Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2021) 29: 1598 — 1614

© TUBITAK

T U B | TAK Research Article doi:10.3906/elk-2006-14

http://journals.tubitak.gov.tr/elektrik/

Information retrieval-based bug localization approach with adaptive attribute
weighting

Mustafa ERSAHIN'*®, Semih UTKU!®, Deniz KILINC?®, Buket ERSAHIN?
!Department of Computer Engineering, The Graduate School of Natural and Applied Sciences,
Dokuz Eyliil University, Izmir, Turkey
2Department of Computer Engineering, Faculty of Engineering, Bakircay University, Izmir, Turkey
3Department of Computer Engineering, Faculty of Engineering, Izmir Institute of Technology,
Izmir, Turkey

Received: 03.06.2020 . Accepted/Published Online: 06.11.2020 . Final Version: 31.05.2021

Abstract: Software quality assurance is one of the crucial factors for the success of software projects. Bug fixing has
an essential role in software quality assurance, and bug localization (BL) is the first step of this process. BL is difficult
and time-consuming since the developers should understand the flow, coding structure, and the logic of the program.
Information retrieval-based bug localization (IRBL) uses the information of bug reports and source code to locate the
section of code in which the bug occurs. It is difficult to apply other tools because of the diversity of software development
languages, design patterns, and development standards. The aim of this study is to build an adaptive IRBL tool and
make it usable by more companies. BugSTAiR solves the aforementioned problem by means of the adaptive attribute
weighting (AAW) algorithm and is evaluated on four open-source projects which are well-known benchmark datasets
on BL. One of them is BLIA which is the state of the art in bug localization area and another is BLUIR which is a
well-known BL tool. According to the promising results of experiments, Top1l rank of BugSTAIR is 2% and MAP is 10%
better than BLIA’s results on AspectJ and it has localized 4.6% of all bugs in Top1 and its precision is 6.1% better than
BLIA on SWT, respectively. On the other side, it is 20% better in the Topl metric and 30% in precision than BLUIR.

Key words: Software engineering, bug localization, information retrieval, genetic algorithm, software process improve-

ment

1. Introduction

Many studies have been conducted to reduce maintenance costs in software development processes and to im-
prove the quality of software, as evaluated considering different metrics [1, 2]. The typical software development
life cycle (SDLC) consists of iterative phases ranging from requirements analysis to maintenance. There can be
various issues in each phase which threaten the quality of software. Software bugs are one of the most impor-
tant threats in this process since they are visible to the end user and reduce customer’s confidence in a piece of
software. The maintenance phase of the SDLC starts after the release of the software, and its cost is generally
more than development costs for large-scale software projects. For larger software projects, catching and fixing
implementation errors become more difficult. Therefore, it is important to find buggy source to reduce the
maintenance time and cost. Bug localization (BL) is the process of finding portions of a source code associated

with the submitted bug report. BL starts with a bug report submission, then a member of the development

*Correspondence: mustafa.ersahin@gmail.com

1598

[CO) This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-000-4318-8288
https://orcid.org/0000-0002-8786-560X
https://orcid.org/0000-0001-5973-4795
https://orcid.org/0000-0002-1726-8164

ERSAHIN et al./Turk J Elec Eng & Comp Sci

team proceeds to investigate it. This process consists of understanding the bug report, reproducing steps of
bugs and trying to find specific parts of the program that are relevant to the reported issue. Files containing
bugs are called buggy files. BL tool is a piece of software which considers source code and bug reports as input
and finds similarity between them. All the BL tools can have different approaches to solve localization problems
but have the same purpose. This goal is trying to help the developer for finding the actual source code part
which causes the reported bug.

BL is one of the ways in which developers use bug reports from bug tracking systems like Bugzilla' and
Jira?. The bug tracking system is a part of the issue tracking, which is dedicated for the software development
process. All stakeholders such as developers and quality assurance engineers use these tools to track progress
on bug fixing [3]. They have to overcome time-consuming challenges such as reproducing the bug as specified
in the bug report, understanding the coding structure, programming logic, and goal of the related flow [4]. BL
researches mainly focus to improve the overall process by providing new BL methods [5]. In general, dynamic
or static methods are used in BL [6]. Dynamic methods have some processes during execution such as runtime
traces, data monitoring, and tracking execution flows. On the other hand, static BL uses bug reports and
source code to locate bugs. Static BL methods are easy to apply on any phase of the SDLC since they have few
external dependencies and relatively low computational costs owing to information retrieval (IR) algorithms
[7, 9]. In this study, BugSTAIR has been evaluated on well-known datasets like Eclipse, AspectJ, and SWT,
all of which are developed with Java programming language. Some implementation details of Java can help the
IR process to have better accuracy. For example, stack trace of an exception is a valuable input to indicate
the buggy file and its function directly. One of the IRBL approaches shows that using stack information can
improve the accuracy of BL tool up to 47% [10]. In addition, the file name is always the same as the class
name that is publicly declared. Unlike Java, JavaScript (JS) is very flexible and does not force for any naming
convention. Moreover, there are no experimental results on JS-based software and datasets in the literature.
Another important issue is that development standards and implementation details may vary for the same
programming languages depending on the company’s coding standards. In addition, a web application may
have many files with the same name but with different file extensions such as featurex.html, featurex.css, and
featurex.js. This situation causes an extra complexity for all computations in the process. Thus, the proposed
study focuses on locating non-UT related bugs such as logic and flow in web applications. Therefore, BugSTAIR
evaluates only source files with “js” extension while working on JS-based applications. The other Ul-related
project files such as “HTML” and “CSS” are out of our project’s scope. Besides, differences in project structures
and language-specific keywords have forced us to understand the characteristics of a project. All the previous
IRBL tools assign attribute weights intuitively or experimentally while retrieving data. For this reason, none
of these tools can be a part of a commercial application or a service. In this study, a new version of IRBL tool
named BugSTAIR that is generalized for software products having source codes in AngularJS (front-end) and

Java (backend) programming languages is presented. The main contributions of the study are:
¢ A new adaptive BL model has been proposed.

e BugSTAIR is the first tool that uses an adaptive weight calculation approach based on genetic algorithm
(GA).

IBugzilla (2019). Bugzilla [online]. Website https://bugzilla.mozilla.org [accessed 04 March 2019]
2 Atlassian Jira (2019). Atlassian [online]. Website https://www.atlassian.com/software/jira [accessed 04 March 2019]

1599

ERSAHIN et al./Turk J Elec Eng & Comp Sci

o New benchmark datasets have been shared in an open-source platform, Github?, for further BL research.
These are Eclipse dataset which includes source code histories and bug reports of three major repositories,
Tomcat dataset which includes source code, bug reports, and cleaned history, and angular-translate dataset
which is the first web-based BL benchmark dataset.

The remainder of this paper is organized as follows. In Section 2, the general approach of IRBL is demonstrated
and the state of art is examined. In Section 3, the architecture and steps of the proposed approach is presented.
In Section 4, a case study and the experimental setup such as datasets and evaluation metrics are presented.
Then, experimental results are discussed. In Section 5, threats to validity of the proposed study is explained.

Finally, in Section 6, conclusions and ideas for future work are explained.

2. Background
2.1. Literature review

IR is a research area that handles the representation, storage and organization of information items [11]. Many
researchers have been working on IRBL on different datasets and using different methods. The idea behind
IRBL is to find the relevant source files according to the common matching words between source files and
bug reports. Query and document collections are two important inputs of IR researches. In this study, each
bug report represents a query, and source files are document collection. IR techniques use these inputs to
rank documents by similarity and relevance. The ranking process has consecutive phases starting with bug
report creation. The user enters a bug report query into the system and IR techniques compute a rank score
for all potential source files matching the bug query. Finally, top-ranking candidate source files are listed for
developer’s consideration. The success of an IR-based technique is highly dependent on the algorithms used in
retrieval processes. Rao et al. [12] compared the main IR techniques and some various combinations of them.
Poshyvanyk et al. [13] used a probabilistic ranking method and a data acquisition method called latent semantic
indexing (LSI) in their work [14]. Zhou et al. [15] proposed BugLocator which uses the revised vector space model
(rVSM). BugLocator performs on some high-scale open-source projects using text similarity between source files
and bug reports. In addition, it uses the information about fixed bugs to improve BL accuracy. BugLocator
has better experimental results than BugScout on the selected datasets. Another approach was introduced by
Saha et al. [16]. Bug localization using information retrieval (BLUIR) uses structured information analysis of
source code such as class names and method names. It locates more bugs than BugLocator according to the
experimental results on the same datasets. The first IRBL tool for JS-based is the first version of BugSTAIR
[17]. BugSTAIR is specifically designed for the software products developed using JavaScript and JavaScript-
based web frameworks such as AngularJS and ReactJS. Therefore, it does not work for projects developed with
Java or other languages. BugSTAIR uses structured information of datasets and TFIDF for IR model. There
are some studies which require further information about bugs. For instance, Youm et al. [10] proposed bug
localization using integrated analysis (BLIA) which considers stack traces, comments in bug reports, and change
history of the source code for better accuracy. Locus is another approach which uses source code and source
code history in structured format [18]. In comparison, BLIA evaluates the same datasets which are used to
evaluate Locus, BugLocator, and BLUIR, and gets better results than all these approaches. On the other hand,
there are three other approaches for BL. Machine learning (ML)-based BL, deep neural network (DNN)-based
BL, and hybrid BL solutions which combine DNN and rVSM. DNNLoc is one of the hybrid solutions [19]. The

3Github. https://github.com/mustafaersahin/bugstair [accessed 05 September 2020]

1600

ERSAHIN et al./Turk J Elec Eng & Comp Sci

BL approach of DeepLoc is based on only DNN [20]. Both of these DNN-based models perform better when the
dataset has enough volume of data according to their accuracy results. ML-based BL tools have two approaches
such as adopting ML models that are trained to match the topics of bug reports and classifying source files
into multiple classes using previously fixed files [9]. Nguyen et al. customized the LDA approach by using a
topic-based ML model and proposed BugScout [21].

2.2. IR-based bug localization

There are many open-source software products with datasets that include a lot of bug summaries. However, it
is difficult to find web applications which are developed by JS-based frameworks having a bug report dataset.
Figure 1 illustrates a real-world bug report from a commercial application developed for a bank. All of the
benchmark datasets have structured information which includes bug id, summary, description, and names of
changed files as ground truth data (GTD).

Bug ID: 1433
Summary: Account Settings — Next Button is not working after entering security question.
Button should trigger a redirect action to the success state

Source Code File:securityQuestionPageHelperFactory.js

angular.module("WebApp.core").factory("securityQuestionPageHelperFactory",
function (securityQuestionApi, smsOtpConfigFactory, smsOtp, $state) {
"use strict";
function securityQuestionPageHelper(securityQuestionPage) {
var self = this;
this.validateSecurityQuestionAnswer = function () {
securityQuestionApi.validateSecurityQuestion({
"answer": securityQuestionPage.formData.answer
he
"skipDefaultErrorAlert": false,
"onSuccess": self.onValidateSecurityQuestionSuccess
b
);

this.onValidateSecurityQuestionSuccess = function (resp) {
if (securityQuestionPage.config.smsOtp) {
self.startSmsOtpFlow();
}else {
$state.go(securityQuestionPage.config.successState.name,
securityQuestionPage.config.successState.params,
{"location": "replace"});

Figure 1. GTD example of a real-world web application.

IRBL studies rely on calculating similarity scores between bug reports and source code files according to
the results of similarity matching algorithms. All source code files have a computed similarity score for each
bug report. BL has some steps which should be executed in a predefined order. Detailed information about

these steps are given in Section 2.3.

2.3. Common bug localization process

IRBL approaches have five main steps as shown in Figure 2. They are preprocessing, indexing, query construc-

tion, similarity computation, and retrieval.

1601

ERSAHIN et al./Turk J Elec Eng & Comp Sci

Doc1 Doc2
‘ Field1 B
v _— Preprocessing ——— Field2 Indexing Dt;:u;n;;t
v Field3 Collection 1

ISR Structural Information o Similarity
Computation

Query Construction ‘
Field1 x Weight1 Retrieval
Query —— Preprocessing _— J Field2 x Weight2 |

Field3 x Weight3 B == Doc3

) == Docl

B Doc5

Ranked Documents

Figure 2. General view of the IRBL process.

e Preprocessing: This step is related with both source code files and bug reports. All of them should
be preprocessed to improve the efficiency of the retrieval process. In this step, all stop-words such
as language-specific identifiers and punctuations are removed from the source code. In addition, some
syntactic operations are performed such as camel case splitting, lowercase transformation, word stemming,

and tokenization.

¢ Indexing: IRBL approaches are used to index a dataset that is ready when both source file and bug reports
are preprocessed, and dataset is prepared. The VSM is one of the well-known IR techniques but there are

also some other probabilistic models such as LSI.

¢ Query construction: Query is one of the most important parts in IR processes. In general, summary and

description fields of bug reports are used as inputs.

¢ Similarity computation: There are several methods such as rVSM, TFIDF, LSI to compute the similarity
between bug reports and source code files. Every IRBL approach applies one of these methods to compute

the relevance.

e Retrieval: After all the steps are performed, each IRBL approach applies its proposed algorithm or method

to obtain better accuracy on the retrieval process.

3. Proposed approach

In this section, detailed information about the proposed approach has been given. Then, the main contribution

of the paper, which is building adaptive attribute weighting (AAW) algorithm, is described.

3.1. Bug localization process

All the previous researchers that are pointed out in Section 2 studied software projects implemented with Java.
According to this fact, all benchmark datasets have Java-specific information. The proposed model has adaptive

processes because Java is not the only programming language in the software systems. JS is the leader among

1602

ERSAHIN et al./Turk J Elec Eng & Comp Sci

the list of most popular programming, scripting, and markup languages according to Developer Survey Results
4, Therefore, this study focuses on not only Java-based but also JS-based applications to build an adaptive
retrieval model. A new “adaptation” step is defined to provide this IRBL architecture. The aim of this step is
building IRBL basis for newcomer software and optimizing the retrieval process.

IRBL is hard to implement in JS-based web applications, and retrieval results are not as accurate as in
Java-based software applications. The main reason is that the user interface (UI) of an application is related
with more than one file at the same time. Figure 3 shows the general architecture of the approach. In our
proposed work, it is considered that change history of the source code is as important as current source code,
because any change in the source code has a history. This history can be related to a feature or a bug fix. There
may be many source code files depending on the change. Evaluating the information obtained from the history,
the impact analysis between the features and source code has been identified. Therefore, the history of source

code is valuable, and is used to locate potential buggy files.

Source Code History
Index

D] (R1)

— R Pt Quer Candidate Files
Source Code | ——| A (AAW s v ————| inRanked ————————
History Sl A IR Commits (Fi)
\7 Changed Files - Build In Memory Index
o Changed Methods ‘
Attributes
Filename
Y N Classnam:
\Bug Reports) Merge Files — vribiee
I Mi=Fi U Si
Object Keys
Method Names
Source Code Index [l
e Ty P (R2) Commit Message
K ributes ~ e Conten
—— Gromm '//AAW N Query Candidate Files File Content
ST ETE e N J Construction & IR (Si)
) Variables
T — Object Keys
File Content
~T
Final Candidat
inal Candidate || evel iR |———(AAW)
Files et
Adaptation (R3) e Retrieval

Figure 3. General architecture of the proposed approach.

In this study, a new stop-word list and JS parser have been created to process JS-based applications. The
stop-word list contains list of words that are commonly found in languages which carry little or no significant
semantic context in a sentence [22]. The JS-based stop-word list contains natural language words that are
already in Java-based stop-word lists and also JS language-specific keywords. Details of preprocessing are
covered in Section 3.2. Adaptation step includes three AAW executions to get ready for retrieval. The first
two executions run after the preprocessing step in which two different indexes have been built such as source
code index and change history index. Structures of these indexes are different. Source code index has five
attributes which are class names, methods, variables, file content, and object keys. Change history index has
three attributes which are commit messages, changed files, and changed methods. These two indexes can be

created simultaneously. At this point, AAW processes run for both indexes to identify the best weights for

4Developer Survey Results (2019). Stackoverflow [online]. Website https://insights.stackoverflow.com/survey/2019/ [accessed
03 June 2020]

1603

ERSAHIN et al./Turk J Elec Eng & Comp Sci

retrieval. Next, retrieval query is built as the query construction algorithm given in Section 3.5. The first-level
retrieval is performed based on change history index with AAW on all attributes. The retrieval in first level is
performed based on source code index. Apache Lucene® provides similarity scores between commit messages
and bug reports. Every commit may have files that are changed more than once. Therefore, scores of the files
that are found in the retrieval processes have to be consolidated. Finally, a buggy file list is gathered according
to the first level of the IR process output. The second level of the IR processes starts by creating a structural
in-memory index including files in the consolidated list. The proposed structure includes class names, method
names, variables, object keys, and file content from the source code index. In addition, file name, file path,
and commit messages are included from the source code history index as an attribute to in-memory index to
combine all information in one index. The optimum attribute weights are calculated according to the GA’s
output in the third execution of AAW. Fitness function of GA is based on IR result of dataset and the purpose
of fitness function is to reach maximum Top-1 ranked query for the generated population. Details of GA and
fitness function are given in Section 3.4. File scores which come from the third execution of AAW are used for
reranking between candidate files coming from the first level IR. After the reranking process, a final score is
generated for each file. Thus, they can be used for any application that helps software development teams to

find bugs earlier in the maintenance period of the SDLC.

3.2. Source code and bug report preprocessing

During the BL process, HTML and CSS files are excluded from source code repository and JS files are the only
accepted input to be processed. Moreover, all Ul-related bugs are eliminated while getting bug reports from the
issue tracking system. Then, all stop-words are removed from the source code files and bug reports. Stop-words

include the following keywords:

o English stop-words: “a”, “the”, “to” etc.
e Syntactic symbols/identifiers: “null”; “undefined”; “alert”, “init” etc.
e Operators/punctuations: “==" “1="7"<" 7> etc.

There are some different naming conventions in software companies. Identifiers may consist of more than
one word. In order to increase the accuracy of the retrieval, identifiers are tokenized. To achieve this, individual
tokens are used, but there might be some conflicts between bug reports and source code with regards to case
sensitivity. To resolve these conflicts, all texts are transformed to lowercase. In addition to being the first
BL study on the JS-based systems, the model is tested in Java-based systems. The preprocessing step can
be done similarly in both systems. A language-based stop-word list has also been created to build a generic
infrastructure. The language parsers are used to understand the written code structurally. JS parser and
Java parser are included in the proposed tool. In order to support different software development languages,
the language-based stop-word list should included in the collection, and a language parser should be added to
the project in order to understand the structure of the new language. Therefore, adaptation processes can be

executed easily.

3.3. Indexing

In this section, indexing process is presented. Apache Lucene is used to index the source code files. Lucene is

one of the most widely used and well-known open-source IR systems. Before the indexing step, the source codes

5 Apache Lucene (2020). Apache [online]. Website http://lucene.apache.org/core [accessed 04 March 2020]

1604

ERSAHIN et al./Turk J Elec Eng & Comp Sci

have to be parsed to index them in a structured way. After the source codes are parsed, important information
such as class, method, variable and function names are extracted. All source code files are analyzed structurally
by using specific language parsers. Each source code file is called “document” in the index structure and any
valuable parts of the source code are called “attributes”. These attributes are added to the document as a
field. Both file names and attribute names are usually written in camelCase naming convention. In this way,

all the file names and attribute names which have more than one word are added to the related field of the
document by using the camelCase notation. It is also discovered that these names may be included in the

bug records and they are also indexed as a separate field in the document to increase success. For example,
“securityQuestionsPageHelper” method name is added to the method field of the index with five inputs which
are security, question, page, helper, “securityQuestionPageHelper”. In addition to these structural fields in the
document, file content is stored in the document.

Three indexing steps are defined in this study. All of them execute the same steps while indexing the
related input documents. Source code and source code history index are built for first-level IR and in-memory
index for second-level IR. After first-level indexes are formed, the process of finding the weights of the attributes
begins. By means of the GA, the optimum values of the attributes on both indexes are determined in order to
be used in the next step. The obtained values help in-memory index to achieve the best result on the entire

dataset. Details of third index is given in Section 3.6.

3.4. Adaptive attribute weighting (AAW)

In this section, the proposed AAW algorithm is presented. AAW is the key point of the adaptation process.
Every software might have different coding structures and styles. Although the structure of the indexes are
the same, the weight of the each field must be different according to the software development standards. The
multidimensional search on different fields and combining these results conducted using IR techniques require a
dynamic calculation of the coefficients/weights that affect the search process and retrieval results. The technique
to find and use weights to produce the best results is brute force search algorithm. As the size of dataset grows,
it is better to use optimization methods since the time for calculation is high and this has to be repeated in
certain periods (new records, daily etc.). Therefore, this subproblem becomes an optimization problem. The
idea behind including AAW in the approach is to solve this optimization problem and to reduce the impact of
changing project standards and application development standards on the model and to achieve more precise
results. There are several optimization algorithms and methods in the literature such as GA and particle swarm
optimization. In the proposed approach, GA is selected as the optimization algorithm to solve this problem.
GA is a widely used search and optimization method that works in a manner similar to the evolutionary
process observed in nature. It seeks the best holistic solution based on the principle of survival in complex
multidimensional search space. A GA has three main steps: crossover, mutation, and selection [23]. In this
section, all configurations and strategies which are chosen for implementation are explained in detail. Initially,
each chromosome is designed to have eight genes which can take double values (0.0-1.0). Each gene is represented
by 16 bits and can have fractions up to two decimal points. A set of chromosomes are defined as population.
Population is also a subset of solutions in the current generation. There are some limitations while defining the
size of population. The diversity of the population should be maintained, otherwise it might lead to premature
convergence. The population size should not be kept very large as it can cause the GA to slow down, while
a smaller population might not be enough for a good crossing pool. As mentioned before, diversity of the

population affects optimality, and initial population is important. Random initial populations increase the

1605

ERSAHIN et al./Turk J Elec Eng & Comp Sci

diversity of the chromosomes in the population. In this study, the initial population is generated completely
randomly with the minimum sample size of 100 and the maximum sample size of 200.

After a brief information about the population used in the GA, the crossover strategy and rate are
implemented. The crossover step is similar to reproduction and biological crossover. More than one parent
are selected and one or more off-springs are produced using the genetic material of the parents. The uniform
crossover strategy is used to generate new off-springs with the mix probability of 0.75. In uniform crossover, each
gene is evaluated separately while deciding whether it will be included in the off-springs. The second important
process that provides diversity is mutation. Flip bit mutation (FBM) strategy is used in this approach. FBM
is a mutation approach which has two steps such as selecting one or more bits randomly and flip them with
a given probability. In this approach, 0.1 is given as mutation probability. The selection of the genes which
occurs with respect to crossover and mutation is called the selection process. Consequently, complex problems
are solved to inform the GA of which gene is good using a fitness function (FF) and coding variables.

In this approach, a GA is used to find a common solution for all datasets to solve attribute weighting
problems. GA must have an FF to optimize the given problem. Therefore, a customized FF has been
implemented to solve the current problem. This function is problem-dependent and each problem has its own
FF. Details of the proposed FF are explained. The gene/population selection algorithm is the most important
part in GA. Elite selection (elitism) is the most successful and preferred method in the literature. Especially,
elitism strategy has been widely used in different evolutionary algorithms [24]. Therefore, the elite selection
algorithm is used for the selection process. This selection method is optimized to choose the best chromosomes.
The custom FF executes the required number of multiples and keeps the result in memory. After the required
number of chromosomes are generated (min 100, max 200 is used in the application), the existing population
is evaluated. The evaluation step is performed considering the termination function. This function decides
whether the new generation should be produced or not. The application is terminated if the best chromosome
value is not changed after the configured number of iterations are executed, otherwise new chromosomes and
populations continue to be produced by the GA iteratively.

In this study, a GA is used to optimize IR efficiency by finding the best coefficients for any given dataset.
There are three AAW executions to optimize the IRBL process. The main difference of these executions is the
number of parameters which will be optimized. In this study, an AAW algorithm is designed to support variable
length parameters, and it can take 3 to 8 parameters as input and returns optimized values for each parameter
as output. The FF evaluates every bug report in the given dataset and compares the ranked files with GTD
to find the number of Top 1 ranked queries. After all bug reports are evaluated, the FF calculates the ratio
of Top 1 ranked documents in a given population. The purpose of the FF is to find the maximum ratio for a

population. The formula to calculate the FF(score) is represented in Equation 1:

Top1 i
FFipre = #of Top 1 ranked queries

#of all queries (1)

To summarize, all of the AAW executions are executed step by step including FF, selections, crossover,

and mutation configurations. All the parameters such as crossover, mutation probability, and population size
used in the GA are selected with grid search (GS) [25]. It is a technique that scans the dataset to select
optimal parameters for the constructed model. GS works iteratively on each data and compares the results
for each value. The best value for each parameter is found [26]. The configurable parameters of the applied

solution are mutation, crossover rate, and the number of chromosomes. In order to understand whether the

1606

ERSAHIN et al./Turk J Elec Eng & Comp Sci

AAW algorithm performs better, basic IR tests have been executed on benchmark datasets. The experiments
are performed on four different datasets which are formed as initial structure on source code. The aim is to see
better accuracies on benchmark datasets and to apply the AAW to the IRBL model. After applying the AAW
algorithm, the retrieval results are better than those without AAW in the same conditions. The results of the
IRBL processes for each dataset are given in Table 1. AAW provides better accuracy on all four datasets that are
used for benchmarking in BL. AAW achieves better accuracy compared to our previous experiments that have no
specific coefficient /weight for each attribute. According to the accuracy results, improvements on benchmark
projects such as SWT, Eclipse, and AspectJ are 20%, 21%, and 62%, respectively. These improvements on
benchmark datasets show that the AAW improves the IRBL process results significantly.

Table 1. Results before/after AAW.

Dataset Before AAW (%) | After AAW (%)
SWT 47.00 56.32
Eclipse 26.19 31.61
AspectJ 20.84 33.80
Web Application | 27.72 32.18

3.5. Query construction and retrieval

Source code files are called document collection and bug reports are evaluated as query in IRBL process.
Since the bug reports are preprocessed in the first step, query construction is performed in the retrieval. It is
understood that the query construction process is very important and critical for retrieval accuracy according
to the previous studies. Many researchers have used special weights for fields on documents while constructing
the retrieval query according to their empirical studies on each dataset. In the present study, outputs of the
AAW process are used to set weights while constructing the retrieval queries. In addition, all words of bug
report summaries that are tokenized and preprocessed in the previous steps are used in the queries. In general,
bug summary contains useful information to localize bugs. Moreover, the description parts of the bug reports
are examined to verify whether they have valuable information about bug or not. It is decided to include bug
descriptions to queries. Bag of words algorithm (BoW) is applied to extract more valuable information from the
bug description and to reduce complexity of query construction. Finally, ten words are selected according to

the word counts to be added to the query. Generated queries are executed on indexes to finish retrieval process.

3.6. In-memory structured index (IMSI)

IMSI has an important role in the project. As a result of retrieval on source code history, the most similar
change set is determined according to the similarity between commit messages and bug reports. Every commit
may include more than one file. Therefore, unique source files are created by evaluating the changes. On the
other hand, the code pieces that may potentially contain bugs are determined as a result of the IR process
on structured information of source codes. The merge operation in Figure 3 is executed simultaneously. The
candidate bug resources selected after the IR process on source file are merged with the candidate file names
according to the IR results on the source code history. All the files in the merged list are reindexed in a more
complex structured information during the execution of the application. Therefore, lists of candidate source

files to index are filtered. Building an IMSI does not affect the retrieval process dramatically. After the IMSI

1607

ERSAHIN et al./Turk J Elec Eng & Comp Sci

is constructed, there are more attributes for query construction in the IRBL process. New weights for each
attribute are required. By executing the AAW process on the attributes, new weights are determined for all

attributes. Thus, all the prerequisites get ready for the second level of IR.

4. Experimental study
4.1. Subject systems

To evaluate the success of the proposed approach, all experimental results of IR on well-known benchmark
datasets such as Eclipse, AspectJ, SWT, and Tomcat are presented. These datasets are used in the BL field by
researchers. All of them are open-source software projects that are developed with Java. The source code and
change history of the subject projects are collected from Git repository of the projects. All the bug reports which
have already been fixed are collected from bug tracking systems. Besides, a commercial web application is used
to evaluate the performance of the proposed approach on a JS-based application since there is no open-source
benchmark dataset for JS-based applications. Angular-translate project is selected as an open-source project to
test BugSTAIR performance in comparison to the commercial web application. Therefore, the first benchmark
dataset for web-based project is shared for BL research. Detailed information about the commercial web
application and angular-translate project are given. Both projects are developed with AngularJS. Development
language (method names, variables etc.), bug summaries, and descriptions are in English. They have enough

information and inputs to compare experimental results to other projects.

4.2. Dataset statistics
In this section, information about datasets which are used to test the proposed approach is given. Some
important statistics collected from datasets are shown in Table 2.

Indexed source files are different according to the dataset. Javascript files that have “js” extension are
indexed in both angular-translate and web application datasets. Additionally, files that have “java” extension
are indexed in AspectJ, SWT, Eclipse, and Tomcat dataset. These statistics directly affect the IR result and
accuracy. Moreover, they are important for evaluating the success of tools. Some datasets cannot be evaluated
depending on the approach adopted by the tool. Therefore, it is important to compare approaches of IRBL
tools. BLUIR+, BRTracer+, BLIA, and BuglLocator are well-known IRBL tools that have better accuracies on
BL. Detailed comparison of these tools and BugSTAIR is shown in Table 3.

Each row of the table is a property of the BL approaches. IR method, information structure, bug
similarity, version history usage, stack trace usage, and adaptive attribute weighting are properties evaluated
in comparison. “O” means that tools have related property and “X” means they do not have related property
in their approaches.

Bug similarity is the standard feature that is used by all IRBL tools. Structured information of source
code is another common feature. BRTracer+ and BLIA use information about stack traces to improve IR
accuracy. Stack trace is one of the most important features because it mostly contains direct reference of buggy
source [27]. Effects of the stack trace is up to 47% according to the reports in BLIA. BLIA and Locus uses the
source code version history like BugSTAiR. Source code history threats experimental results on datasets. It is
not possible to have source code histories on all benchmark datasets. Specifically, source code architecture of
Eclipse is different from any other datasets. Its source code is based on different repositories, so it is difficult
to identify which bug is related to which repository. To avoid mismatch, the top three repositories that cover

most bug reports are analyzed and selected. The source code history information and bug report dataset are

1608

ERSAHIN et al./Turk J Elec Eng & Comp Sci

shared in open-source platforms such as Github. Tomcat has the same issue on source code history. Both of
these datasets are cleaned and preprocessed before using them as a benchmark dataset. These datasets are the
third contribution of the proposed work. The current states of the IRBL tools, their approaches and details of
datasets with statistics are introduced and the experimental results of the retrieval process on these datasets

are explained in Section 4.4.

Table 2. Dataset statistics.

Development Indexed source | # of # of
Dataset

language code files commits | bug reports
SWT Java 738 33.994 98
Eclipse Java 12.302 37.687 1.174
AspectJ Java 3.692 8.291 284
Web application | Javascript/AngularJS | 724 2.543 313
Tomcat Java 2.485 62.783 1049
Angular-translate | Javascript/AngularJS | 48 1.712 61

4.3. Evaluation metrics

There are some common evaluation metrics on IR research such as Top N rank accuracies, mean average precision
(MAP), and mean reciprocal rank (MRR). All of the compared tools [13-15] use the same metrics to evaluate
IR results.

e Top N rank: This metric is used to calculate the number of the bug reports in which at least one source
file is ranked in list of retrieval results. A higher value for this metric indicates better BL performance

[28]. Responsive web application is developed with AngularJs framework.
e MAP: This metric is used to find average precision and it is the major metric in IR evaluation.

e« MRR: This metric is based on early precision over recall logic. Reciprocal rank is a value that is inversely
proportional to the rank given by the retrieval method to a single relevant item [29]. Shortly, the MRR is

the average RR of all queries.

These three metrics are used to evaluate the experiments of this study. Therefore, it is possible to compare

our results to those of other tools.

4.4. Experimental results

In this section, experimental results of BugSTAIR are compared to those of the previous BL tools and the overall
performance of the proposed approach is presented. The main purpose of this study is to define a generic model
to localize bugs in software projects. A commercial JS-based web application is used as dataset to execute the
proposed model. The other benchmark tools cannot work for WebApp due to development language limitations.
Therefore, there are not any experiment related to WebApp for these tools. All the processes that are already
defined in the proposed architecture are executed on both Java-based benchmark datasets and the JS-based
web application. The proposed approach performs better than the tools that are created especially for Java

applications. In general, BLIA has the highest performance on all datasets except Eclipse. The experimental

1609

ERSAHIN et al./Turk J Elec Eng & Comp Sci

Table 3. Comparison of IRBL tools.

Approach BLUIR+ | BRTracer+ | BLIA | BuglLocator | Locus | BugSTAIR
IR Method ~TF.IDF~ rVSM rVSM rVSM rVSM | ~TF.IDF~
Bug similarity (0] 0] (0] (0] 0] 0]

Structured information

of source file

Version history

Stack trace analysis
Adapted attribute
~weighting

X< O
X O |
© | O|O| O
eI Rl ol e
X <O O
o | X O O

result shows that BugSTAiR performs better than all the other tools on common evaluation metrics. Top 1
rank of BugSTAIR is 2% and MAP is 10% better than BLIA metrics on AspectJ. BugSTAIR has localized
4.6% bugs in Top 1 and its precision is 6.1% better than BLIA in SWT. There is no performance metric on
Eclipse for BLIA, so BLUIR+ has the best scores. Then, BugSTAiR’s performance is compared to BLUIR+.
Experimental results show that our performance is 20% better than BLUIR+ in Top 1 metric and its precision
is also 30% better than BLUIR4. The experimental results are summarized in Table 4. In addition, there is not
any time statistics for IRBL approaches in the previous researches. Only DNNLoc has mentioned about timing
statistics on both training and predicting phases. Average training time for one fold is 81 min and it might take
more time if the training is executed for n-fold. The average time for predicting phase for one report is 2.28
min. Time statistics of BugSTAiR are given in Table 5. One time adaptation process of BugSTAIR takes 2—24
h according to the volume of the dataset and approximately 4.2 h in the experimented datasets. BugSTAiR

significantly outperforms DNNLoc in runtime bug prediction.

5. Threats to validity

This section considers threats to validity. Three types of them are explained: threats to internal validity, threats
to external validity, and threats to construct validity.

Threats to internal validity is biases that may be done by experimenters. In the proposed approach,
the same datasets as Buglocator and BLIA have been used. These are well-known datasets used to minimize
threats to internal validity. The source files and change histories are downloaded from Git repositories of the
projects. Afterwards, all extended properties such as fixed files and commit logs are verified for each dataset.

Threats to external validity is about the generalizability of the results. Most BL tools only work for
well-known open-source datasets. Our approach is tested on six datasets of different sizes, different domains,
and different languages. One of these datasets is from an internally developed project for commercial use.
Therefore, our approach is generalizable to any other open-source or commercial project with different languages.
A potential threat to validity is the quality of bug reports. Bug reports contain a lot of crucial information
about the issue for developers to fix the bugs. If a bug report has misleading information or does not provide
enough information, the accuracy of the BugSTAIR is adversely affected.

Threats to construct validity is about the qualification of the evaluation metrics. In our experiments,
three evaluation metrics such as Top N rank, MAP, and MRR are used. These metrics have been widely used for

BL benchmarks and are well-known IR metrics. Therefore, it is obvious that our research has strong construct

1610

ERSAHIN et al./Turk J Elec Eng & Comp Sci

Table 4. Experimental results of BugSTAIR.

Dataset Approach Top 1% | Top 5% | Top 10% | MAP | MRR
BLIA 67.3 86.7 89.8 0.65 | 0.75
BLUIR+ 56.1 76.5 87.8 0.58 | 0.66
BRTracer+ | 46.9 79.6 88.8 0.53 | 0.60
SWT BugLocator | 39.8 67.4 81.6 0.45 0.53
BugSTAiR | 70.41 80.61 83.67 0.69 | 0.74
DNNLoc 35.2 69.0 80.3 0.45 | 0.37
Locus 64.3 84.7 91.8 0.64 | 0.73
BLIA N/A N/A N/A N/A | N/A
BLUIR+ 32.9 56.2 65.4 0.33 | 0.44
BRTracer+ | 32.6 55.9 65.2 0.33 | 0.43
Eclipse BugLocator | 29.14 53.76 62.60 0.22 0.41
BugSTAIR | 39.52 53.06 58.09 0.43 | 0.46
DNNLoc 45.8 70.5 78.2 0.51 0.41
Locus N/A N/A N/A N/A | N/A
BLIA 41.5 71.1 80.6 0.39 | 0.55
BLUIR+ 33.9 52.4 61.5 0.25 0.43
BRTracer+ | 39.5 60.5 68.9 0.29 | 0.49
AspectJ BugLocator | 30.8 51.1 59.4 0.22 0.41
BugSTAIR | 42.3 63.4 70.2 0.43 | 0.51
DNNLoc 47.8 71.2 85.0 0.52 | 0.32
Locus 25.0 56.6 63.9 0.32 | 0.38
BLIA N/A N/A N/A N/A | N/A
BLUIR+ N/A N/A N/A N/A | N/A
BRTracer+ | N/A N/A N/A N/A | N/A
Tomcat BugLocator | N/A N/A N/A N/A | N/A
BugSTAiR | 55.11 80.4 82.77 0.61 | 0.65
DNNLoC 53.9 72.9 80.4 0.60 | 0.52
Locus 53.9 7.7 81.9 0.57 0.64
Angular-translate | BugSTAIR | 50.81 80.33 85.25 0.46 0.50
Web application | BugSTAiR | 40.23 62.34 72.63 0.46 | 0.50

validity.

In previous BL tools, various combinations of control parameters have been used to find the best accuracy
for each project. Every parameter has been defined according to the number of experiments for each dataset.
In our approach, the AAW process is proposed to optimize the control parameters. All the parameters are

automatically selected via GA. Therefore, there are no heuristic or experimental tests in our approach.

6. Conclusion and future work
In this study, the proposed approach uses IR and GA on both JS-based web applications and Java-based back-
end applications. To the best of our knowledge, it is the first BL work that works for JS-based web applications

1611

ERSAHIN et al./Turk J Elec Eng & Comp Sci

Table 5. Time statistics of BugSTAIiR.

Source code Avg query
of source | | .] # of commit | History indexing ; .
Dataset indexing time . . . retrieval time
code files history items | time (s)
(s) (s)
SWT 738 18.4 33.994 618.8 0.72
Eclipse 12.302 123.6 37.687 11544.5 2.07
AspectJ 3.692 27.5 8.291 286.8 1.7
Web application 724 2.5 2.543 35.6 0.38
Tomcat 2.485 27.6 62.783 382.5 0.35
Angular-translate | 48 1 1.272 6.751 0.13

by using IR and ML. Lack of the BL dataset of open-source web applications has made us to use one of our
commercial web applications. Its bug report dataset is used to experiment the proposed approach. In addition,
an open-source angular-translate dataset is used to compare the results. Thus, there is not any more results
to compare the success of the proposed approach in this area. On the other hand, the results of experiments
show that BugSTAIR has promising performance on Java-based applications, so BugSTAIR outperforms any
other BL tool. An overall comparison of BugSTAiR with other tools has been presented in Table 4. The results
indicate that BugSTAIR has better performance than all of IRBL-based approaches such as BLUIR+, BLIA,
and Locus. In addition, BugSTAiR performs better than DNNLoc which is a hybrid solution with IR, and DNN
in some datasets. The proposed tool localized 20% bugs in Eclipse, 4.6% bugs in SWT, and 2% bugs in AspectJ.
Besides, our system has better performance (on the MAP metric) than any other tool with all datasets. MAP
metrics of BugSTAIR are 6.1%, 10%, and 30% higher compared to BLIA and BLUIR+. In addition to this,
BugSTAIR is the first generic BL tool that has the AAW process, which is the most valuable contribution to the
state of the art on BL. The adaptation step prevents numerous manual experiments to reach optimum weights
for all datasets. This generic implementation of the BL process provides us to enlarge our datasets easily. In the
future, we would like to integrate image processing features to handle screenshots that are taken when the error
occurred. As it is possible to extract more valuable text information from images to localize bugs, this feature
will help us to improve localization accuracy in two ways. First, we can localize only JS files in web applications.
Second, it will be possible to localize Ul-related bugs more accurately with the help of this feature. In addition
to this, we would like to integrate the proposed model with ML algorithms such as clustering. It is possible for
a bug to be related with another bug which was fixed before. Therefore, clusters which are created according to
the relevance of textual similarity between bug reports can help to improve the accuracy of IR results. Finally,
configurable software systems and microservice architectures will be preferred in both front-end and back-end
in the future. If there are any open-source projects like this, we will test the BugSTAiR and share experimental

results.

Acknowledgement

Funding for this work was partially supported by the Research and Development Center of Commencis Tech-
nology accredited on Turkey - Ministry of Industry and Technology. The modules and services of this work

were parts of a Commencis project named BugStair, which was funded by governments including the Scientific
and Technological Research Council of Turkey (TUBITAK) having Award No. 3180803.

1612

[1]

[9]

[10]

ERSAHIN et al./Turk J Elec Eng & Comp Sci

References

Banker RD, Datar SM, Kemerer CF. Software complexity and maintenance costs. Communications of the ACM
1993; 36 (11): 81-94. doi: 10.1145/163359.163375

Sousa MJC, Moreira HM. A survey on the software maintenance process. In: International Conference on Software
Maintenance; Bethesda, MD, USA; Nov 1998, pp. 265-274.

Puranik GM. Design of bug tracking system. International Journal of Innovative Research in Science, Engineering
and Technology 2014; 3 (7): 14693-14696.

Selby RW. Enabling reuse-based software development of large-scale systems. IEEE Trans. Software Engineering;
2005. 31(6): 495-510.

Saha RK, Lawall J, Khurshid S. On the effectiveness of information retrieval based bug localization for ¢ programmes.
In: Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’14);
Victoria, BC, Canada; 2014. pp. 161-170.

Pathak DP, Dharavath S. A Survey paper for bug localization. International Journal of Science and Research 2014;
3(11): 2835-2838.

Moreno L, Treadway JJ, Marcus A. On the use of stack traces to improve text retrieval-based bug localization. In:
Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’14); Victoria,
BC, Canada; 2014. pp. 151-160.

Wang S, Lo D, Lawall J. Compositional vector space models for improved bug localization. In: Proceedings of the
IEEE International Conference on Software Maintenance and Evolution (ICSME’14); Victoria, BC, Canada; 2014.
pp. 171-180.

Kim D, Tao Y, Kim S. Where should we fix this bug a two-phase recommendation model, IEEE Transactions on
Software Engineering 2013; 39(11): 1597-1610.

Youm KC, Ahn J, Eunseok L. Improved bug localization based on code change histories and bug reports. Information
and Software Technology 2017; pp. 177-192.

Ricardo BY, Berthier RN. Modern Information Retrieval. USA: ACM Press, 1999.

Rao S, Kak A. Retrieval from software libraries for bug localization: a comparative study of generic and composite
text models. In: Proceedings of the 15th IEEE International Conference on Program Comprehension; New York,
NY, USA; 2011. pp. 37-48.

Poshyvanyk D, Gueheneuc YG, Marcus A. Combining probabilistic ranking and latent semantic indexing for feature
identification. International Conference on Program Comprehension(ICPC); Greece, Athens; 2006. pp. 137-146.

Poshyvanyk D, Gueheneuc YG, Marcus A. Feature location using probabilistic ranking methods based on execution
scenarios and information retrieval. Transactions on Software Engineering 2007; 33: 320-342

Zhou J, Zhang H, Lo D. Where should the bugs be fixed? more accurate information retrieval-based bug localization
based on bug reports. In: 34th International Conference on Software Engineering (ICSE) 2012; Zurich, Switzerland,;
pp- 14-24.

Saha RK, Lease M, Khurshid S, Perry DE. Improving bug localization using structured information retrieval. In:
28th International Conference on Automated Software Engineering (ASE) 2013; California, USA; pp. 345-355.

Mustafa E, Semih U. Bug localization by using information retrieval and machine learning algorithms. In: Proceed-
ings of the 1st International Conference and Advanced Technologies, Computer Engineering and Science; Karabiik,
Turkey; 2018. pp. 298-602

Ming W, Rongxin W, Shing-Chi C. Locus: locating bugs from software changes. In: Proceedings of the 31th
IEEE/ACM International Conference on Automated Software Engineering 2016; Singapore, Singapore; pp. 262-
273.

1613

[19]

[20]

[21]

1614

ERSAHIN et al./Turk J Elec Eng & Comp Sci

Lam AN, Nguyen AT, Nguyen HA, Nguyen TN. Bug localization with combination of deep learning and infor-
mation retrieval. In: Proceedings of the 26th International Conference on Program Comprehension; Buenos Aires,
Argentina; 2017. pp. 218-229.

Xiao Y, Keung J, Bennin KE, Qing M. Improving bug localization with word embedding and enhanced convolutional
neural networks. Information and Software Technology; Elsevier, 2019. pp. 17-29.

Nguyen AT, Nguyen TT, Al-Kofahi J. A topic-based approach for narrowing the search space of buggy files from a
bug report. In: Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering;
Washington, USA; 2011. pp. 263-272.

Raulji JK, Jatinderkumar RS. Stop-word removal algorithm and its implementation for Sanskrit Language. Inter-
national Journal of Computer Applications (0975-8887) 2016; 150(2): 15-17.

Goldberg DE. Genetic Algorithms in Search Optimization and Machine Learning. Boston, MA, USA: Addison—
Wesley Longman Publishing Co, Inc, 1989

Du H, Wang Z, Zhan W. Elitism and distance strategy for selection of evolutionary algorithms. IEEE Access Digital
Object Identifier; 2018 (6): 44531-44541.

Thisted RA. Elements of Statistical Computing: Numerical Computation. New York, USA; Routledge, 1988.

Ersahin B, Aktas O, Kilin¢g D, Ergahin M. A hybrid sentiment analysis method for Turkish. Turkish Journal of
Electrical Engineering & Computer Science; 2019. 27 (3): 1780-1793. doi: 10.3906/elk-1808-189

Schroter A, Bettenburg N, Premraj R. Do stack traces help developers fix bugs? Mining Software Repositories
(MSR), 7th IEEE Working conference; Cape Town, South Africa; May, 2010. pp. 118-121.

Kilinc D, Yucalar F, Borandag E. Multi-level reranking approach for bug localization, Expert Systems; 2016, 33
(3): 286-294.

Voorhees EM, Harman DK. Chapter appendix: common evaluation measures. In: The Eleventh Text Retrieval
Conference (TREC 2002), National Institute for Standards and Technology.

	Introduction
	Background
	Literature review
	IR-based bug localization
	Common bug localization process

	Proposed approach
	Bug localization process
	Source code and bug report preprocessing
	Indexing
	Adaptive attribute weighting (AAW)
	Query construction and retrieval
	In-memory structured index (IMSI)

	Experimental study
	Subject systems
	Dataset statistics
	Evaluation metrics
	Experimental results

	Threats to validity
	Conclusion and future work

