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Abstract: In this paper, we consider the Burgers equation B(2, 2) . Exact and nonstandard finite difference schemes
(NSFD) for the Burgers equation B(2, 2) are designed. First, two exact finite difference schemes for the Burgers equation
B(2, 2) are proposed using traveling wave solution. Then, two NSFD schemes are represented for this equation. These
two NSFD schemes are compared with a standard finite difference (SFD) scheme. Numerical results show that the NSFD
schemes are accurate and efficient in the numerical simulation of the kink-wave solution of the B(2, 2) equation. We see
that although the SFD scheme yields numerical instability for large step sizes, NSFD schemes provide reliable results for
long time integration. Local truncation errors show that the NSFD schemes are consistent with the B(2, 2) equation.

Key words: Burgers B(2, 2) equation, exact finite difference scheme, nonstandard finite difference scheme, local
truncation error, standard finite difference scheme

1. Introduction
Nonlinear partial differential equations (PDEs) play a prevalent role in many scientific and engineering phe-
nomena.There are many researchers who studied to obtain the exact solution of nonlinear PDEs. If the exact
solution is not possible to obtain, then numerical studies are essential to understand the behavior of the so-
lution. It is important to be able to find accurate numerical solutions to the full nonlinear problem because
nonlinear differential equations can exhibit very complicated behavior over extended time intervals. When the
continuous model is discretized and transformed to discrete model, many numerical solvers fails to give accurate
solutions, produce instabilities and fail to preserve the essential properties of the continuous model. Preser-
vation of the qualitative properties of continuous model is one of the most important problems in numerical
analysis. Numerical solutions of PDEs with finite difference approximation began in the early 1950s. It is well
known that traditional schemes such as Runge–Kutta and others, sometimes fail generating oscillations in the
numerical solution [11]. Recently, nonstandard finite difference (NSFD) methods are used for the numerical
solution of PDEs to prevent numerical instabilities. Regarding the positivity and boundedness of solutions,
NSFD schemes have a better performance over the standard finite difference (SFD) schemes. The following five
rules are executed for the construction of discrete models that have the capability to match the properties of
the NSFD solution by Mickens [12]:

• Rule 1: The orders of the discrete derivatives must be exactly equal to the orders of the corresponding
derivatives of the differential equations.
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• Rule 2: Denominator functions for the discrete derivatives must, in general, be expressed in terms of more
complicated functions of the step sizes than those conventionally used.

• Rule 3: Nonlinear terms should be approximated in a non-local way.

• Rule 4: Special solutions of differential equations should also be special discrete solutions of the finite
difference models.

• Rule 5: The finite-difference equations should not have solutions that do not correspond exactly to solutions
of the differential equations.

The most important advantages of NSFD scheme is that being able to choose a convenient denominator function
instead of the step-size used in SFD scheme and discretizing the nonlinear terms locally [14]. This flexibility
of the NSFD scheme yields better numerical results over the SFD scheme. If the step-size of SFD scheme is
chosen small enough, there is no significant difference between a SFD and a NSFD scheme. On the other hand,
if the step-size gets larger, than NSFD overcomes this shortcoming experiences. There are many numerical
experiments that show the advantage of NSFD schemes. Patidar [16] reviewed many recent developments and
further applications of NSFD methods encountered in the past decade. Dimitrov et al. [5] developed a new
class of elementary stable NSFD schemes for general two-dimensional autonomous dynamical systems based
on the standard Euler and second-order Runge–Kutta methods. Jodar et al. [8] constructed two implicit
finite difference scheme based on NSFD methodology for a deterministic mathematical model describing the
evolution of influenza A in human population. Since the Euler method and other well-known methods produce
bad approximations simulating the influenza model for large time step sizes, they used a NSFD with arbitrarily
large time step sizes, saving computational cost when integrating over long time periods. There are many
other exact and NSFD schemes for numerical solution of ordinary differential equations (ODEs) (see [6, 16]
and references therein). On the other hand, exact and NSFD methods for PDEs are rare and the theory is
not complete in this area [13]. Chapwanya et al. [4] have investigated the performance of an exact scheme for
the Michaelis–Menten equation with several NSFD schemes and designed several dynamically consistent NSFD
schemes for related reaction-diffusion equations, advection-reaction equations, and advection-reaction-diffusion
equations. Computationally, the power of NSFD schemes have been presented. In [23], authors have developed
two exact finite difference schemes and an NSFD scheme for Burgers–Huxley equation. In [22] Zhang et al. have
constructed a new version of exact finite difference scheme and proposed NSFD schemes for Burgers equation
and Burgers-Fisher equation. Aydin et al. [2] have proposed and studied a linearly implicit NSFD method for
the numerical solution of modified KdV equation. Koroglu et.al [9] have presented a NSFD scheme with theta
method which includes the implicit Euler and a Crank–Nicolson type discretization for the numerical solution
of the modified Korteweg-de Vries (MKdV) equation. In [10], the author have designed exact and consistent
nonstandard finite difference schemes for the numerical solution of the KdVB(2, 1, 2) equation. In these studies,
exact finite difference schemes and NSFD schemes are obtained by means of traveling wave solution of the PDE
under consideration.

Burgers’ equation
ut + α

(
u2
)
x
− νuxx = 0, (1.1)

is one of the important model used in many fields such as dispersive water, acoustics, shock waves, heat
conduction, and turbulence [21]. Due to the form of the nonlinear convection term and the occurrence of a
viscosity term, it can be considered as a simplified form of the Navier–Stokes equation. There are many analytical
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and numerical studied of Burger’s equation in the literature (see [7, 22] and reference therein). Recently, the so
called B(n, n) equation

ut + a (un)x + b (un)xx = 0, (1.2)

is proposed as a generalization of the Burgers’ equation (1.1) [20]. The equation (1.2) is a nonlinear dispersive
K(n, n) equation. It is a family of nonlinear Korteweg-de Vries (KdV) like equations. These equations support
compact solitary traveling structures for a > 0 . The study of compactons provides information about many
scientific processes, such as the super deformed nuclei, preformation of cluster in hydrodynamic models, the
fission of liquid drops and inertial fusion [19]. Traveling wave solution of (1.2) is given by [20]

u(x, t) =
1{

a
2c

(
1 + tanh

[
a(n−1)
2bn (x− ct)

])} 1
n−1

. (1.3)

To the best of our knowledge, there are no theoretical studies about (1.2) other than the traveling wave solution
and numerical schemes for the model (1.2) for n = 2 have not been studied in previous works. This motivates
us to provide exact and NSFD schemes for the model (1.2). In this study, we will consider the B(2, 2) equation

ut + a
(
u2
)
x
+ b

(
u2
)
xx

= 0, (1.4)

and develop two exact finite difference and two NSFD schemes which are never proposed and studied in the
literature before.

The outline of the paper is as follows: In Section 2 , an explicit and a fully implicit exact finite difference
schemes are presented. In Section 3 , two consistent linearly implicit NSFD schemes are constructed for the
B(2, 2) equation. Local truncation errors for two NSFD schemes are studied. Some numerical results that show
the capability of the NSFD schemes are given Section 4 . Numerical results obtained by the NSFD schemes
compared with a standard finite difference (SFD) scheme. Finally, the conclusion is given in Section 5 .

2. Exact finite difference schemes for B(2, 2) equation

In [12], an exact finite difference scheme is defined as a finite difference model for which the solution to the
difference equation has the same general solution as the associated differential equation. Recently, there is
an increasing interest to find exact finite difference models for particular PDEs, because these finite difference
models do not exhibit numerical instabilities (see [15, 17, 22]). However, not every PDE has exact finite difference
model. In this section, we will construct two exact finite difference schemes for the B(2, 2) equation (1.4). We
start with the traveling wave solution (1.3) of the B(2, 2) equation

u(x, t) =
c

a

(
1 + e−

a
2b (x−ct)

)
. (2.1)

If we choose h = c∆t , then we get

u(x+ h, t) = u(x, t−∆t), u(x− h, t) = u(x, t+∆t). (2.2)

Then, based on (2.1) we have the following formulas

u(x− h, t)− u(x, t) =
(
u(x, t)− c

a

) (
e

a
2bh − 1

)
u(x+ h, t)− u(x, t) =

( c
a
− u(x, t)

)(
1− e

−a
2b h
)
.

(2.3)
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Let the step functions are Ψ1 =

(
e

a
2b

h−1
)

a
2b

, Ψ2 =

(
1−e

−a
2b

h

)
a
2b

, Φ1 =

(
e

a
2b

c∆t−1
)

a
2b c

, and Φ2 =

(
1−e

−a
2b

c∆t

)
a
2b c

.

Then Ψ1 = cΦ1 = and Ψ2 = cΦ2. Using the relations (2.3), we have the following forward and backward
difference operators

∂xu =
u(x+ h, t)− u(x, t)

Ψ2
= a

2b

(
c
a − u(x, t)

)
∂xu =

u(x, t)− u(x− h, t)

Ψ1
= a

2b

(
c
a − u(x, t)

)
(2.4)

We select uxx = ∂x∂xu(x, t) and using (2.4) we can write

∂x∂xu(x, t) =
u(x+ h, t)− u(x, t)

Ψ1Ψ2
− u(x, t)− u(x− h, t)

Ψ1Ψ2
,

=
1

Ψ1

[ a
2b

( c
a
− u(x, t)

)
− a

2b

( c
a
− u(x− h, t)

)]
,

= − a

2b

(
u(x, t)− u(x+ h, t)

Ψ1

)
− a

b

(
u(x+ h, t)− u(x− h, t)

2Ψ1

)
.

(2.5)

Now, we add and subtract the terms

1

u(x, t)

u(x+ h, t)− u(x, t)

Ψ2

u(x+ h, t)− u(x, t)

Ψ1
,

1

u(x, t)

c

2b

u(x+ h, t)− u(x, t)

Ψ1

to the equation (2.5) and using Ψ1 = cΦ1 , we get

∂x∂xu(x, t) =
−1

2b

1

u

u(x, t)− u(x, t−∆t)

Φ1
− a

b

u(x+ h, t)− u(x− h, t)

2Ψ1

− 1

u

u(x+ h, t)− u(x, t)

Ψ2

u(x+ h, t)− u(x, t)

Ψ1
.

(2.6)

Now, instead of uxx = ∂x∂xu(x, t) , we use uxx = ∂x∂xu(x, t) and using (2.4) we can write

∂x∂xu(x, t) =
u(x+ h, t)− u(x, t)

Ψ1Ψ2
− u(x, t)− u(x− h, t)

Ψ1Ψ2
,

=
1

Ψ2

[ a
2b

( c
a
− u(x+ h, t)

)
− a

2b

( c
a
− u(x, t)

)]
,

= − a

2b

(
u(x+ h, t)− u(x− h, t)

Ψ2

)
− a

b

(
u(x+ h, t)− u(x− h, t)

2Ψ2

)
.

(2.7)

Now, we add and subtract the terms

1

u(x, t)

u(x− h, t)− u(x, t)

Ψ2

u(x− h, t)− u(x, t)

Ψ1
,

1

u(x, t)

c

2b

u(x− h, t)− u(x, t)

Ψ2

to the above equation (2.7) and using Ψ2 = cΦ2 , we get

∂x∂xu(x, t) =
−1

2b

1

u

u(x, t+∆t)− u(x, t)

Φ2
− a

b

u(x+ h, t)− u(x− h, t)

2Ψ2

− 1

u

u(x, t)− u(x− h, t)

Ψ2

u(x, t)− u(x− h, t)

Ψ1
.

(2.8)
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Now we consider the solution (2.1) at the discrete point (xj , tn )

Un
j = u(xj , tn) =

c

a

(
1 + e−

a
2b (xj−ctn)

)
. (2.9)

Then we can write an implicit exact finite difference scheme by means of (2.6)

Un+1
j+1 − 2Un+1

j + Un+1
j−1

Ψ1Ψ2
=

−1

2b

1

Un+1
j

Un+1
j − Un

j

Φ1
− a

b

Un+1
j+1 − Un+1

j−1

2Ψ1
− 1

Un+1
j

(
Un+1
j+1 − Un+1

j

)2
Ψ1Ψ2

, (2.10)

and we can write an explicit exact finite difference scheme by means of (2.8)

Un
j+1 − 2Un

j + Un
j−1

Ψ1Ψ2
=

−1

2b

1

Un
j

Un+1
j − Un

j

Φ2
− a

b

Un
j+1 − Un

j−1

2Ψ2
− 1

Un
j

(
Un
j − Un

j−1

)2
Ψ2Ψ1

. (2.11)

Thus, we get the following theorem.

Theorem 2.1 For the B(2, 2) equation

ut + a
(
u2
)
x
+ b

(
u2
)
xx

= 0

an implicit exact finite difference scheme and an explicit exact finite difference scheme are given by (2.10) and
(2.11), respectively. The space stepsizes ψ1 and ψ2 and temporal stepsizes Φ1 and Φ2 satisfy

ψ1 =

(
e

a
2bh − 1

)
a
2b

, ψ2 =

(
1− e

−a
2b h
)

a
2b

Φ1 =

(
e

a
2b c∆t − 1

)
a
2bc

, and Φ2 =

(
1− e

−a
2b c∆t

)
a
2bc

where h = c∆t.

In this section, two exact finite difference schemes are proposed for the B(2, 2) equation. Notice that,
the step-size for exact schemes must satisfy some fixed conditions. In the following sections, we release these
conditions and propose two NSFD schemes for the B(2, 2) equation. Generally, exact finite difference scheme
seems to be standard. But it is different from approach in [22]. First of all, travelling wave solution of B(2, 2) ,
equation (2.1) is different from the travelling wave solution of Zhang et al. [22]. In addition, the nonlinear
terms (ux)

2 and uuxx , which are not appear in [22], play important roles in computing of exact finite difference
scheme.

3. NSFD schemes for the B(2, 2) equation

In this section, we will propose two NSFD schemes for the numerical solution of the B(2, 2) equation (1.4). We
start with the derivation of the first NSFD scheme which will be named as NSFD1 scheme. For this purpose,
we consider the exact travelling wave solution of (2.1), [20].
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A standard finite difference (SFD) scheme for the B(2, 2) equation (1.4) can be

un+1
j − unj

∆t
+ a

(u2)nj+1 − (u2)nj
h

+ b
(u2)nj−1 − 2(u2)nj + (u2)nj+1

h2
= 0, (3.1)

where ∆t is the temporal step-size and h = ∆x is the spatial step-size. We re-write the B(2, 2) equation (1.4)
as

ut + 2auux + 2b(ux)
2 + 2buuxx = 0 (3.2)

and propose the following NSFD discretization

Un+1
j − Un

j

Φ1
+ 2aUn+1

j

Un
j − Un

j−1

Γ
+ 2b

(
Un
j+1 − Un

j

Γ

)(
Un
j − Un

j−1

Γ

)
+ 2bUn+1

j

Un
j+1 − 2Un

j + Un
j−1

Γ2
= 0 (3.3)

where Φ1 and Γ are time-step and space-step functions, respectively.
According to (3.3) equation, we can get

Φ1 =

(
Un+1
j − Un

j

)
Γ2

−2aΓUn+1
j

(
Un
j − Un

j−1

)
− 2b

(
Un
j+1 − Un

j

) (
Un
j − Un

j−1

)
− 2bUn+1

j

(
Un
j+1 − 2Un

j + Un
j−1

) . (3.4)

We solve for Φ1 and define snj = e−
a
2b (xj−ctn). After tedious calculations, we have

Φ1 = e
a
2b

c∆t−1
a
2b c

(
1

2(1+se
a
2b

c∆t)−se−
a
2b

h−e−
a
2b

h(1+se
a
2b

c∆t)

)
. (3.5)

If we choose

Γ =

(
e

a
2bh − 1

)
a
2b

= h+O(h2) (3.6)

then the denumerator function Φ1 in (3.3) can be written in a simple form

Φ1 =

(
e

a
2b c∆t − 1

)
a
2bc

= ∆t+O(∆t2). (3.7)

In the following sections, we call the NSFD scheme (3.3) as NSFD1 for which the denumerator functions are
given in (3.6) and (3.7).

Now, we discuss the consistency of the NSFD1 with the B(2, 2) equation (1.4). Setting unj = u(xj , tn) ,
we have Taylor’s formula for the solution of equation (3.2) with appropriate xj ∈ (xj , xj+1) , tn ∈ (tn, tn+1) .
For this purpose, for functions defined on the grid we introduce the difference quotients

∂unj
∂t

=
Un+1
j − Un

j

Φ1
,
∂unj
∂x

=
Un
j − Un

j−1

Γ
,
∂unj
∂x

=
Un
j+1 − Un

j

Γ
,
∂∂unj
∂x2

=
Un
j+1 − 2Un

j + Un
j−1

Γ2
. (3.8)

and analyze the local truncation error of the NSFD1 scheme (3.3). We define the residual and using Taylor’s
series expansion about (xj , tn) we get
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τnj =
∂unj
∂t

+ 2aun+1
j

∂unj
∂x

+ 2b
∂unj
∂x

∂unj
∂x

+ 2bun+1
j

∂∂unj
∂x2

=

(
∂unj
∂t

− ut(xj , tn)

)
+ 2a

(
un+1
j

∂unj
∂x

− u(xj , tn)ux(xj , tn)

)
+ 2b

(
∂unj
∂x

∂unj
∂x

− ux(xj , tn)ux(xj , tn)

)

+2b

(
un+1
j

∂∂unj
∂x2

− u(xj , tn)uxx(xj , tn)

)
= (

∆t

Φ1
− 1)ut(xj , tn) +

∆t2

2Φ1
utt(xj , tn) +

∆t3

6Φ1
uttt(xj , tn) + 2a[(

∆x

Γ
− 1)u(xj , tn)ux(xj , tn)

−∆x2

2Γ
u(xj , tn)uxx(xj , tn) +

∆x3

6Γ
u(xj , tn)uxxx(xj , tn) +

∆x∆t

Γ
ux(xj , tn)ut(xj , tn)

−∆x2∆t

2Γ
ut(xj , tn)uxx(xj , tn) +

∆x3∆t

6Γ
ut(xj , tn)uxxx(xj , tn) +

∆x∆t2

2Γ
utt(xj , tn)ux(xj , tn)

−∆x2∆t2

4Γ
utt(xj , tn)uxx(xj , tn) +

∆x3∆t2

12Γ
utt(xj , tn)uxxx(xj , tn)] + 2b[(

∆x2

Γ2
− 1)ux(xj , tn)ux(xj , tn)

+
∆x4

3Γ2
ux(xj , tn)uxxx(xj , tn)−

∆x4

4Γ2
uxx(xj , tn)uxx(xj , tn) +

∆x6

36Γ2
uxxx(xj , tn)uxxx(xj , tn)]

+2b[(
∆x2

Ψ1
− 1)u(xj , tn)uxx(xj , tn) +

∆x2∆t

Ψ1
ut(xj , tn)uxx(xj , tn) +

∆x2∆t2

2Ψ1
utt(xj , tn)uxx(xj , tn)]

where Ψ1 = Γ2 .
If we choose ∆t and ∆x small enough, we know that Φ1 ≈ ∆t and Γ ≈ ∆x. After the tedious

computations, we conclude that τnj = O(∆t + ∆x) . It is consistent with the B(2, 2) equation (1.4) since
τnj −→ 0 as (∆t,∆x) −→ (0, 0).

In addition, the stability region is derived by using the freezing of coefficient method and the von Neumann
stability analysis ([1, 3]). The equation of the amplification factor is given as

ξ = 1− aUmaxr(1− e−iβh)− bUmaxr
eiβh − 2− e−iβh

Γ
, (3.9)

where r = Φ1

Γ . Hence we obtain

r ≤ 4

Umax

(
a− b 2Γ

)
5a2 − 16

Γ + b2 16
Γ2

.

Now, we construct the following second NSFD scheme for the numerical solution of the B(2, 2) equation
(1.4) which will be called NSFD2 scheme. We consider the difference scheme

Un+1
j − Un

j

Φ2
+2aUn+1

j

Un
j − Un

j−1√
Ψ2

+2b

(
Un
j+1 − Un

j√
Ψ2

)(
Un
j − Un

j−1√
Ψ2

)
+2bUn+1

j

Un
j+1 − 2Un

j + Un
j−1

Ψ2
= 0 (3.10)

where Φ2 =

(
e

a
2b c∆t − 1

)
a
2bc

and Ψ2 = ψ1ψ2 =

(
e

a
2b

h−1
)

a
2b

(
1−e

−a
2b

h

)
a
2b

. Note that when we compare the NSFD1 (3.3)

and NSFD2 (3.10), we see that the denominator functions of spatial derivatives Γ in (3.3) and
√
Ψ2 in (3.10)
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are different. We can find that Φ2 −→ ∆t , Ψ2 −→ ∆x2 as ∆t and ∆x approach zero. The difference quotients
to analyze the local truncation error of the NSFD2 scheme (3.10) is given as follows:

∂unj
∂t

=
Un+1
j − Un

j

Φ2
,
∂unj
∂x

=
Un
j − Un

j−1√
Ψ2

,
∂unj
∂x

=
Un
j+1 − Un

j√
Ψ2

,
∂∂unj
∂x2

=
Un
j+1 − 2Un

j + Un
j−1

Ψ2
. (3.11)

The local truncation error τnj for the NSFD2 (3.10) can be analysed similarly. We note that

τnj =
∂unj
∂t

+ 2aun+1
j

∂unj
∂x

+ 2b
∂unj
∂x

∂unj
∂x

+ 2bun+1
j

∂∂unj
∂x2

=

(
∂unj
∂t

− ut(xj , tn)

)
+ 2a

(
un+1
j

∂unj
∂x

− u(xj , tn)ux(xj , tn)

)
+ 2b

(
∂unj
∂x

∂unj
∂x

− ux(xj , tn)ux(xj , tn)

)

+2b

(
un+1
j

∂∂unj
∂x2

− u(xj , tn)uxx(xj , tn)

)
= (

∆t

Φ2
− 1)ut(xj , tn) +

∆t2

2Φ2
utt(xj , tn) +

∆t3

6Φ2
uttt(xj , tn) + 2a[(

∆x√
Ψ2

− 1)u(xj , tn)ux(xj , tn)

− ∆x2

2
√
Ψ2

u(xj , tn)uxx(xj , tn) +
∆x3

6
√
Ψ2

u(xj , tn)uxxx(xj , tn) +
∆x∆t√

Ψ2

ux(xj , tn)ut(xj , tn)

−∆x2∆t

2
√
Ψ2

ut(xj , tn)uxx(xj , tn) +
∆x3∆t

6
√
Ψ2

ut(xj , tn)uxxx(xj , tn) +
∆x∆t2

2
√
Ψ2

utt(xj , tn)ux(xj , tn)

−∆x2∆t2

4
√
Ψ2

utt(xj , tn)uxx(xj , tn) +
∆x3∆t2

12
√
Ψ2

utt(xj , tn)uxxx(xj , tn)] + 2b[(
∆x2

Ψ2
− 1)ux(xj , tn)ux(xj , tn)

+
∆x4

3Ψ2
ux(xj , tn)uxxx(xj , tn)−

∆x4

4Ψ2
uxx(xj , tn)uxx(xj , tn) +

∆x6

36Ψ2
uxxx(xj , tn)uxxx(xj , tn)]

+2b[(
∆x2

Ψ2
− 1)u(xj , tn)uxx(xj , tn) +

∆x2∆t

Ψ2
ut(xj , tn)uxx(xj , tn) +

∆x2∆t2

2Ψ2
utt(xj , tn)uxx(xj , tn)]

Similar to the local truncation error of NSFD1 (3) , if ∆t and ∆x small enough, we know that Φ2 −→ ∆t and
Ψ2 −→ ∆x2. After long computations, we conclude that τnj = O(∆t + ∆x) . It is consistent with the B(2, 2)
equation (1.4) since τnj −→ 0 as (∆t,∆x) −→ (0, 0). As in the NSFD1, the linear stability of the NSFD2
scheme is

r ≤ 4

Umax

(
a− b 2√

Ψ2

)
5a2 − 16√

Ψ2
+ b2 16

Ψ2

where r = Φ2√
Ψ2
.

4. Numerical results
In this section we will consider the B(2, 2) equation (1.4)

ut + a
(
u2
)
x
+ b

(
u2
)
xx

= 0, (4.1)

with initial condition
u(x, 0) =

c

a

(
1 + e−

ax
2b

)
. (4.2)
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and boundary conditions

u(xL, t) = u(xL, t) =
c

a

(
1 + e−

a
2b (xL−ct)

)
,

u(xR, t) = u(xR, t) =
c

a

(
1 + e−

a
2b (xR−ct)

)
.

(4.3)

We note that the initial condition (4.2) and the boundary conditions (4.3) are taken from the traveling solution
(2.1). We solved the above problem on the space time domain (x, t) = [xL, xR]× [0, T ] . We consider the equally
spaced mesh points xj = xL+ jh, and tn = n∆t , j = 1, 2, · · · ,M +1, n = 0, 1, 2, · · · , N with spatial mesh size
h = (xR − xL)/M and temporal mesh size ∆t = T/N. We measured the accuracy of the numerical solution by
using the L∞ and L2 erros

L∞ = max
0≤j≤M

|u(xj , tn)− Un
j |,

L2 =

h M∑
j=1

|u(xj , tn)− Un
j |2
1/2

at the final time t = T and the absolute error

Abs.Err = |u(xj , tn)− Un
j |

at the mesh points (xj , tn). Here, u(xj , tn) is the exact solution obtained from the traveling wave solution (2.1)
and Un

j is the numerical solution obtained from the NSFD schemes (3.3), (3.10) or the standard FD scheme
(3.1). We choose c = 0.001 in all computations.

Table 1 represents the L∞ and L2 errors of the NSFD schemes (NSFD1 and NSFD2) and SFD scheme
for h = 0.1 and ∆t = 0.01 on the spatial domain x ∈ [0, 1] for 0 ≤ t ≤ 5. From Table 1 we can deduce that
the accuracy of the NSFD2 scheme is better than the other methods. Table 1 also shows that the numerical
results of our suggested nonstandard methods have a precise agreement with the exact solution. We give some
additional tables for the accuracy of the proposed nonstandard method for different set of parameters. Table 2
represents the L∞ and L2 errors for the numerical solution of the equation (1.2) with a = b = 0.01 and
c = 0.001. Table 3 represents the L∞ and L2 errors for the numerical solution of the equation (1.2) with
a = b = 0.01 and c = 0.001. These tables shows the effect of the parameters a, b, c to the amplitude of the wave
c/a (4.2) and ac/b in the denominator functions Ψi, and Φi, i = 1, 2. We see that nonstandard scheme shows
excellent performance for large step size. In addition, errors increase when the amplitude of the wave increase.

Table 1. Equation (1.2) with a = b = 1, c = 0.001. L∞ and L2 errors of the nonstandard and standard methods for
h = 0.1 , ∆t = 0.01 .

T NSFD1 NSFD2 SFD
L∞ L2 L∞ L2 L∞ L2

1 8.0825× 10−8 1.5932× 10−8 5.6144× 10−8 1.1380× 10−8 8.7789× 10−8 1.6425× 10−8

2 2.1512× 10−7 3.4788× 10−8 1.5200× 10−7 2.4929× 10−8 2.5400× 10−7 3.7483× 10−8

3 4.7768× 10−7 6.3145× 10−8 3.4811× 10−7 4.6099× 10−8 6.4588× 10−7 7.9153× 10−8

4 1.0774× 10−6 1.2966× 10−7 8.2373× 10−7 1.0039× 10−7 1.7634× 10−6 2.2151× 10−7

5 2.6292× 10−6 3.3972× 10−7 2.1404× 10−6 2.8621× 10−7 5.4079× 10−6 7.9416× 10−7
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Table 2. Equation (1.2) with a = b = 0.01, c = 0.001. L∞ and L2 errors of the nonstandard and standard methods
for h = 0.1 , ∆t = 0.005 .

T NSFD1 NSFD2 SFD
L∞ L2 L∞ L2 L∞ L2

1 8.2189× 10−6 1.6008× 10−6 5.7572× 10−6 1.1458× 10−6 8.7967× 10−6 1.6435× 10−6

2 2.1981× 10−5 3.5082× 10−5 1.5703× 10−5 2.5247× 10−6 2.5501× 10−6 3.7545× 10−6

3 4.9129× 10−5 6.4321× 10−6 3.6324× 10−5 4.7454× 10−6 6.5070× 10−5 7.9670× 10−5

4 1.1171× 10−4 1.3454× 10−5 8.6983× 10−5 1.0634× 10−5 1.7855× 10−4 2.2491× 10−5

5 2.7498× 10−4 3.5838× 10−5 2.2877× 10−4 3.0983× 10−5 5.5093× 10−4 8.1271× 10−5

Table 3. Equation (1.2) with a = 0.01, b = c = 0.001. L∞ and L2 errors of the nonstandard and standard methods
for h = 0.1 , ∆t = 0.005 .

T NSFD1 NSFD2 SFD
L∞ L2 L∞ L2 L∞ L2

1 2.6630× 10−4 3.0465× 10−5 2.8059× 10−4 3.2944× 10−5 3.1480× 10−4 3.5651× 10−5

2 5.3709× 10−4 6.1459× 10−5 5.6906× 10−4 6.6709× 10−5 6.5579× 10−4 7.3577× 10−5

3 8.1245× 10−4 9.2993× 10−5 8.6570× 10−4 1.0132× 10−4 1.0258× 10−3 1.1403× 10−4

4 1.0925× 10−3 1.2507× 10−4 1.1708× 10−3 1.3681× 10−4 1.4279× 10−3 1.5729× 10−4

5 1.3772× 10−3 1.5772× 10−4 1.4847× 10−3 1.7320× 10−4 1.8658× 10−3 2.0369× 10−4

Table 4 shows the errors of the nonstandard methods (3.3), (3.10) and standard method (3.1) with
h = 0.1 at T = 2 for different temporal step size ∆t. We see that errors of the proposed NSFD schemes (3.3)
and (3.10) are decreasing as ∆t values become larger and larger; which shows the convergence for large values
of ∆t. Moreover, Table 5 shows the relative errors of the proposed method at different values of the final time
T and some disjoint points of x . This comparison shows that the NSFD2 method gives more accurate results
than the other methods for short time of integration. On the other hand for long time integration NSFD1 gives
slightly better results than NSFD2.

Table 4. Convergence of nonstandard methods (3.3), (3.10) and standard method (3.1) with h = 0.1 at T = 2 .

∆t NSFD1 NSFD2 SFD
L∞ L2 L∞ L2 L∞ L2

0.5 1.4577× 10−7 2.7818× 10−8 1.1336× 10−7 2.1864× 10−8 2.5028× 10−7 4.4885× 10−8

0.05 1.8063× 10−7 3.2797× 10−8 1.1524× 10−7 2.2920× 10−8 2.4638× 10−7 3.7109× 10−8

0.005 2.1981× 10−7 1.5703× 10−7 2.5501× 10−7 3.5082× 10−8 2.5247× 10−8 3.7545× 10−8

Figures 1, 2, 3, 4 represent the surface of the traveling wave solution of the exact solution (1.3),
SFD solution (3.1), the NSFD1 solution (3.3) and NSFD2 solution(3.10) on the space-time domain (x, t) =

[0, 1]× [0, 2]. Relative errors of the three schemes for different set of parameters a, b, c are displayed in Figure 5.
From the figure, we see that the NSFD methods (3.3) and (3.10) have smaller errors than the SFD method
(3.1) in all three cases. This shows the advantage of the nonstandard schemes over the standard one. Moreover,
among all three methods, NSFD2 method (3.10) is more accurate than the other methods which confirms the
Table 1–5.
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Table 5. Comparison of the relative errors between the proposed methods with ∆t = 0.01 , h = 0.1 .

x T = 1 T = 5 T = 10

NSFD1 3.1766× 10−5 8.0176× 10−4 0.2720

0.2 NSFD2 2.8767× 10−5 7.2638× 10−4 0.2952

SFD 3.1375× 10−5 0.0024 4.5586

NSFD1 2.73209× 10−5 1.9413× 10−4 0.1559

0.5 NSFD2 1.9718× 10−5 1.5649× 10−4 0.2119

SFD 2.7586× 10−5 3.8209× 10−4 1.2773

NSFD1 2.2626× 10−5 1.4856× 10−4 0.0654

0.8 NSFD2 1.6768× 10−5 1.5657× 10−4 0.0730

SFD 2.2561× 10−5 5.1169× 10−4 0.4061
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Figure 1. Exact :Surface of the wave for a = 1 , b = 1 ,
c = 0.001 , h = 0.1 , ∆t = 0.005 .
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Figure 2. SFD :Surface of the wave for a = 1 , b = 1 ,
c = 0.001 , h = 0.1 , ∆t = 0.005 .
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Figure 3. NSFD1 :Surface of the wave for a = 1 , b = 1 ,
c = 0.001 , h = 0.1 , ∆t = 0.005 .
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Figure 4. NSFD2 :Surface of the wave for a = 1 , b = 1 ,
c = 0.001 , h = 0.1 , ∆t = 0.005 .
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Figure 5. Relative errors for h = 0.1 , ∆t = 0.005 with different set of parameters.

5. Conclusion
In this paper, we present two exact finite difference schemes for the B(2, 2) equation in terms of travelling
wave solution. Two nonstandard finite difference (NSFD) schemes named as NSFD1 and NSFD2 for the B(2, 2)

equation are constructed. The numerical results obtained by the NSFD schemes are compared to the exact
solution and a standard finite difference (SFD) scheme. The results presented graphically reveal that NSFD
schemes show better performance than the SFD scheme. In addition, we have shown that NSFD2 scheme
is more accurate than the NSFD1 scheme. We conclude that NSFD schemes are robust tools for nonlinear
evolution equation B(2, 2) . The method described in this paper can be extended to many other PDEs involving
nonlinear derivative terms to obtain exact and NSFD scheme.
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