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Abstract: This paper is concerned with the modeling framework based on power and control for a mechanical system
that has nonlinear, unstable, and under-actuated characteristic features, based on an analogy, which is developed by
using the Brayton and Moser’s (BM) equations between mechanical and electrical systems. The analogy is based on a
mixed-potential function generalized for BM. The mixed-potential function for a cart - pole double inverted pendulum
(CPDIP) system is used as a new building block for modeling, analysis, and controller design. The analogy allows for
the exact transfer of results from electrical circuit synthesis and analysis to the mechanical domain. This paper focuses
mainly on the development of the electrical equivalent circuit of CPDIP inspired by the power-based modeling framework.
In this brief, a real time CPDIP experimental setup was modeled by using this framework and a linear quadratic regulator
(LQR) controller was designed for the stabilization of the system. Experimental results validated that this framework
can be used as a new and advantageous modeling method and is a convenient and practical alternative to the Lagrangian
framework.

Key words: Analogy, Brayton–Moser, double inverted pendulum, linear quadratic regulator, optimal control, real time
control

1. Introduction
The Euler–Lagrange (EL) or Hamiltonian method can describe a wide range class of physical systems [1–3].
Based on the energy balance of the system, one can systematically provide the equations of motion for both sets
of equations [4]. In addition to energy-based methods, Brayton–Moser (BM) equations can describe a system
in the power-based framework [5, 6].

Brayton and Moser developed a specific gradient form in the early 1960s to describe a wide range class
of nonlinear electric networks [7–9]. The BM equations are based on the mixed-potential function that consists
of a supplementary term that indicates the difference between content and cocontent functions, as well as the
instantaneous transfer of power between subsystems [10–12]. Consequently, the BM equations are a modeling
framework based on power since the mixed-potential is a power function [13]. In electrical systems, the inductor
currents and capacitor voltages are basic variables and can be easily measured. Therefore, it is an important
advantage that the system’s dynamics can be defined in terms of these variables [14]. Since BM equations
provide this advantage, an analogy between mechanical and electrical systems can be developed based on the
BM equations [15]. Dirksz and Scherpen [8] proposed an integral control scheme for a standard mechanical
system based on the power-based modeling framework. The proposed controller was implemented on a real-
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time planar manipulator setup. Rinaldis and Scherpen [15] presented an electrical explanation that conforms
to the BM concept of mechanical systems moving such as single, double pendulum, and single link inverted
pendulum in the plane. The starting point was given by the Euler–Lagrange equations. Then, by inserting
the pseudo-inductor, the BM equations for mechanical systems were determined. Jeltsema and Scherpen [16]
showed that a wide range class of mechanical systems can be identified by a homonymous set of BM equations.
In [16], the aim is to rewrite the standard Hamiltonian motion equations in terms of a power-based definition
and they weren’t looking for a exact electrical explanation.

The inverted pendulum (IP) system is an under-actuated system that has nonlinear and unstable char-
acteristic features and also it is one of the most widely preferred testbed systems in control theory applications.
Therefore, many IP systems that have different structure have been designed such as Pendubot, Acrobot, spher-
ical/mobile/rotary/wheeled and single or multiple link IP [17, 18]. If the number of the link is increased, the
control problem of the IP system that has two basic routines as stabilization and swing-up will be more difficult.
In this study, the stabilization control problem is focused on, and the aim is to control the pendulum angles
and the cart position at the upper unstable equilibrium point. There are many different studies in the literature
on this control problem and Euler–Lagrange formulation is used for the modeling in most of them [19–21].

This paper aims to develop an optimal feedback control algorithm by using power-based modelling based
on the BM framework for the stabilization problem of the cart - pole double inverted pendulum (CPDIP) in
real time. Our main motivation is to develop an electrical interpretation of the CPDIP, which is a nonlinear and
unstable mechanical system. Our power-based description form of mechanical systems is an electrical equivalent
circuit. By using this form, a linear quadratic regulator (LQR) controller is designed and implemented on the
real time cart – pole double inverted pendulum system. Experimental results are presented for optimal LQR
control of a CPDIP under different conditions such as applying measurement noise and external disturbance.
Determination of LQR parameters was readdressed and the process of tuning of the six controller gains was
analyzed. The main contribution of this paper is development of electrical equivalent circuit of cart – pole double
inverted pendulum inspired by the power-based modeling framework. We focus on a new and advantageous
modelling method for controller design of CPDIP system and suggest the BM equations as a convenient and
practical alternative to the Lagrangian framework. Also, the controller based on power based modelling is
applied on an experimental CPDIP setup.

This paper is organized as follows. Section 2 presents to mathematical modelling based on BM framework
of the CPDIP system. Section 3 describes LQR design for CPDIP. In section 4, experimental setup and results
are presented.
2. Mathematical modelling based on BM framework
The schematic diagram of the CPDIP system is shown in Figure 1. The positive sense of rotation is defined to
be counter-clockwise (CCW), when facing the system and the positive direction of linear displacement of the
cart is to the right when facing the cart as can be seen from figure. The cart has mass (m0) and is actuated by
an applied force, F which is the only input in CPDIP. The system-related parameters are outlined in Table 1.

The dynamic model of the system has been based on the BM framework. In the BM framework, Euler–
Lagrange (EL) equations can be transformed into BM equations if all the necessary conditions are met [15].
Also, the BM equations obtained represent an electrical circuit. Thus, the electrical equivalent circuit of the
CPDIP system is achieved.

EL equations are based on the difference between the potential energy and the kinetic energy of the
system. The starting point of the EL method is the determination of the generalized coordinates (qi and q̇i ) of
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Figure 1. The schematic diagram of CPDIP.

Table 1. Parameters description of the CPDIP schematic diagram.

Parameter Description of parameter
θ1 The deflection angle between the first pendulum and the reference plane
θ2 The deflection angle between the second pendulum and the first pendulum
x The distance between the cart and the reference plane
m0 Mass of the cart
m1 Mass of the first pendulum
m2 Mass of the second pendulum
l1 Distance the mass center of the first pendulum to the corresponding joint
l2 Distance the mass center of the second pendulum to the corresponding joint
Lp1 Length of the first pendulum
Lp2 Length of the second pendulum
g Gravitational acceleration
F Applied force to the system

the system and the mi mass’s position and velocity are describing these coordinates. According to the analogy
approach, position, and velocity which are mechanical variables can be switched with the electrical variables
and this switch leads to a series of equations for simple motion systems. If there are Coriolis and centrifugal
terms in the motion equations, this system is no longer a simple motion system and the basic analogy approach
can’t be applied to these systems. However, [15] proposes conditions where the analogy approach is applicable
even for complex mechanical behavior. Thus, the behavior of complex mechanical systems can be interpreted
electrically by using the advanced analogy. The standard EL equations for a mechanical system are defined as

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L (q, q̇)

∂q
= τ (q ∈ Rr, τ ∈ Rr), (1)
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where r is the degree of freedom of the system and τ is external forces. Also, L is the Lagrangian function
that is defined as

L (q,q̇)≜T(q,q̇)−V̂ (q) , (2)

where T is the kinetic energy of the system which is defined as following

T(q,q̇)=
1

2
q̇TD(q) q̇. (3)

V̂ (q) is the potential function of the system and D (q) ∈ Rrxr is the mass matrix. For CPDIP system,
generalized coordinates (q) and generalized torque vector (τ ) are shown as:

q = [x θ1 θ2] , τ = [τ1 0 0] , (4)

where x is the linear cart position, θ1 is the bottom pendulum angle and θ2 is the top pendulum angle as
shown in Figure 1. Besides, since only torque is applied to the cart in the system, the first element of the torque
vector is τ1 and the other elements are zero. There is no torque available in the axis of θ1 and θ2 , which are
two passive joints. Although no torque normally is applied to pendulum joints, friction forces are applied to
pendulum joints because of frictions that occur at joints and affect the performance of the controller. Therefore,
friction forces are a critical part of dynamic systems and should be modeled as close as possible to the real
system characteristics. In general, the friction forces are neglected. However, we considered to friction forces at
pendulum joints in this paper. The linear expressions model the viscous friction forces at the joints:

Fp1 = −b1θ̇1 − b2

(
θ̇1 − θ̇2

)
, Fp2 = −b2

(
θ̇2 − θ̇1

)
, (5)

where the parameters b i denote the viscous friction coefficients at the respective joint i. Also, there is another
friction force, which occurs between the cart and the rail in the system. This force is modeled as cẋ where the
parameter c denotes the viscous friction coefficient. Therefore, generalized forces which consist of input force
and friction forces in the system are Ξ = [F − cẋ, Fp1, Fp2]

T .
V function is defined as

V (θ) = K1cosθ1 +K2cosθ2, (6)

where K1 = m1gl1 +m2gLp1 and K2 = m2gl2 . T is calculated in detail as following

T
(
θ, θ̇,ẋ

)
= 1

2

(
D11ẋ

2 +D22θ̇1
2
+D33θ̇2

2
)
+D12ẋθ̇1 +D13ẋθ̇2 +D23θ̇1θ̇2, (7)

where
D11 = m0 +m1 +m2,

D22 = m1l1
2 +m2Lp1

2 +m2l2
2 + 2m2Lp1l2cosθ2,

D33 = m2l2
2,

D12 = D21 = −((m1l1 +m2Lp1) cosθ1 +m2l2 cos (θ1 + θ2)),

D13 = D31 = −m2l2cos(θ1 + θ2),

D23 = D32 = m2l2
2 +m2Lp1l2cosθ2.
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In the analogy, the angular position θ corresponds to the charge stored in the capacitor qp . The angular

velocity θ̇ is related to the current vector ip (replace [θ1, θ̇1, θ2, θ̇2, ẋ] by [qp1, ip1, qp2, ip2, ip3 ]). Thus,

L (qp, ip) =
1

2
ip

TD (qp) ip −
2∑

j=1

∫
f j
q (qpj) dqpj , (8)

where ip = [ip1, ip2, ip3]
T . qp ∈ Rr is dependency of the general mass matrix D(qp ) that can be expressed in

terms of a new variable qσ ∈ Rs [15]. s is the amount of potential energy sources in system and it is equal 2 for
CPDIP. Also, CPDIP is a 3 degrees of freedom (r) mechanical system. Therefore, (s ̸=r), a virtual potential
energy source is added [15] and potential energy terms are expressed in terms of qσ . Potential energy terms
are ∫

f1
q (qσ1) dqσ1 = K1cosqσ1,∫
f2
q (qσ2) dqσ2 = K2cosqσ2.

(9)

Virtual potential energy source is∫
f3
v (vσ3) dvσ3, f3

v (vσ3) = C3vσ3, (10)

where vσ ∈ Rs defines the voltages across the capacitors. Also, virtual potential energy source’s energetic
contribution is approximately zero. Assume that C3 is very large so that

lim
C3→∞

1

2C3
qσ3

2 = 0. (11)

The following relations can be derived from potential energy terms:

f j
q (qσj) = Kjsinqσj , j = 1, 2. (12)

As far as they are locally invertible for qσj ∈
(
−π

2 ,
π
2

)
, naming f j

q (qσj) = −vσj , we have that

qσj = arcsin

(
−vσj
Kj

)
= −f j

v (vσj) , j = 1, 2, (13)

and

∂f j
v (vσj)

∂vσj
=

1√
K2

j − v 2
σj

= Cj (vσj) , (14)

are well defined in the open interval(−Kj , Kj ). With virtual capacitor [15], in terms of the Brayton–Moser
framework, the Euler-Lagrange equations can be rewritten as follows:

−Q (ip, vσ)

[
dip
dt
dvσ

dt

]
=

[
∂P (ip,vσ)

∂ip
∂P (ip,vσ)

∂vσ

]
, (15)

with

Q (ip, vσ) =

[
−D̃ (vσ)
0

(D̄ (ip, vσ)− D̂(ip, vσ))C(vσ)
C(vσ)

]
, (16)
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and the functions F (ip) and G (vσ) are the content and the cocontent of the mixed potential function P (ip, vσ) ,,
respectively. Also with for ease of notationf j

v (vσj) = f j
v . For i = 1, 2, 3:

D̃ii (vσ) = Dii

D̃12 (vσ) = −((m1l1 +m2L1) cosf
1
v +m2l2 cos

(
f1
v + f2

v

)
)

D̃13 (vσ) = −m2l2 cos
(
f1
v + f2

v

)
)

D̃23 (vσ) = m2l2
2 +m2L1l2cosf

2
v

D̄ii (ip, vσ) = D̂ii (ip, vσ) = 0
D̄12 (ip, vσ) = ((m1l1 +m2L1) sinf

1
v+

m2l2 sin
(
f1
v + f2

v

)
)ip1 +m2l2 sin

(
f1
v + f2

v

)
ip2

D̄13 (ip, vσ) = m2l2 sin
(
f1
v + f2

v

)
ip1+

m2l2 sin
(
f1
v + f2

v

)
ip2

D̄23 (ip, vσ) = −m2L1l2sinf
2
v ip2

D̂12 (ip, vσ) = ((m1l1 +m2L1) sinf
1
v+

m2l2 sin
(
f1
v + f2

v

)
)ip1

D̂21 (ip, vσ) = m2l2 sin
(
f1
v + f2

v

)
ip2

D̂13 (ip, vσ) = m2l2 sin
(
f1
v + f2

v

)
ip1

D̂31 (ip, vσ) = m2l2 sin
(
f1
v + f2

v

)
ip2

D̂23 (ip, vσ) = 0, D̂32 (ip, vσ) = −m2L1l2sinf
2
v ip2.

(17)

Furthermore, vσ = [−(m1 +m2) l1gsinf
1
v , m2l2gsinf

2
v ]

T and P (ip, vσ) = τT ip + ip
T vσ . The torque

vector τ is equivalent to the voltage source vector E= [E1, 0, 0]
T . An explanation of this series of equations

by the electrical view (17) is provided and can be depicted in Figure 2. In this figure, the subscript (i) for
1,2,3 represents the electrical variables of the cart, first pendulum and second pendulum, respectively. Thus,
mechanical variables and components are expressed as electrical variables and components by using electrical
interpretation within the BM form of mechanical systems moving in the plane in [15, 22].

Corresponds to

the circuit of the cart

Corresponds to

the circuit of 

the second pendulum

Corresponds to

the circuit of 

the first pendulum

Figure 2. Equivalent electrical circuit of CPDIP.

Since there are three masses (m0 , m1 , m2 ) in the mechanical system, there are three inductances (L1 ,
L2 , L3 ) in the circuit. However, their analogies are different that the cart has translational, and the pendulums
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have rotational motion. Therefore, by using the translational mechanical analogy L1 can be determined as m0 .
In a similar way, by using the rotational mechanical analogy, L2 can be determined as m1 l1 2 , and L3 can be
determined as m2 l2 2 .

Since all masses in the system transfer their energy to each other, the inductors can be considered as
three winding coupled inductors. However, the energy transfer between the cart and the second pendulum is
indirect, while other energy transfers (the cart – the first pendulum, the first pendulum – the second pendulum)
in the system are direct. Therefore, mutual inductance that exists between the cart and the second pendulum
coils (m13 ) is equal zero. The extent to which the mutual inductance m approaches the upper limit is specified
by the coefficient of coupling k, given by [23]

m = k
√
L1L2, (18)

where 0 ≤ k ≤ 1 or equivalently 0 ≤ M ≤
√
L1L2 . m12 is mutual inductance that exists between the cart

and the first pendulum coils, m23 is mutual inductance that exists between the first and the second pendulum
coils.

C2 , C3 capacitance express the rotational forces in pendulums resulting from gravity, and C1 is a virtual
capacitor.C2 can be determined as 1/( m1 gl1 ) and C3 can be determined as 1/(m2 gl2 ) based on the simple
harmonic motion. Since C1 is virtual capacitor, assume that C1 is very large.

R1 is analogous to the viscous friction coefficient between the cart and the rail (c), R i for 2, 3 is analogous
to the viscous friction coefficient at the respective joint (b i ), respectively. Finally, all circuit elements can be
seen from the Table 2.

Table 2. Elements description of the electrical circuit model of the CPDIP.

Parameter Symbolic expression Physical value
L1 m0 1.095 H
L2 m1l12 0.0025 H
L3 m2l22 0.0027 H
C1 ≈ ∞ 109 F
C2 1/(m1gl1) 6.6388 F
C3 1/(m2gl2) 5.6651 F
R1 c 0.001 Ω

R2 b1 0.000565 Ω

R3 b2 0.000072 Ω

m12 k12
√
L1L2 0.0514

m13 k13
√
L1L3 0

m23 k23
√
L2L3 0.0026

In order to model the system, all electrical state variables must be obtained. Table 3 shows electrical state
variables of the CPDIP system and their mechanical equivalent. The voltage and current equations related to
the circuit in Figure 2 are given in (19) and (20). (19) is the voltage equations and (20) is the current equations.

VL1 = −VC1 − E + VR1, VL2 = −VC2 + VR2, VL3 = VC3 − VR3, (19)

iC1 = iL1 = −iR1, iC2 = iL2 = −iR2, iC3 = −iL3 = −iR3. (20)
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Table 3. State variables of the CPDIP system.

Mechanical Electrical
x qc1
ẋ iL1

θ1 qc2
θ̇1 iL2

θ2 qc3
θ̇2 iL3

The charge of the capacitor can be calculated as:

q = CV, (21)

where C is the capacitance and V is the capacitor voltage. By taking account (19), (20) and (21) together,
the state space model of electrical interpretation of the CPDIP is obtained as in (23). Define the matrix A as
follows:

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

L2L3−m2
23

C1Z
m13m23−L3m12

C2Z
L2m13−m12m23

C3Z
R1(L2L3−m2

23)
Z

R2(m13m23−L3m12)

Z
R3(m12m23−L2m13)

Z
m13m23−L3m12

C1Z
L1L3−m2

13

C2Z
L1m23−m12m13

C3Z
R1(m13m23−L3m12)

Z
R2(L1L3−m2

13)
Z

R3(m12m13−L1m23)
Z

m12m23−L2m13

C1Z
m12m13−L1m23

C2Z
m2

12−L1L2

C3Z

R1(m12m23−L2m13)

Z
R2(m12m13−L1m23)

Z
R3(L1L2−m2

12)
Z


. (22)

Then,

d

dt


qc1
qc2
qc3
iL1

iL2

iL3

 = A


qc1
qc2
qc3
iL1

iL2

iL3

+



0
0
0

L2L3−m2
23

Z
m13m23−L3m12

Z
m12m23−L2m13

Z

 , (23)

where Z = L1m
2
23 + L2m

2
13 + L3m

2
12 − 2m12m13m23 − L1L2L3 .

3. Optimal controller design

The designed controller of this system is to be able to drive the system output variables (x, θ1, θ2 ) to the
reference position (x = 0 m, θ1 = θ2 = 0◦ ) and maintain the stability of the system. The dynamic control
performance of the system depends on the dynamic model of the system and efficiency of the control algorithm.
Therefore, the exact parameterization of the model is a critical point for controller design of the CPDIP
system. Directly measurable system parameters are determined as m0=1.095 kg, m1=0.096 kg, m2=0.120
kg, l1=0.160 m, l2=0.150 m. Also, the moment of inertia Ji and friction coefficient for each pendulum arm
must be determined. However, these parameters are not directly measurable. Therefore, they were obtained
experimentally. In this paper, simple pendulum model is used to obtain friction coefficients. The procedure for
deriving the equation of motion for the simple pendulum is similar to the one for the double pendulum, even
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much easier. Thus, the unknown parameters are easily obtained. The motion equation of the simple pendulum
is:

Jθ̈ +mglc sin θ = −bθ̇, (24)

where J is the moment of inertia of the pendulum, m is the the mass of the pendulum, b is the viscous
friction coefficient, lc is the distance of the center of gravity to the joint. There are two unknowns in (24), J
and b. For CPDIP system, pendulums were analyzed separately and these parameters were identified by two
experiments. First, the joint between the two pendulums was fixed. In this way, the whole pendulum acted as
a simple pendulum. Then, the two fixed pendulums were released from 90◦ to determining moment of inertia
of the bottom pendulum and the coefficients of friction between bottom pendulum and the cart. Second, the
bottom pendulum was fixed, and the top pendulum was released from 90◦ to determining moment of inertia of
the top pendulum and the coefficients of friction between bottom pendulum and the top pendulum.

As a result of the tests, the change of the pendulum angle over time was experimentally measured and
recorded. Besides, simulation model was prepared based on (24). By comparing the results from the experiments
and also the simulations for two experiments, the coefficients of friction were estimated by using simplex search
method in MATLAB (MathWorks, Inc., Natick, MA, USA) using parameter estimation toolbox. In the first
experiment, unknown parameters are determined as b1 ≈ 0.000565 N/(rad/s) and J1 ≈ 0.022962 Nms2 . In the
second experiment, unknown parameters are determined as b2 ≈ 0.000072 N/(rad/s) and J2 ≈ 0.002972 Nms2 .
Also, there is friction force between the cart and the surface, where it is moving on. Since effect of the friction
of the cart is small, the viscous friction coefficients at the cart (c) are assumed 0.001 Nms.

In order to achieve the stabilization control of the CPDIP system, optimal control theory was addressed
in this paper. The general problem of designing an optimal control law involves minimizing a cost function (J)
[24] that is defined as following:

J =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt, (25)

where Q is a positive semi – definite matrix, R is positive definite control weighting matrix. For LQR, optimum
control signal should be:

u (t) = −R−1BTP (t)x (t) = −Kx (t) , (26)

where P(t) is the solution of Riccati equation:

PA+AT − PBR−1P +Q = 0. (27)

The feedback gain matrix is calculated as:

K = R−1BTP = [k1 k2 k3 k4 k5 k6] . (28)

Q and R matrices contain the weighting of the system state variables and the control signal respectively.
The solution of the optimization problem depends on the Q and R. By tuning Q and R, the desired controller
performance is obtained. In simulation, the system can control with the selection of many different matrices.
However, the performance of the controller is limited by physical hardware. Therefore, in practice, the desired
controller performance can be achieved by optimizing between system response and control performance after
choosing an initial value for the Q and R matrices.
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In this paper, reasonable initial values were chosen by Bryson’s ule [25], which is based on the maximum
acceptable error value of the states and maximum allowable value for the control action. The initial weights for
the Q matrix are assigned as:

Qii =
1

(xi max)
2 , i = 1, 2, ., n, (29)

where x imax is the maximum acceptable error value for the position of state variable x i . In the electrical circuit
model of CPDIP, the position state variables are the charge stored in capacitors (qc1, qc2, qc3 ). For the CPDIP
system, assume that the acceptable maximum errors for the charge stored in capacitors are 0.3 C, 0.1 C, and
0.02 C, respectively. Therefore, the weight of the cart is 10, the weight of the first pendulum is 100 and the
weight of the second pendulum is 2500 and finally Qii = [10 100 2500 0 0.1 0.1] . Since the sudden changes in
the velocity variables are not desired, their weight is chosen as low as possible. The initial weight for the R
matrix is assigned as:

R =
1

(umax)
2 ρ, (30)

where umax is the maximum voltage allowed to be applied to the motor and it is 10 V in this study. With chosen
Q and R, the optimal state feedback gain matrix is computed as [31.6228 − 154.0841 − 364.6620 51.1444 −
35.3161 − 40.3124] .

After choosing the initial values based on electrical circuit model, gain matrix can be tuned on the CPDIP
in real-time. The process of tuning is as follows. Initially the feedback gain matrix is obtained from the selected
Q and R weight matrices. After that, it is applied to the system and also, a test procedure is developed for
observing of the dynamic control performance of the system. This procedure aims to test the performance of
the controller on the system to see the desired behavior in specific initial conditions such as in Figure 3. For
instance, if the controller is activated when the initial conditions are [0 –0.3 0.5 0 0 0], the cart and the bottom
pendulum angle should move in the positive direction and the top pendulum angle should move in the negative
direction as can be seen from figure. By implementing of tests, the controller performance is analyzed under
many different initial conditions. Consequently, the weights are tuned according to the behavior of the cart and
the pendulums. Finally, as a result of tests on the physical system of the CPDIP, gain matrix is tuned as:

K = [31.6228− 152.2980− 363.5368 28.6113 − 40.1372 − 25.3043]. (31)

To apply LQR controller to the system all system state variables must be measurable. However, not all
state variables of the system can always be measured. In such a case, a state estimator is added to the system.

State variables of the CPDIP system are x = [x θ1 θ2 ẋ θ̇1 θ̇2]
T . In the CPDIP, position variables of the system

are measured with encoders. Since velocities can’t be measured directly, these variables are estimated using
second-order derivative filters1.

H (s) =
Wc

2s

s2 + 2ζWcs+Wc
2 W c = 2πfc, (32)

where Wc is band width, fc is cut-off frequency and ζ is damping ratio. Since the behaviors of the cart and the
pendulums are different, their bandwidths should be also different. Therefore, the bandwidth is selected 2π10
rad/s for the pendulums and 2π50 rad/s for the cart. The damping ratio is chosen as 0.9 for each.

1Quanser (2012). Laboratory guide Linear Double Inverted Pendulum Experiment for MATLAB/Simulink Users [online].
Website https://www.quanser.com/products/linear-double-inverted-pendulum/#overview [accessed 10 January 2019]
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Figure 3. First movement of the CPDIP system under different initial conditions.

4. Experimental results

In this paper, optimal controller was designed for stabilization problem of CPDIP system based on electrical
circuit model and the designed controller has been applied to real time experimental setup.

Figure 4 shows the CPDIP control architecture and the experimental setup of the CPDIP system. The
CPDIP consists of a cart, two pendulums, a servo motor, three rotary encoders, a belt. The motion of the cart
is obtained by the motor connected to the cart by the belt mechanism. MECAPION servo motor with 400W
power and MECAPION servo driver in speed mode are used to drive the cart. Analog speed control command
is given in the range of [–10V, +10V]. The system mechanism must be durable and robust against the loads
and moments to be applied to the system. Each pendulum must be able to rotate 360 degrees freely and there
should be no collision between the pendulums during the rotation. The angular positions of the pendulums are
measured by the encoder that is mounted the shaft to which the pendulums are connected. The resolutions of
the encoders are; 1024 [P/R] for cart position, 1000 [P/R] for the position of the first pendulum and 3000 [P/R]
for the second pendulum. dSPACE DS1103 rapid control prototyping system is used to realize experimental
applications on the system with a sampling time of Ts= 1 millisecond.

Real time LQR Simulink model is shown in Figure 5. In the Measurement submodel, the pendulum’s
angle, and the cart’s position are read from encoders. Measured data is filtered by a second derivative filter in
32 and then state feedback controller algorithm is implemented using 31 in LQR controller model. Since the
encoders start to measure the angles of the pendulums with reference to the point where the pendulums are, the
model is initiated when the pendulums are down. Then the pendulums are brought to the upper equilibrium
point. At this point, the controller starts to generate the output signal.

The comparison of the simulation and experimental test results of the LQR controller can be seen in
Figure 6. As we can see clearly in figure, the controller can successfully stabilize the CPDIP system. Also,
Figure 6 shows the consistency of the results of simulation and experimental. If real-time LQR controller
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Figure 4. Control structure and the experimental setup of the CPDIP system.

Figure 5. Real time LQR Simulink model.

results are analyzed, we can find that the oscillations of the cart displacement is from –88 mm to –55 mm and
pendulums’ angles are from –2◦ to 2.5◦ and from -1.7◦ to 0.97◦ , respectively.

In order to test the robustness and the stabilization performance of the controller in real-time, white
noise with variance of 10−4 and 10−5are added to the cart position and pendulum positions, respectively. The
experimental results of the controller in noisy condition are shown in Figure 7. The oscillation values when
measurement noise applied are close to the oscillations shown in Figure 6. In other words, the results obtained
with/without measurement noise are approximate. When the data are noisy, the LQR controller maintains the
control performance.

For external disturbance test, an impulse signal is added to the control signal applied to the cart (The
period of the impulse signal is 4 sec and the amplitude is 1 V). Thus, same disturbing effect on the movement
of the cart and pendulums can be obtained. As a result of this test, the LQR controller was able to eliminate
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Figure 6. Experimental and simulation results with LQR controller.
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Figure 7. Experimental system outputs in noisy condition.

the disturbing effects and the stabilization of the system is maintained as shown in Figure 8. However, since
the disturbance signal is applied to the system periodically, the amount of oscillation in the output variables is
greater than that obtained in the tests made in the other conditions.

5. Conclusion
The presented work deals with the power-based modelling and stabilization control of a cart-pole double inverted
pendulum. The model of the system is accomplished with an analogy between mechanical and electrical systems
that is based on the BM equations. An electrical interpretation of the system is developed and the electrical
equivalent circuit of the CPDIP system is obtained. By using the equivalent circuit, a linear quadratic regulator
(LQR) controller is designed and implemented on a real time experimental setup. Thus, the controller design
of a complex mechanical system is made possible with the basic electrical point of view.

Based on the mathematical model that derived from electrical circuit and the tuning process, the gain
matrix consisting of six parameters is determined for the LQR controller in real time. The proposed process
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Figure 8. Experimental LQR controller output signals in impulse condition.

is a practical and effective method for the stabilization control of the CPDIP system. Several experiments are
conducted in order to test the robustness and the stabilization performance of the controller. LQR controller
based on power based modelling is shown to successfully handle the measurement noise and the external
disturbances. Experimental results reveal that the Brayton-Moser equations are a convenient and practical
alternative to the Lagrangian frameworks.

The proposed electrical equivalent circuit is a special solution that can be used in the modeling of a
CPDIP. Through this developed solution, the circuit parameters for any CPDIP testbed can be calculated in a
simple way, and the system model can be easily obtained with the basic current-voltage equations. In model-
based control studies, taking the circuit proposed for the system model as a reference will save time for the
designer and makes it possible to focus more on the development of the controller design.
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