time augmentation (TTA), for gender recognition on large-scale datasets in a cross-dataset evaluation
scenario. The main advantages of the cross-dataset evaluation are that it provides results without any bias
from soft-biometric features of the dataset and shows the generalization ability of the models. As indicated in
[15], the predictive performance of the cross-dataset models deteriorated significantly compared to tests within
the database. In our approach, we benefit from the advantages of both the bagging method and test-time

augmentation to overcome challenges in cross-dataset tests. The main contribution of this study is three-fold:

o We provide state-of-the-art cross-dataset results for large-scale gender datasets using ensembles of deep
networks with TTA. Using our method, we obtained the highest gender recognition accuracy reported on
Genki-4K, IMDb, LFW, Morph, and Wiki datasets.

¢ We manually corrected dataset annotations for the large-scale gender datasets. This is an important step

towards better evaluations of the classification methods.

e To the best of our knowledge, this is the first cross-dataset gender recognition experiment performed on

manually corrected large-scale datasets in the literature. We performed 110 cross-dataset tests.

We present the related works in both gender recognition and ensemble methods in Section 2. Materials and
methods, including the datasets, normalization, augmentation, and ensembles of the deep network models, are
in Section 3. Experimental results on cross-dataset tests and discussion are provided in Section 4. Finally,

Section 5 concludes the study.

2. Related works
In this section, we discuss the standalone models and bagging based models in the literature for gender
recognition. Much of the existing research on gender recognition is based on standalone base classifiers. There
are few studies in the literature using bagging based ensembles for gender recognition. Earlier methods use
SVM [16-18], Neural networks [19] and AdaBoost [20, 21] algorithms for gender recognition based on pixels
and handcrafted features such as PCA, LBP and Gabor features. Handcrafted feature extraction methods are
applied on the localized face to reduce dimensionality and highlight important information in image data. Since
the feature extraction methods used in visual gender recognition problems show similarities with methods used
in other visual classification problems (e.g., face recognition, object classification), they are also used in the
gender recognition problem.

Feature extraction methods are divided into two groups, geometry-based and appearance-based methods.
With the widespread use of convolution-based deep learning methods in the field of visual classification, where
the feature extraction is automatically realized by the convolutions, the use of handcrafted feature extraction
methods has decreased. Recent studies in gender recognition focus more on Deep Convolutional Networks that

made successful progress on visual classification tasks [3, 22-25].
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Earlier studies showed that LBP and Gabor jets offer better performance than raw pixels when used
with SVM and variants. For this reason, these two features are extensively used in the literature [15, 26-31].
In [28], appearance-based raw pixels and feature-based (Gabor and LBPs) descriptors are used with linear
SVMs and linear discriminant analysis (LDA). VJ based face detector and an eye detector are used to detect
the face and eyes. They considered both internal and external facial features by selecting different face crops.
They used face crop size of 105 x 90 and 120 x 105 and performed their experiments using pixels, Gabor jets,
and LBPs on Linear SVM and LDA with PCA. They obtained higher results when they use Gabor Jets and
LBP on the LFW dataset. According to their experiments, PCA+SVM and PCA+LDA schemes have similar
performances. In [15], the authors also studied the effect of different cropping factors on the gender recognition
problem. For training, they use LBP and LBPHS features on SVM with RBF kernel. They performed cross-
dataset experiments on original and gender-balanced Feret, LFW, and Morph datasets. Similar to [28], authors
in [26] used LBP features obtained from different face crops on linear SVM classifier. They performed cross-
dataset experiments. In [31], low-level fusion of intensity, shape, and texture features are used in combination
with minimum redundancy and maximal relevance (mRMR) feature selection for gender recognition on LFW,
Feret, and Und datasets. Eidinger et al. [29] studied gender recognition on Gallagher’s and Adience datasets.
They experiment with dropout learning techniques and Linear Support Vector Machines. They process the
images using a robust face alignment technique, then use LBP and four-patch LBP (FPLBP) as a feature

representation model.

The bagging method for gender recognition is studied in [27, 30]. In [27], multiple SVM based linear
models are used to create bagging of classifiers and stacking for gender recognition. They use histograms
obtained from LBP and HOG descriptors. In [30], the weighted bagging method is used in combination with
LBP histograms and Gabor wavelets. Using a dynamic weighting method they compared the majority voting
with the weighted bagging model. They found that the weighted bagging model provides higher accuracy for

both female and male classes. They also collect their dataset having 28,235 images from FaceBook.

More recent studies covering cross-dataset experiments focus on convolutional neural networks [4, 32, 33].
In these studies, convolutions are used for feature extraction and SoftMax is used for the prediction. A
commercial age, gender, and emotion recognition system is developed in [33]. They created several deep
convolutional networks trained on their large dataset having over 4 million images over 40,000 identities. For
gender recognition, they considered different ethnicity and age groups. They use augmentation techniques (e.g.,
horizontal flip and random crop) for training and for prediction of age. However, they did not use TTA for

gender recognition.

A DCNN architecture based on MobileNet [34] for gender recognition is proposed in [4], at a reduced
cost. They experiment with nontrainable parameters of the MobileNet architecture including input resolutions,
width multipliers, and the number of layers. They experiment with the influence of the changes in the network
architecture on the performance of the model. For the training, they do not align the images, but used
augmentation techniques instead. Their cross-dataset experiments on VGGFace2, LEFW, MIVIA-Gender, Wiki,
and Adience datasets are competitive with our results. However, their results on IMDb are very poor because
they did not clean the dataset.

Gender is also considered as a face attribute in face attribute estimation problems. In [32], a heterogeneous
face attribute estimation method based on deep multitask learning is proposed for the recognition of numerous

face attributes. According to their cross-dataset experiments, they obtained 77.40% and 89.00% accuracy for
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Morph-LFW and LEW-Morph tests.

3. Materials and methods

In the case of supervised learning, complex problems need both large-scale training data and well-established
network architecture with optimized hyperparameters. We first collected publicly-available datasets in gender
recognition field. Before using them, we preprocessed the raw information and filtered it for annotation errors to
avoid multiple augmentations of the incorrect sample during training epochs in supervised learning. Then, we
experimentally adjusted the hyper-parameters of the problem including learning rate, learning decay, number of
layers, number of fully connected neurons, convolution kernel size, and maximum number of iterations. Besides
these, we applied augmentation policies to improve the generalization ability of the classifier and to prevent
overfitting. To reduce the variance, we applied the bagging method on the SoftMax layer of the homogeneous
base classifiers. Bagging of classifiers is an improved method compared to the basic majority voting approach,
in which the output of the SoftMax layer is considered binary. In bagging, numerical values are added together
to produce the final ensemble network output. Averaging of the base classifier predictions is useful when there
is no correlation between them. Otherwise, the final prediction is the same as the base classifier’s prediction.
Therefore, we need to provide a way to increase the correlation among different base classifier outputs for the
same input D = {(z;,y;)}.

We used A = 3 base classifier to create the ensemble model. Given a set of observations y = {xi € RM }
and a set of true labels Y = {y; € N} and a training set D = {(z;,;)} as an input, our aim is to learn a
model M based on D using supervised learning. For testing, each test sample is augmented T times for each
model M. In our experiments, both the number of models A and T value is empirically selected as 3.

Theoretically, we expect more accuracy with an increasing number of layers. However, having too
many parameters with the increasing training epochs generally results in memorizing the input. Therefore,
we implement a simple 6-layer convolutional network having 382,626 trainable parameters and 896 nontrainable
parameters (used in 5 batch normalization layer) for the gender recognition problem. We select the dropout
value between 0.05 and 0.15 for each base model to randomly drop part of the connection from the network.
As a result, the model becomes robust and insensitive to the weights of the other nodes, thus it can generate
a more generalized model. The first dropout layer was applied after the fourth batch normalization layer. The
other is applied before the dense layer. For each base classifier, the learning architecture is finalized by the
SoftMax layer that computes the likelihood that the input image belongs to a particular class. Figure 1 shows
our deep learning architecture for creating the base models used in the ensemble experiments.

The input data is a normalized face image with a resolution of 64 x 64 in RGB color space, obtained
from the VJ face detector [35]. Then using eye detection, we estimate the roll angle 6, from the eye locations.
We rotate the face with respect to the center of the face and then scaled it down to 64 x 64 pixels to reduce
computational complexity.

We used augmentation techniques to increase the diversity of the training samples in order to improve
the generalization ability of base classifiers. Furthermore, we randomly rotate every sample up to +3 degrees,
since our eye detection method used for in-plane roll normalization has £2 degrees MAE in detecting the roll
angle 0. By rotating the face more than the MAE error in €, our network will learn to handle the possible eye
detection errors as well. As a result, we do not need precise eye detection. We also performed random zooming
range, width and height shift range, random horizontal flip, and brightness changes. The same random effects

are used in the TTA step as well.
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Figure 1. Deep learning architecture for each base model where the dropout values are dynamically updated.

Flatten Dropout

Due to the limited capacity of the GPU memory, we used the mini-batch method to feed our deep network.
We applied these policies to each mini-batch during one epoch that will provide a randomly augmented subset
of original mini-batch to each epoch. Thus, it helps to prevent overfitting problems during training. The
network weights are updated after each mini-batch. Since the image samples in the mini-batch determine the
weight updates, they should locally represent the main classification problem. Thus, we may expect an equal
distribution of classes in each mini-batch, otherwise, there will be a bias towards a class.

Gender datasets usually have more than one sample image per identity. For example, there are 530
sample images for George W. Bush in the LFW dataset. A mini-batch size of 64 can consist of 64 George W.
Bush photos if shuffling is not used. As a result, the model learned by the network will be semantically person
identification other than gender recognition. A solution to this problem is to use shuffling so that mini-batches
contain representative samples from each class. In our experiments, 32 samples from the female class and 32

samples from the male class are used in a mini-batch size of 64.

3.1. Datasets
We performed our experiments on a wide variety of publicly available gender datasets, including Adience, AFAD,
CelebA, Gallagher, Genki-4K, IMDb, LFW, Academic Morph, UTKFace, VGGFace2, and Wiki. Table 2 shows
details of the datasets used in the experiments. These datasets mostly have a single face per image. While
human annotators manually determined gender information in some datasets, in others it was determined by
using semiautomatic methods like attribute classifiers. As indicated in [36], a clean dataset without labeling
error is a required step towards higher performance. When used with training time augmentation, noisy labels
also augmented and decreased the classification accuracy. For this reason, we manually checked and annotated
the gender labels before the supervised learning process. We corrected the wrong labels and removed nonface
photos. To do that we used available metadata (where extant) provided by the datasets. Otherwise, we manually
annotated the dataset. Manual annotations can be accessed through the GitLab link®.

Adience dataset is an age and gender dataset collected from Flickr albums. Gender is almost balanced in

this dataset. The Asian face age dataset (AFAD) proposed for age estimation. It contains cropped face photos

IDataset annotations https://gitlab.com/danisman.taner/manual-annotations-for-common-gender-recognition-datasets.
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Table 2. Details of the datasets before and after the label corrections.

Dataset Samples | Identities | Original Annotated Preprocessed
Female Male Female Male Female | Male
Adience [29] 26,580 2284 10,154 9216 10,346 9013 7653 6258
AFAD [39] 164,432 N/A 63,680 100,752 64,016 101,313 26,319 | 64,269
CelebA [40] 202,599 10,177 118,165 202,599 118,923 83,676 97,620 | 65,889
Gallagher [41] 5080 N/A 14,559 13,672 0 0 11,015 | 9859
Genki-4K? 4000 4000 N/A N/A 1966 2024 1,459 1509
IMDb [42] 178,600 20,283 80,660 97,940 79,813 97,667 65,922 | 84,082
LFW [43] 13,233 5748 2966 10,268 2950 10,255 2,542 8605
Morph [44] 55,134 13,618 8489 46,645 8249 46,885 8,064 45,479
UTKFace [45] 24,104 N/A 11,523 12,581 11,572 12,531 8,109 9082
VGGFace2 [46] | 3,156,872 | 9131 1,299,574 | 1,842,316 | 1,306,612 | 1,834,960 | 762,804 | 927,044
Wiki [42] 62,328 N/A 10,262 31,912 10,246 31,926 6,650 17,589

2Genki-4K (2009) [online]. Website http://mplab.ucsd.edu, [accessed 13 April 2020].

obtained from ’selfie’ images on a social network. We manually annotated this dataset against labeling errors.
Large-scale CelebFaces Attributes dataset (CelebA) contains celebrity images covering large pose variations and
background clutter. Gallagher dataset involves wide range of illumination, ethnicity, ages, in-plane and out-
of-plane poses. Genki-4K dataset contains 4,000 images with expression and head-pose labels. IMDb dataset
contains faces of the most popular 100,000 actors listed on the IMDb website. This is an automatically crawled
dataset. It assumes that the single face images on the actor’s IMDb web page are likely to belong to the actor.
However, this assumption is not correct for all images. Besides, there is a need to eliminate images that do not
contain any face by filtering the face_ score parameter contained in the dataset. The Labeled faces in the wild
dataset (LFW) is a partially labeled face dataset having photographs of individuals collected from the web,
mainly actors, politicians, and athletes. The Academic Morph dataset has mugshot images of 13,618 identities.
It provides both age and gender features. UTKFace dataset contains images with a long age span. Images are
labeled by age, gender, and ethnicity. The VGGFace2 dataset is the extended version of the VGGFace dataset
that contains more than 3 million images. More than 14,000 gender labels were corrected on this dataset. The
Wiki dataset and IMDDb dataset share the same meta information. It contains profile images from pages of the
people from Wikipedia with the same identity as the IMDb dataset.

Large scale datasets are usually created by crawling the web. It is difficult to restrict identities existing
in both training and test datasets. Thus, we used these datasets as-is. However, IMDb, LFW and VGGFace2
datasets provide identity information. For example, 5.74% of the identities in VGGFace2 are the same as the
identities in LFW. We selected an equal number of training samples from female and male classes to reduce
bias.

3.2. Environment

We performed our experiments using Tensorflow and Keras deep learning framework on an Ubuntu OS (20.04)
with CUDA 10.1 (Nvidia GTX 1060 6GB RAM). OpenCV implementation of Viola—Jones face detector [35]

and neural network-based eye detector [37] available in STASM library [38] is used in the normalization step.
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3.3. Evaluation metrics

The results obtained from different studies must be carefully compared, since the implementation details and
evaluation protocols are all different in these studies, even for the same training sets. We used BeFIT evaluation
metrics to measure the performance of the proposed method. Since we care about true negatives as much as true
positives, we considered ROC area under curve (ROC AUC) to determine the predictive power of the ensemble
model. To compute the accuracy, we consider the correctly classified images divided by the total number of

images as shown in Eq. (1).

TP+ TN

Acc = 1
“TTPITN+FP+FN (1)

To compare different experiments, we used macro accuracy, also known as mean unweighted accuracy
(UA) metric, as shown in Eq. (2). This metric is independent of the size of the test sets. It gives equal weight

to each result.
1N
UA = N ; Ace; (2)

In Eq. (2), N represents the total number of cross-dataset tests and Acc; represents the accuracy obtained

from a train-test couple using Eq. (1).

4. Experiments

We performed four different experiments to see the effect of bagging and TTA. The first two experiments
focus on the effect of bagging without TTA NoBAG_NoTTA and YesBAG__NoTTA. Similarly, the last two
experiments focus on the effect of bagging with TTA NoBAG_ YesTTA and YesBAG_ YesTTA. Detailed results

are presented in subsections 4.2 and 4.3.

4.1. Experimental setup

In all experiments, we followed the cross-dataset evaluation protocol, where we select a dataset as a training
set and another dataset as a test set. 5% of the datasets were used for the validation. For each mini-batch, we
provide an equal number of samples for female and male classes. Models with the highest validation accuracy
during 20 epochs were stored for each data set. Since we used three models in our experiments, we generate
three different models from the same network architecture with different dropout values.

The choice of the initial learning rate and the changes in its lifespan is one of the most crucial decisions
for neural networks. The learning rate is determined by the A = le — 3 % 0.95” where x represents the epoch
number. For the 20 epochs, it operates in the range 9.5 * 10™% — 3.58 * 10™%. The dropout value is set to
0.05, 0.10, and 0.15 for the three homogeneous models. Table 3 shows details of the training and augmentation
parameters.

For each dataset, the input image size is set to be 64 x 64 pixels and the maximum epoch is set to 20
epochs. 64 x 64 input image size was empirically selected as a result of initial experiments on the Genki-4K
dataset. We experimented 16 x 16, 32x 32, 64 x 64, and 128 x 128 input resolutions. The main objective here is
to select a dimension to get the maximum benefit from the convolutions. Among others, 64 x 64 and 128 x 128
provides the highest accuracy with the proposed network architecture. Due to computational constraints and

negligible performance differences, we selected the input size of 64 x 64.
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Table 3. Training and augmentation parameters.

Validation | Input | Batch size | Epochs # of models Learning rate Optimizer

split size

5% 64x64 | 64 20 3 9.5% 1074 —3.58 % 10~* | Adam

Rotation | Zoom | Width Height Horizontal flip | Brightness range Drop factor
range range | shift range | shift range

3 0.06 0.06 0.06 True [0.8, 1.1] [0.05, 0.10, 0.15]

4.2. Bagging experiments without TTA

Table 4 shows the baseline experiments NoBAG_NoTTA and YesBAG NoTTA without TTA. We obtained a
mean UA of 90.20% and 91.45% respectively. When TTA is not used, for all cases, bagging provides better

results than baseline scores. In this case, the use of bagging increased the mean UA for each of the test sets.

4.3. Bagging experiments with TTA

Table 5 shows the results of bagging experiments (NoBAG_ YesTTA) and (YesBAG  YesTTA) using TTA. We
obtained a mean UA of 89.84% and 91.58%, respectively. In NoBAG_ YesTTA experiment we obtained the
worst mean UA (89.84% ) score. According to the results of the four experiments, standalone use of TTA did
not increase performance. On the other hand, when it is used with the bagging method, it further improves
the performance by a small amount. This may be because our TTA pipeline makes minor changes to the input
images.

According to Tables 4 and 5, VGGFace2, CelebA, and IMDDb datasets as training sets provide the best
cross-dataset accuracy for the gender recognition problem. These datasets are the top three datasets in terms of
dataset size and also contain the highest number of different identities. Besides, the UTKFACE data set used as
the training data set is in the first five datasets according to the average accuracy value obtained in test datasets.
Unfortunately, the number of identities in this dataset is not known. However, according to the experimental
results, we can say that it contains enough identities for gender recognition. The use of content-rich (multiple
identities, age variances, etc.) datasets in the training will generate a model that can be successful with similar
contents. However, as seen in the results of the Morph dataset in Table 4 and 5, having a dataset with a larger
number of different identities does not always result in higher accuracy. The Morph dataset has more identities
than CelebA and VGGFace2 datasets (13,618 vs 10,177 and 9,131). Due to the ethnic characteristics of the
Morph data set, lower accuracy rates were obtained in test datasets that do not have similar characteristics. In
general, datasets that have similar characteristics are expected to show similar test performance.

We obtained the lowest accuracy values on Adience, Gallagher, and UTKFace datasets. When we
investigate the false-positive (FP) and false-negative (FN) results on these test datasets, we see that majority
of the false predictions are for children under six years old. This is an expected result, as there are not enough
sample images for children under the age of six in any training set other than the Adience, Gallager, and
UTKFace datasets. As a result of the experiments, we also achieved the highest accuracy in the Adience
dataset using UTKFace as a training dataset, as it contains some child photos.

To understand the main reason behind the model’s prediction, we visualized the filters and output of the
convolutional layers. First, we checked the contents of the convolutional filters. Figure 2 shows the visualization

of the filters obtained from the VGGFace2 dataset via gradient ascent in input space where deeper layers contain
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Table 4. Cross-dataset accuracy results for the NoBAG__NoTTA and YesBAG__NoTTA experiments. Results obtained
by averaging the result of five runs.

Test datasets (NoBAG_NoTTA)
] . = E
3] < = = 3 3
< < O & O = 3 = = > = =
Adience - 87.34 | 93.51 | 82.39 | 89.31 | 94.22 | 92.38 | 92.00 | 89.28 | 93.36 | 91.15 | 90.49
AFAD 79.55 | - 90.77 | 80.87 | 88.58 | 91.62 | 92.36 | 90.68 | 87.30 | 91.64 | 89.64 | 88.30
. CelebA 83.63 | 92.33 | - 88.26 | 97.22 | 98.97 | 98.17 | 95.34 | 91.84 | 98.51 | 97.19 | 94.15
§ Gallagher 79.66 | 77.60 | 92.43 | - 91.02 | 92.68 | 91.28 | 88.89 | 88.45 | 92.38 | 89.80 | 88.42
*g Genki-4K 76.04 | 76.55 | 92.94 | 81.10 | - 93.77 | 91.79 | 90.16 | 87.49 | 92.74 | 89.75 | 87.23
2 IMDb 84.23 | 93.26 | 98.26 | 88.30 | 97.00 | - 97.71 | 95.11 | 91.80 | 98.22 | 97.11 | 94.10
;:‘3 LFW 78.31 | 83.36 | 95.83 | 81.93 | 92.53 | 96.76 | - 91.66 | 88.86 | 95.52 | 93.69 | 89.85
Morph 72.16 | 74.29 | 84.80 | 76.15 | 80.91 | 82.94 | 81.65 | - 81.26 | 86.00 | 80.02 | 80.02
UtkFace 82.39 | 89.66 | 96.30 | 82.39 | 93.68 | 96.80 | 96.13 | 94.16 | - 96.29 | 94.54 | 92.23
VGGFace2 | 83.95 | 93.28 | 98.87 | 89.30 | 97.40 | 99.14 | 98.74 | 96.39 | 92.54 | - 97.98 | 94.76
Wiki 80.89 | 87.53 | 97.33 | 86.37 | 96.49 | 97.99 | 97.30 | 94.48 | 90.31 | 97.34 | - 92.60
UA 80.08 | 85.52 | 94.10 | 83.71 | 92.41 | 94.49 | 93.75 | 92.89 | 88.91 | 94.20 | 92.09 | 90.20
Test Datasets (YesBAG NoTTA)
© g = I Cq;
3] < = 3 3 &
o |22 |% |8 |2 |2 |3 g |-
< < O O O = 3 = = > = =
Adience - 89.82 | 94.81 | 84.11 | 91.10 | 95.72 | 93.86 | 93.11 | 90.88 | 94.86 | 92.92 | 92.12
AFAD 81.21 | - 92.53 | 83.11 | 90.32 | 93.46 | 93.76 | 91.63 | 88.88 | 93.32 | 91.39 | 89.96
CelebA 84.31 | 94.42 | - 89.22 | 97.84 | 99.21 | 98.54 | 95.82 | 92.17 | 98.85 | 97.80 | 94.82
Gallagher 81.65 | 80.91 | 94.40 | - 93.16 | 94.75 | 93.52 | 91.17 | 90.35 | 94.47 | 92.41 | 90.68
Genki-4K | 77.04 | 78.62 | 94.06 | 83.26 | - 95.17 | 93.15 | 91.14 | 88.84 | 94.08 | 91.67 | 88.70
IMDb 84.89 | 94.55 | 98.49 | 88.97 | 97.54 | - 98.07 | 95.42 | 92.18 | 98.50 | 97.52 | 94.61
LEW 79.34 | 85.78 | 96.69 | 83.51 | 94.23 | 97.70 | - 93.17 | 89.76 | 95.52 | 95.14 | 91.08
Morph 73.91 | 76.80 | 86.25 | 78.44 | 82.20 | 84.52 | 83.43 | - 82.70 | 87.73 | 81.88 | 81.79
UtkFace 84.13 | 91.85 | 97.01 | 83.56 | 95.28 | 97.57 | 96.72 | 94.51 | - 97.04 | 95.55 | 93.32
VGGFace2 | 84.73 | 94.52 | 99.09 | 90.17 | 97.98 | 99.33 | 98.91 | 96.74 | 92.80 | - 98.42 | 95.27
Wiki 82.01 | 90.54 | 97.79 | 87.45 | 97.47 | 98.55 | 98.11 | 95.75 | 90.85 | 97.95 | - 93.65
UA 81.32 | 87.78 | 95.11 | 85.18 | 93.71 | 95.60 | 94.81 | 93.85 | 89.94 | 95.23 | 93.47 | 91.45

fine details and Score-CAM based activation maps to visualize the pixels that contribute to the prediction of
the trained model. The visuals given in Figure 2 belong to the output of the convolutional layer for the given
input images that have been correctly classified. According to the superimposed images, gender recognition
results mostly depends on pixels around the eyes, mouth, chin, and hair boundaries. For male examples we also

see that shirt collar contributes to the final prediction.
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Table 5. Cross-dataset accuracy results for the NoBAG__ YesTTA and YesBAG__ YesTTA experiments. Results obtained
by averaging the result of five runs.

Test datasets (NoBAG_ YesTTA)
] . = R
3] < = = 3 3
< < O & O = 3 = = > = =
Adience - 86.31 | 93.51 | 82.34 | 89.27 | 94.06 | 91.92 | 91.81 | 89.16 | 93.20 | 91.07 | 90.27
AFAD 79.05 | - 90.65 | 80.68 | 88.47 | 91.12 | 91.94 | 90.51 | 86.84 | 91.37 | 89.02 | 87.97
CelebA 83.23 | 91.79 | - 88.03 | 97.00 | 98.88 | 98.07 | 95.45 | 91.71 | 98.40 | 97.08 | 93.96
=« | Gallagher 79.04 | 74.75 | 91.44 | - 90.22 | 91.57 | 89.71 | 88.79 | 87.59 | 91.56 | 88.83 | 87.35
% Genki-4K 75.91 | 76.31 | 92.69 | 80.72 | - 93.68 | 91.39 | 90.27 | 87.21 | 92.48 | 89.74 | 87.04
= | IMDb 83.73 | 92.68 | 98.18 | 87.91 | 96.87 | - 97.71 | 95.17 | 91.77 | 98.11 | 97.03 | 93.92
-% LEFW 77.47 | 82.18 | 95.60 | 80.70 | 91.99 | 96.52 | - 91.37 | 88.54 | 95.51 | 93.39 | 89.33
= Morph 71.91 | 73.50 | 84.22 | 75.11 | 79.90 | 82.49 | 80.76 | - 80.89 | 85.06 | 79.94 | 79.38
UtkFace 81.99 | 88.81 | 96.08 | 82.17 | 93.75 | 96.59 | 95.95 | 94.10 | - 96.15 | 94.34 | 91.99
VGGFace2 | 83.70 | 93.07 | 98.84 | 89.34 | 97.39 | 99.12 | 98.72 | 96.47 | 92.35 | - 98.01 | 94.70
Wiki 80.89 | 87.28 | 97.15 | 85.87 | 96.16 | 97.79 | 97.09 | 94.18 | 90.10 | 97.13 | - 92.36
UA 79.69 | 84.67 | 93.84 | 83.29 | 92.10 | 94.18 | 93.33 | 92.81 | 88.62 | 93.90 | 91.85 | 89.84
Test datasets (YesBAG  YesTTA)
© g = I Cq;
3] < = 3 3 &
o |2 12 |% |8 |2 |2 |3 g |-
< < O O O = 3 = = > = =
Adience - 89.84 | 95.20 | 84.83 | 91.57 | 95.97 | 94.01 | 93.08 | 91.05 | 95.14 | 93.32 | 92.40
AFAD 80.88 | - 92.91 | 83.24 | 90.86 | 93.58 | 94.19 | 91.92 | 88.75 | 93.59 | 91.35 | 90.13
CelebA 84.25 | 94.63 | - 89.38 | 97.61 | 99.26 | 98.56 | 96.17 | 92.34 | 98.86 | 97.82 | 94.89
= | Gallagher 81.75 | 78.49 | 94.12 | - 93.86 | 94.71 | 93.13 | 91.74 | 90.52 | 94.40 | 92.26 | 90.50
% Genki-4K 77.56 | 79.93 | 94.20 | 83.42 | - 95.70 | 93.36 | 91.51 | 88.81 | 94.37 | 92.16 | 89.10
= | IMDb 84.74 | 94.71 | 98.50 | 89.14 | 97.77 | - 98.21 | 95.71 | 92.23 | 98.50 | 97.64 | 94.72
-% LFW 79.10 | 86.15 | 96.75 | 82.86 | 92.68 | 97.78 | - 93.39 | 89.67 | 96.82 | 95.42 | 91.06
= Morph 73.79 | 77.14 | 86.32 | 78.33 | 82.30 | 84.92 | 83.24 | - 82.85 | 87.46 | 82.53 | 81.89
UtkFace 84.32 | 92.50 | 97.11 | 84.20 | 95.45 | 97.66 | 96.86 | 94.65 | - 97.17 | 95.69 | 93.56
VGGFace2 | 84.51 | 94.83 | 99.12 | 90.40 | 98.04 | 99.36 | 99.02 | 96.94 | 92.76 | - 98.51 | 95.35
Wiki 82.13 | 91.40 | 97.82 | 87.75 | 97.44 | 98.57 | 98.21 | 95.63 | 90.87 | 97.96 | - 93.78
UA 81.30 | 87.96 | 95.21 | 85.36 | 93.76 | 95.75 | 94.88 | 94.07 | 89.99 | 95.43 | 93.67 | 91.58

4.4. Effect of bagging

To see the effect of the bagging method over the base models we provide ROC curves and AUC scores obtained
from base models and the bagging model. Since we conducted 110 cross-dataset experiments, we only show
some ROC curves obtained from AFAD tests as shown in Figure 3. According to Figure 3, it is clear that the
bagging method provides a higher AUC score than the corresponding base models.
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4 » n layer " 5th cor

a) 2nd conv. layer o ) 3r conv. layer

Figure 2. Visualization of the filters via gradient ascent to stochastically explore intermediate feature maps. 64 x 64
cropped female and male examples from CelebA dataset. The left and right eye locations are fixed at (20,25) and
(45,25) pixel locations respectively. The output from 2" convolutional layer is superimposed on the input image. The
pixels that contribute to the final result most are the highlighted areas on the image.

We performed another experiment with 30 different models using GenkidK-LFW cross-dataset test.
Figure 4 shows the standard model’s accuracy and bagging accuracy. As the number of models increases,
the bagging accuracy is almost steady in the range 93.88%-94.62%. However, the standard model’s accuracy
varies from 81.77% to 93.64%. The sudden accuracy changes in the standard model do not affect the bagging
result. The use of 90 models in bagging gives 94.15% accuracy which is higher than our best experimental result
using 9 models (93.36%). According to the results, we can conclude that increasing the number of models yields
a positive effect on the prediction performance, with a cost of computational complexity.

We also compare our results with the state-of-the-art cross-dataset studies on the literature. Table 6
summarizes state-of-the-art results of different studies grouped by the test dataset. According to Table 6, our

method provides the best accuracy on cross-dataset tests.

4.5. Computation time

We performed our experiments on an isolated machine. At 64 x 64 resolution, time to test one sample on Nvidia
GTX 1060 GPU is 1.43 ms (694 images per second) for images loaded by mini-batch. The measured time does
not include the time to load images from the disk. The complexity of the proposed approach is linear with the
number of models that contribute to the final ensemble prediction. However, there is no dependency among the

base models. Therefore, predictions can be performed using data and task parallel methods.

5. Conclusion

Deep learning methods are extensively used for the gender recognition problem due to their higher gender
recognition rates. In general, model performances are measured within the same dataset using cross-validation
techniques, which may produce results biasing towards the internal distribution of data. For this reason, we used

cross-dataset evaluation instead of the traditional cross-validation based evaluation within the same dataset.
Due to the challenging differences in human faces, we employed the bagging method. We further support our
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Figure 3. ROC curves for tests on the AFAD dataset. AUC scores of bagging method are higher than base model
scores.
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Figure 4. Effect of bagging using 30 models with TTA (3 TTA sample per model).
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Table 6. Cross-dataset accuracy compared with the state-of-the-art. Bold numbers show the highest accuracy rate in
the literature for the specified test data set.

Method Year | Train set Test set Features Accuracy%
SVM [26] 2012 | Morph Gallagher | LBP 76.74
Bagging+TTA CNN Ours | 2020 | Morph Gallagher Pixels 78.33
CNN [29] 2014 | Gallagher Adience LBP+FLBP | 77.80
MobileNet variant [4] 2020 | 400K Adience Pixels 84.48
Bagging+TTA CNN Ours | 2020 | VGGFace2 | Adience Pixels 84.51
CNN [33] 2017 | Sighthound | Adience Pixels 91.00
SVM [26] 2012 | Morph LFW LBP 75.10
SVM+RBF [15] 2014 | Morph LFW LBPHS 76.64
AlexNet variant [32] 2018 | Morph LFW Pixels 77.40
Bagging+TTA CNN Ours | 2020 | Morph LFW Pixels 83.24
PCA+LDA [28] 2011 | Gallagher LFW Pixels 81.07
PCA+SVM (28] 2011 | Gallagher LFW Pixels 81.40
PCA+LDA [28] 2011 | Gallagher LFW LBP 89.15
PCA+LDA [28] 2011 | Gallagher | LFW Gabor jets 89.27
PCA+SVM [28] 2011 | Gallagher LFW Gabor jets 89.64
PCA+SVM [28] 2011 | Gallagher LFW LBP 89.77
Bagging+TTA CNN Ours | 2020 | Gallagher LFW Pixels 93.13
MobileNet variant [4] 2020 | VGGFace2 | LFW Pixels 98.73
Bagging+TTA CNN Ours | 2020 | VGGFace2 | LFW Pixels 99.02
SVM+RBF [15] 2014 | LFW Morph LBPHS 88.43
AlexNet variant [32] 2018 | LFW Morph Pixels 89.00
Bagging+TTA CNN Ours | 2020 | LFW Morph Pixels 93.39
Bagging+TTA CNN Ours | 2020 | VGGFace2 | Morph Pixels 96.94
MobileNet variant [4] 2020 | VGGFace2 | IMDb Pixels 80.74
Bagging+TTA CNN Ours | 2020 | VGGFace2 | IMDb Pixels 99.36
MobileNet variant [4] 2020 | VGGFace2 | Wiki Pixels 95.78
Bagging+TTA CNN Ours | 2020 | VGGFace2 | Wiki Pixels 98.51
SVM [18] 2014 | Gallagher Genkid-K | Pixels 91.07
Bagging+TTA CNN Ours | 2020 | Gallagher Genki-4K Pixels 93.86
Bagging+TTA CNN Ours | 2020 | VGGFace2 | Genki-4K Pixels 98.15
Bagging+TTA CNN Ours | 2020 | VGGFace2 | CelebA Pixels 99.12
Bagging+TTA CNN Ours | 2020 | VGGFace2 | AFAD Pixels 94.83
Bagging+TTA CNN Ours | 2020 | VGGFace2 | UTKFace Pixels 92.76
Bagging+TTA CNN Ours | 2020 | CelebA VGGFace2 | Pixels 98.85

model by test-time augmentation. According to the experiments on a wide variety of datasets, we showed that
the proposed method provides state-of-the-art results for cross-dataset gender recognition. Our experiments
showed that low ethnic diversity data sets like Morph are not appropriate for gender recognition. We conclude
that VGGFace2, CelebA, and IMDDb datasets provide better average accuracy than other datasets.
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