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Abstract: The purpose of automatic speech recognition (ASR) systems is to recognize speech signals obtained from
people and convert them into text so that they can be processed by a computer. Although many ASR applications
are versatile and widely used in the real world, they still generate relatively inaccurate results. They tend to generate
spelling errors in recognized words, especially in noisy environments, in situations where the vocabulary size is increased,
and at times when the input speech is of poor quality. The permanent presence of errors in ASR systems has led to the
need to find alternative methods for automatic detection and correction of such errors. In this study, the basic principles
of ASR evaluation are first summarized, and then a new approach based on the suggestion of an alternative hypothesis
is proposed for the detection and correction of these errors generated by ASR systems. The proposed method involves a
series of processes such as identifying incorrect words, selecting the ones that can be corrected, and identifying candidate
words to replace these words. As a result of the tests carried out by creating different test environments, significant
performance improvements for Turkish were achieved and an average of 4.60 % performance improvement was provided.

Key words: Automatic speech recognition, automatic speech recognition error correction, artificial ıntelligence, alter-
native hypothesis suggestion, natural language processing

1. Introduction
Along with the progress of information technologies, computers are no longer used just for mathematical and
scientific transactions. Instead, it is possible to develop and run applications on computers, which could generate
solutions to multidimensional problems in different areas. There has been a vast amount of interest in automatic
speech recognition (ASR) systems in recent years, and a significant number of studies have been carried out by
various scientists, universities, and research centers [1]. ASR is the process of mathematically representing the
acoustic signal and converting it into words, which can be processed by computers. Many different applications
such as voice-to-text conversion, automated telephone services, voiced user interface applications, and voice-
oriented home automation systems are some examples of ASR systems. The basic flow chart shown in Figure
1 is followed in the modeling of speech recognition systems. Accordingly, after the input signal is received
through the microphone, the process of extracting, digitizing, filtering various samples, labeling, and converting
them into a format that can be modeled is performed in the preprocessing stage. The objective in this step is
to achieve a simpler, noise-free, and easy-to-operate speech variation. In the next feature extraction step, the
parameters of the resulting audio signal are extracted, and the required calculations are performed to obtain
the properties of the audio at certain time intervals. The parameters obtained in this step are critical values for
speech recognition systems and provide important clues for speech recognition. Speech recognition is performed
∗Correspondence: sinanarslanemail@gmail.com
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using the parameters obtained in this step. Correction is required in the outputs, due to the fact that 100 %
correct results cannot be achieved in the speech outputs obtained after this process. The most basic structure
used for this is the language model [2]. Improvement is made on the results using these preformed structures,
and the final results are thus obtained [3].
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Figure 1. Block diagram of a speech recognition system [4].

Despite the various highly advantageous benefits of ASR systems, they are still considered to be defective
structures due to typographical errors in the output texts. The primary errors in these systems are linguistic
errors and misspellings. This is usually caused by noise in the environment, poor sound signals, overlapping
sounds due to reciprocal conversations and vocabulary depending on the language [5, 6]. Numerous error
correction methods and algorithms have been designed to help correct errors in ASR systems [7, 8]. While some
of these process the text afterward or manually correct the text, others try to create more advanced acoustic
models [9]. Although all these studies are aimed at reducing error rates, they are still not convincing enough,
and speech recognition systems still do not generate results with 100 % accuracy [10]. In this study, a new
method based on the suggestion of an alternative hypothesis is proposed to determine whether the output text
generated for ASR systems contains any incorrect words and correct them, if any. Basically, it includes the
comparison of incorrect words to Turkish reference words and correction of incorrect words. It is an effective
approach in eliminating typographic errors. The proposed approach provides a significant reduction in error
rates in testing with acoustic sets used in the real world, and as a result, it is an effective method for improving
system performance.

2. Turkish language structure and the problem of out-of-vocabulary words

The Turkish language belongs to Oghuz the group of Ural – Altaic language family. It is spoken in a geographical
area covering Turkey, Cyprus, Iraq, the Balkans, the Middle East, and some of the European countries. It is
an agglutinative language [11]. With the development of today’s speech, communication and voice processing
technologies, it is expected to develop robust speech recognition structures based on the word structure, acoustic
parameters, and language structure of the Turkish language. The development of the model in speech recognition
systems is a very laborious process and requires the resolution of problems specific to each language [12]. Since
the Turkish language is an agglutinative language, the number of words that can be derived is enormous
compared to other languages, which is a feature of the agglutinative languages. Hundreds of thousands of
different morphological variants can be generated from a verb stem. Many of these variants have different
meanings, as well [13]. The same problems exist for many languages, such as Czech, Finnish, Hungarian, and
some Asian languages. This is a head-aching problem for speech recognition systems. Increased vocabulary
requires collaboration with larger word sets and audio sources. For a model with better performance, fewer
nonvocabulary words are required [14]. This phenomenon makes it difficult to develop speech recognition
systems in the Turkish language.
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3. Automatic speech recognition error correction algorithms

Different error correction approaches have been proposed to detect and correct incorrect words in the outputs
generated by ASR systems. These approaches can be generally divided into the categories of manual error
correction, alternative hypothesis-based error correction, pattern learning, or post-output error correction [10].
In the manual error correction algorithm, the words generated by the system are reviewed and manual correction
process is assigned to a person. Besides the probability of overlooking some errors, this process is very laborious
and time-consuming [10]. Another error correction method is the method of correcting an error by replacing it
with an alternative word. The main disadvantage of this method is that the alternative word is derived from a
vocabulary dictionary and it therefore requires a vast amount of vocabulary sources. In many different studies,
different algorithmic approaches have been proposed for this category [15, 16]. Pattern learning is another error
correction approach in which patterns considered to be erroneous are spotted and errors are detected. The
system is first trained using a set of erroneous words from a particular domain. Next, error rules that can
be detected after system errors occur are created. During the recognition process, the ASR system detects
errors by verifying the output text according to predefined rules. The disadvantage of this approach is that it
is subject-specific, and the number of words that can be recognized by the system is quite limited [10]. The
final error correction algorithm is the method of correcting the output after the output is generated. In this
approach, an extra layer is added to the ASR system to detect and correct spelling errors in the final output
text after recognition. The advantage of this technique is that the recognition and correction processes of the
ASR system can be combined and thus easily integrated into the general recognition system. In this approach,
NLP can be evaluated together with different fields such as machine translation [10].

4. Methods

4.1. Deep neural networks

Deep learning is a special case of machine learning that incorporates artificial intelligence. The first neural
networks are perception algorithms [17]. This network consists of an input and output layer. It is possible to
model more complex relationships by adding multiple layers to neural networks. Structures that contain more
than one layer in such manner are called deep neural networks. It defines a multilayered and multineuronal
neural network. With the development of faster GPU systems and their significant increases in performance,
the use of deep neural networks has become more widespread [18, 19].

4.2. Recurrent neural network (RNN)

In neural network structures, people’s real-life learning systematic is followed. People use their knowledge
to acquire more knowledge. There is a structure of thinking where given information is superimposed. In
conventional neural networks, this cumulative learning pattern cannot be put into practice. This drawback is
the most important reason why conventional neural networks cannot be used especially in solving problems such
as speech recognition. For example, in speech recognition applications, the previous voice is very important in
recognizing the next voice. Evaluating each sound independently would result in erroneous results. Since such
dependence cannot be modeled in conventional neural networks, recurrent neural networks (RNNs) have been
proposed to address this problem [20].
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4.3. Long short term memory (LSTM)

It is a type of recurrent neural network that can model long-term dependencies [21]. Its purpose is to keep
information in memory for a long time. It is the duty of the neural network to decide what information is to
be learned and to do the network training. The use of this memory structure is increasing each day, and better
results are obtained for many problems [22]. The LSTM structure is chain-shaped and has four gates instead
of a single layer, as shown on the left side of Figure 2. Cell state is the channel through which information is
transmitted continuously from one cell to another. Given that LSTM cells are sequenced one after the other, the
flow of information between the cells is thus achieved in such a manner. In the LSTM structure, the decision on
which information is to be forgotten and which information is to be transferred to a next cell is made using the
forget gate. The value to be forgotten is decided upon by applying a Sigmoid Function on the new information
that arrives as an input together with the information coming from the previous cells [23]. Using the input
gate, it is decided which information is stored with cell states and which is transmitted to other cells. After
completing the operations at this stage, the cell states are also updated and prepared to be transferred to the
next cell. The output gate determines the output value of the cell. However, not all values coming from the
cell state are used as outputs. This filtering process, too, is performed using the “tanh” function [24].
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Figure 2. Schema of long short term memory (left) and gated recurrent unit (right) [25].

4.4. Gated recurrent unit (GRU)

GRU is the type of LSTM that is most widely used. The most significant feature that distinguishes this structure
from the LSTM structure is the elimination of deletion of cell state. The second most significant distinctive
feature, however, is the merging of two gates, the forget and the update gates, into one. With these two changes,
a simpler structure is obtained compared to LSTM, as shown on the right in Figure 2 [25].

4.5. Levenshtein algorithm

In computer science, the Levenshtein algorithm is a method used to measure the distance between two sequences.
It refers to the minimum number of single character edits required to replace one word with another. It was
proposed in 1965 [26]. Where the function ”lev(a, b)” is used to calculate the distance between the text strings
a and b,
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leva,b(i, j) =


max(i, j) ifmin(i, j) = 0

min =


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j) + iai!=bi

When ”ai = bi ”, the display function is taken as 0, in other cases it is taken as 1. With the “lev”
function the distance between the section of the string ”a” up to its index ”i” and the section of the string
”b” up to its index “j” is calculated. The values “i and j” represent values that increase by 1. Using the
Levenshtein algorithm, the distance between the two strings is calculated. If it is later requested to be used by
being normalized to 0.0–1.0 interval, then the ”normalized Levenshtein” algorithm should be used. In this case,
however, the results are no longer a metric. The similarity is used as normalized to 1 [26].

4.6. System performance evaluation criteria

There are several approaches used to measure the improvement in system performance for voice recognition
applications. One of these measurement methods is to calculate the word recognition rate as per the formula
given below (Eq-2).

Wordrecognitionratio(WRR) = (N − S −D)/N ∗ 100
In the equation, N is the total number of words, S is the number of misspelled words that need any

character addition and D is the number of misspelled words that need any character deletion. Accordingly,
when these value are subtracted from the total number of words, the number of correctly recognized words is
found. In the equation, the recognition performance of the system is calculated as a percentage. The second
method that can be used to measure the success of the performance improvement method proposed in this
study is to calculate the above process for each test and numerically proportion it for each group of tests. For
example, in each step for 10000 tests, it is the calculation of the results according to the method given above
and the comparison of the traditional model with the proposed model output and numerically measuring which
is more successful. This result demonstrates whether or not the proposed method generates a model that has
a better performance in all cases.

5. Materials
In order to test the proposed model in this study, acoustic and text sets are needed. Therefore, acoustic and
text sets were prepared for use. For the acoustic model, Metu 1.0 acoustic dataset was used, which has already
been used in many studies. It includes a significant amount of speech records to be used in the Turkish speech
recognition systems, and it is distributed over the Linguistic Data Consortium. It contains an average of 500
minutes of speech, with 60 male and 60 female speakers voicing 40 sentences, each of which contains 300 words
on average. It contains randomly selected 2462 Turkish words. It is a systematically prepared acoustic dataset
[27, 28]. In order to correct the recognition outputs of the traditional model, a text dataset containing different
words is needed to form the Turkish reference words database. It is required to contain all Turkish words where
possible. Otherwise, a match and required corrections to the results cannot be made. For this purpose, three
commonly used Turkish word groups were preferred in this study. These were Zemberek [29], Boun Corpus
[30] and Metu 1.0 [27, 28] datasets. Zemberek is an open source library published in 2010. It contains Turkish
grammar features. It contains approximately 1.15 million unique Turkish words. Boun Corpus, published in
2008, is a study carried out to create a Turkish language resource. It contains approximately 1.4 million unique
Turkish words. The Metu v1.0 dataset was published in 2002. It contains around seven thousand unique
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Turkish words. These three text sets were combined to create a database of approximately 1.6 million words
for reference.

6. The proposed model, experiments, and results

For a Turkish speech recognition system using LSTM, GRU, or RNN, a model was proposed for performance
improvement. Thus, it was aimed to reduce the system error rate and to develop a speech recognition model
with better output.

6.1. Model suggestion

The flow diagram of the proposed model is shown in detail in Figure 3. Accordingly, firstly, a conventional
speech recognition model was developed and its outputs were taken. Whether the model is based on LSTM,
GRU, or RNN does not cause any change in the application method. After the output of the model was taken,
it was included into the error correction mechanism within the flow given below instead of using a language
model used in conventional methods. Each word in the output was compared with the words in the previously
created database, and it was aimed to find the word closest to that word. At this point, however, a few things
must be checked in this comparison process. The most important of these is whether a word that is close enough
to the model output is found in the database. When the database does not contain a close-enough word, the
erroneous system output is replaced with a more erroneous one, which, in turn increases the error rate of the
system. Therefore, if a word with a closeness level below a certain threshold can be found in the database, the
second control stage is initiated. Otherwise, no correction is made in the model output. The second control
stage is to determine whether the model output is able to generate a sufficiently long word. Because, in some
tests, text outputs that are long enough cannot be generated in the process of converting to text. In this case,
the estimation of words containing a single letter is not possible. Therefore, it is necessary to check whether
the word is long enough. After these two control processes, the model output is corrected. Thus, significant
reductions are provided in the system error rate.

Experimental sets were established to find the best values (threshold values) for the two control stages,
which should be decided upon for the above model and the results are given in detail in this section. Thus, a
better improvement in system performance was obtained using a better threshold value. In the proposed model,
it was aimed to recommend the correct words instead of the erroneous ones, thus increase the performance of
the system. The pseudo-code version of the method is shown in Algorithm-1. Accordingly, all variables must
first be reset and prepared for use in the algorithm. Then, an automatic speech recognition system output
based on RNN, LSTM, or GRU should be obtained. It is assumed that these outputs contain erroneous words.
Then all words in the database are compared with incorrect system outputs, and their distances are calculated.
If there is a word with a distance of 0, the process is terminated. Otherwise, it continues to investigate whether
there is a threshold value or not. If it is found that the word is replaced with the reference word in the database.
Except for these two cases, no correction is made in the wrong output. Thus, correctable ones are selected from
faulty outputs, and it is aimed to contribute to the system performance

6.2. Determination of the threshold value when calculating the closeness of a word

In the process of calculating the distance between two words, it was assessed which text distance calculation
algorithm could be used to get better results. In the studies carried out in this field [31] it was confirmed
that the ”normalized Levenshtein (NL)” algorithm performed more successful computations. Therefore, in this
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Figure 3. Proposed ASR error correction method.

study, this algorithm was chosen as the distance calculation algorithm. In the NL algorithm, the distance
between two texts is in the range of 0–1. In this case, the threshold value to be determined must be within this
range. In the process of comparing the words in the word database with the system output, it was confirmed
that there were some problems in finding the word close to the erroneous word. The main problem is that
the model contribution level drops with the replacement of an erroneous word in cases where a close-enough
word is not found. For this reason, it was confirmed that a specific threshold value should be determined, and
the replacement should be made if a word in a distance under this threshold value is reached in the database,
otherwise, it would be useful to leave the output as erroneous. Figure 4 demonstrates the effect of changing the
threshold value on the contribution level to the overall system performance of the proposed model.

The first graph below shows, the change in the contribution to the general system performance when
the threshold value was changed. When the graph is examined, it is understood that the level of system
performance is increased by between 2 % and 4.60 % if the threshold value is changed between 0 and 1. In any
case, the erroneous characters are corrected at a certain level, but the proportional effect differs depending on the
threshold value. The second graph shows that what percentage of the words used in the tests should be corrected.
The results show a similar trend to first graph. Accordingly, when the two graphs were evaluated together, it
was determined that the proposed model reached the highest error correction level when the threshold value
was determined as ”0.33”. Thus, it was possible to find and correct more errors in the proposed model. As a
result of this comparison, different test sets were arranged based on the threshold value determined as ”0.33”
and the results were evaluated and given in Table 1.
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Algorithm 1 Error correction algorithm.
1: procedure ErrorCorrection
2: Reset all variables
3: Get outputs from LSTM, GRU or RNN ASR system with some erroneous outputs
4: Format all outputs
5:
6: While the current position is inside the db
7: Calculate the distance with the word in the db and system output
8: if the distance = 0
9: Return the word in the db

10: Break;
11: Else if distance (lt) threshold value && length of system output (gt) word length threshold
12: Change the system output with a word in the db
13: Else
14: Don’t change the system output
15: end
16:
17: Return the system output
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Figure 4. Threshold change graph in the optimization of the model proposed.

The performance contribution of the tests performed with five different sets was 3.01 % on average and
increased to 4.60 % with the use of a threshold of value 0.33. The key point here is that the use of the threshold
value in all tests makes an extra contribution to performance improvements. In addition, when the difference in
the numerical value was considered, the average difference value of 55.42 % increased significantly to 90.24 %.
This shows that nine out of every 10 tests performed according to the standard results of the proposed model
generated better results. In that sense, the use of a threshold value is highly critical and directly affects the
results. Similarly, in the experiments conducted with the test sets in the GRU architecture, the performance
improvement increases from 3.13 % to 4.55 % and the numerical contribution level from 57.82 % to 84.62 %.
The aim of testing by establishing two different models is to show that the proposed error correction algorithm
can increase the success of different models. This is mainly due to the fact that the Turkish language is an
agglutinating language and because there are no databases containing enough readily available words. The best
way to solve this situation is to leave the erroneous word unchanged instead of replacing it with the wrong word
if a word close to the erroneous word is not available in the database. This condition is shown in Figure 5 for
a sample Turkish word. The word expected to be “kavuniçi [orange color]” was generated as “kvcni” in the
standard model. Closest to this word was found in the database as ”avci [hunter]”. In this case, the error rate
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Table 1. Test results for performance improvement in threshold usage.

Test set Model
Mean performance
improvement in the
standard model

Standard model +
proposed model
with the threshold
value = 0.33

Numerical value
difference in the
standard model

Numerical value
difference in the standard
model + proposed
model with the threshold
value = 0.33

Set1 LSTM 4.27% 5.18% 64.90% 91.64%
Set2 LSTM 1.85% 4.38% 38.58% 87.60%
Set3 LSTM 3.96% 4.64% 81.62% 93.04%
Set4 LSTM 3.30% 4.52% 61.12% 90.96%
Set5 LSTM 1.70% 4.30% 30.88% 87.96%
Mean LSTM 3.01% 4.60% 55.42% 90.24%
Set1 GRU 3.37% 4.26% 59.83% 75.26%
Set2 GRU 3.85% 6.16% 45.28% 88.84%
Set3 GRU 4.01% 4.25% 62.57% 87.50%
Set4 GRU 2.27% 3.76% 80.79% 88.42%
Set5 GRU 2.18% 4.32% 40.63% 83.06%
Mean GRU 3.13% 4.55% 57.82% 84.62%

of 0.5 increases to 0.6. The best way to prevent this is to enrich the word set, and the performance level can be
increased with the use of threshold values.

Original Word: Kavuniçi

Model Output: Kvcni After Correction: avci

Error Rate:0.5

Error Rate:0.4

Error Rate:0.6

Figure 5. Incorrect output correction problem of the proposed model.

6.3. The effect of word length on recognition performance
As the Turkish language is one of the agglutinating languages, the number of words that can be derived from
one stem is quite high. For this reason, there is quite a large number of the same words and derivatives in the
database. In this problem, it increases the number of template words with a particular number of characters and
below. This increase makes it impossible to guess the correct word. The results of the experiments performed
to test this theory are shown in the graphs given in Figure 6. The variability of the correction level with respect
to the incorrect word length generated by this test is intended to be shown here comparatively.

When the two graphs given above are evaluated, the average performance increases by up to 5.27 % in
cases where three or more characters are corrected. Similarly, the numerical contribution level generates the
best results with a similar character length. In cases where erroneous outputs with three or fewer characters
are corrected, the contribution level decreases below 5 %. Therefore, comparing the words that are not long
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enough with the words in the database reduces the contribution level of the model. The proposed model’s level
of correcting incorrect words varies depending on the overall recognition performance. At this point, the change
in the effect level according to system performance was tested, and the results are given in Table 2.
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Figure 6. The effect of changing the length of a word on the model’s contribution level.

Table 2. The effect of system error rate on the contribution of the proposed model.

Error rate
of system

Standard model
error rate

Standard model
+ proposed
correction method

Standard model
average
performance
improvement

Result of
numerical
comparison
in standard
model

Result of
numerical
comparison
standard model +
correction method

Result of numerical
comparison standard
model +
correction method
proportional

<0.025 0.01815 0 1.82% 0 43 100.00%
<0.05 0.03508 0.00175328 3.33% 0 236 100.00%
<0.1 0.06652 0.0148519 5.17% 3 900 99.34%
<0.2 0.126016 0.068501 5.75% 17 2888 98.83%
<0.3 0.186109 0.127689 5.84% 81 5745 97.22%
<0.4 0.224811 0.166771 5.80% 181 7584 95.34%
<0.5 0.243172 0.184974 5.82% 238 8257 94.40%
<0.6 0.260213 0.203749 5.65% 319 8689 92.92%
<0.9 0.30344 0.250572 5.29% 371 9584 9.55%

When Table 2 is examined, it is understood that the algorithm for the correction of incorrect words
contributes more to the systems with better performance. In cases where the number of incorrect words is
high and overall recognition performance decreases, correction cannot be performed sufficiently, which affects
the contribution level of the proposed model. In systems with an accuracy greater than 98.2 %, all errors are
corrected and system recognition performance is increased to 100 %. Similarly, the recognition level of a 96.5
% system can be increased to 99.9 %. The most successful results are obtained in speech recognition systems
with an accuracy of 80 % or more and the model provides an improvement by up to 5.84 %.

6.4. Correction algorithm and variability of post-optimization processing time
The proposed model requires extra processing time as it performs the detection and correction of incorrect
words after conventional speech recognition systems. The level of this need is critical. If the time is too long,
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it will not be possible to use the model in many real-time systems. For this reason, how much extra time this
method may need was evaluated and tests were performed with the sample sets that had been established. The
results are given separately for each test set in Table 3.

Table 3. The effect of correction algorithm and optimization processes on the model’s processing time.

Test set Database reading
time (ms)

Time needed
for correction (ms)

Total number of words
in test sets

Set1 228 102644 60853
Set2 218 109556 66016
Set3 288 97086 62839
Set4 396 83097 60632
Set5 235 92522 55382
Mean 273 96981 61144

When the Table 3 is examined, an average of 273 ms is needed in order to read 1.6 million words that
are already registered in the database. If the number of different words is increased for languages that do not
have sufficient data sources such as Turkish, this duration may increase but this will come with the contribution
the proposed model offers. The slight changes in database reading time are due to the effect of other processes
running at the time of the test. The second important process extending the general recognition time is the
time required by the incorrect word correction method proposed in this study. There are 61144 words in five
different test sets on average and 96981 ms of time is needed to correct these words. In this case, 1.50 ms on
average is needed for each word. This indicates that an average of 0.2 s is needed for 1 min of speech. This is
a very acceptable duration and can be used in real-time automated speech recognition systems. These results
were obtained on an end-user computer with i7 2.0 GHz CPU and 8 GB of RAM; therefore, this model would
accomplish these processes in a shorter time in more powerful machines.

7. Discussion
It is observed, nowadays, that speech recognition systems cannot generate outputs with 100 % accuracy. Their
performance is affected by conditions such as noisy environments. Therefore, many different approaches have
been proposed to correcting the outputs of automatic speech recognition systems. While each method has its
own advantages and disadvantages, each contributes to the general recognition performances at varying rates.
Table 4 gives some of the studies carried out in this field. As can be seen in the table, an average of 2.25-10.78
% performance improvement was achieved in experiments conducted with different languages and datasets. In
this study, too, a specific model that was similar to the sample models was proposed, and the results obtained in
different testing environments were evaluated. In the study carried out on the Turkish language, a performance
improvement by 5.34 % on average was achieved, similar to the studies in the table.

8. Conclusion and future work
In this study, a unique error correction method is presented in order to detect and correct errors in speech
recognition applications. The proposed model is based on a reference database and a correction algorithm
with the necessary optimization processes completed. The reference database was organized to include verbs
and nouns of the Turkish language, specific names, field-specific terms, technical terminologies, scientific
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Table 4. Recommendation on similar error correction algorithms and contribution levels.

Publication info Method
used/proposed

Speech type Dataset Average performance
improvement

Yohei et al. [32] Ngram + Normalized
relevance distance

Continuous
speech
recognition

Dataset: CSJ
Speech database,
MFCC,
2596 lecture video,
520 thousand words,
Japanese

38.82% ->28.04%
10.78% performance
increase.

Yusuke Nakashima
et al. [33]

Proposed new model
Continuous
speech
recognition

Newspaper
and
web data,
Japanese

8.6% ->4.3% for newspaper
4.3% performance increase.
9.8% - 6.5% for web data 3.3%
performance increase.

Dong Yu et al. [34]

Adapt the lexicon,
adjusting LM,
adding new words,
learning new
pronunciation

Continuous
speech
recognition

Microsoft
speech
data,
English

11% performance increase
if word average WER is
upper than 10%.

Yongmei Shi
and
Lina Zhou [35]

Noisy context,
accurate context

Continuous
speech
recognition

32 sentences
from English
dictation corpus
(sears et al. 2003,
Feng and Sears
2004),
71800 words,
English

%63 ->58% for accurate context
5% performance increase.
61% ->53% for noisy context
8% performance increase.

Bassil Youssef
and
Paul Semaan [10]

N-gram +
proposed

new model

Continuous
speech
recognition

Different English
articles,
100 word by
5 different speakers.
Microsoft
N-gram dataset,
English

21% ->14%
7% performance increase

Arslan, R.S.
and
Barışçı, N. [31]

Proposed
new model

Continuous
speech
recognition

Metu 1.0 Dataset,
Zemberek,
Boun corpus,
Turkish

2.25% performance increase.

This study
Alternative
hypotheses based
new proposed model

Continuous
speech
recognition

Metu 1.0 Dataset,
Zemberek,
Boun corpus,
Turkish

4.60% performance increase.

abbreviations, and special expressions. As a result of the tests conducted with acoustic test sets and the LSTM,
and GRU based sample model, a significant amount of decrease was achieved in the error rates of automatic
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speech recognition systems. In systems using the proposed model, an average performance improvement by
4.60% was achieved. The model is able to contribute more to the speech recognition applications having better
system performances. In order to shorten the run time of the model in the future, it is very important to
make the processing times simultaneous. It will also be useful to enrich the reference word set to increase its
contribution to the system recognition performance. With the resolution of the resource problems in languages
such as Turkish and wide spreading of the word databases with larger scales, it will be possible to make more
error corrections and to develop automatic speech recognition systems having better performance levels.
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