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Abstract: In the present era of technology, several applications such as surveillances systems, security and object
recognitions mainly depend on the contents of an image. In this context, the hazy/foggy environment and/or other
adverse climatic conditions degrade the image contents that severely influences the result of related applications. The
effective haze removal from a single image decides the reliability of these systems. The convolutional neural network
(CNN) based techniques are widely used among the available image dehazing methods. However, in CNN based image
dehazing techniques, the robustness and accuracy of the learning models are based on the improvement of transmission
estimation without giving much concern to the atmospheric light. Therefore, in this paper, the accurate and efficient deep
CNN based image dehazing model, which take care the minute information elements during the learning of feature map,
is proposed. Besides, the proposed model handles the hallo, blocking artifacts, retainment of fine edges, white region
handling, and color fidelity problems, which are primarily responsible for image sharpening and structural stability.
For the evaluation of proposed method, the extensive experiments on synthetic and real world images are performed
using existing and proposed techniques. The qualitative and quantitative analysis of experimental result shows that the
proposed model is more efficient over the existing prior-based and learning-based methods.
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1. Introduction
Many real world problems can be resolved using image processing and it can only be achieved when the camera
provides good quality images to get accurate and reliable results. However, in many cases during the acquisition
of the image from the camera, it is observed that the different foreign particles (e.g. dust, water droplets, smog
etc.) available in the atmosphere create a different density scattering medium for the transmission of light
[1], which may not only affect the clarity of the image, but also reduce the performance of many multimedia
applications. Therefore, dehazing/fog removal techniques play a significant role in these applications [1, 2].
There are several techniques suggested in the literature to minimize the effect of adverse climatic conditions
[3, 4] during the restoration of the clear image from the input hazy/foggy image.

To understand the approaches suggested in the literature for the extraction of good quality image from
its hazy counterpart, the hazy image formation model (atmospheric scattering model) [5] is briefly discussed.
According to this model, the depth increases in the scene, and the contribution of light radiance from object
collected by the camera becomes very less, whereas contribution of the light scattered by the foreign particles
∗Correspondence: gauravsagar311@gmail.com
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is more. This phenomenon creates haze in the captured image. Mathematically, the formation of haze by the
scattering can be expressed as:

If (x) = Rd(x)× tr(x) +A(1− tr(x)); tr(x) = e−β.d(x) (1)

where If (x) , Rd(x) , tr(x) , A and β represent the intensity of foggy image, scene radiance of recovered
image (clear image), refined medium transmission function, depth of the scene, global atmospheric light, and
atmospheric scattering coefficient, respectively. For the restoration of the scene radiance the Eq.(1) can be
rewritten as:

Rd(x) =
If (x)−A

tr(x)
+A (2)

The intensity value of a foggy image If (x) is only known and other parameters (tr(x) and A) are
unknown in Eq.(2). The high-performance single image dehazing system requires an accurate estimation of
these parameters. Hence, any failure in the estimation of these parameters leads to unsatisfied dehazing
results. Therefore, the perfect estimation of these parameters is a challenging issue. There are various
dehazing/defogging techniques suggested in the literature, which can be broadly classified into two categories.
First category is based on some statistical assumptions (priors) to estimate the unknown parameters where
the second one is based on the machine learning framework. In the prior based method, there are several
assumptions, where some are well known like the change of brightness, variation in maximum contrast, Hue
disparity, dark channel prior (DCP), the color attenuation prior (CAP) etc. Tan [6] has proposed a method to
maximize the local contrast with the assumption that the local contrast of hazy image is comparatively less than
the clear image. Retinex algorithms [7] and image fusion methods [8], have come in the existence to improve
image contrast. He et al. [3] have suggested DCP to estimate the thickness of haze with the assumption that at
least one channel contains low-intensity patches of the nonsky region whose intensity is very low. This approach
is found to be cost-effective in terms of intensive computations, and sometimes it gives satisfying results.

In couple of years back, some techniques come into existence, which introduces learning based strategies
to compute the coefficients of the assumption prior models. Zhu et al. [1] have proposed a fast algorithm
based on CAP to restore the dense foggy images. In this method, a linear model has been developed to
calculate the scene depth by using the statistics of brightness and saturation. Subsequently, Raikwar and
Tapaswi [4] have proposed an improved linear depth model in which they have included the hue factor along
with brightness and saturation, which is considered to improve the linearity of scene depth and computes linear
coefficients of model through learning strategies. Further, Dat Ngo et al. [9] have proposed an improved color
attenuation prior for dehazing and resolving the color distortion and background noise problem by using an
efficient quad-decomposition algorithm. Although, these haze-relevant prior based methods are limited to some
set of assumptions, as a result, they perform well on some set of images but not equally good for all kind of
images. Therefore, the heuristic planned prior might be inadequate to completely catch the inherent qualities
of the foggy image.

In recent years, machine learning framework has gained the remarkable success in the form of convolution
neural network (CNN) and deep CNN for the more accurate estimation of haze removal parameters over the
other methods in which hand crafted feature assumptions are considered. The method of CNN produced
outstanding performance in image classification, segmentation, image enhancement, and restoration [10, 16].
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Tang et al. [11] developed a random forest regression based model in a learning framework to investigate the
four types of haze-relevant features for image dehazing. Ren et al. [12] proposed a single image dehazing
technique based on the learning of mapping relation between hazy image and its transmission maps under the
multiscale framework. This technique employed a two-fold convolutional neural network: the coarse network
for the prediction of holistic transmission map and fine-scale network for the refinement of the transmission
map. It requires haze density based parameter adjustments for obtaining good result for hazy image with
different densities. However, it fails to remove the haze for dark images. Cai et al. [13] utilized a regression
in deep convolution neural network to estimate the transmission of each pixel from its neighboring patch and
developed end-to-end system for image dehazing. In the architecture of end-to-end model, the early layer is
used for the feature extraction and rest of the layers support the regression. However, the model is unable to
retain and it forwards the previously generated feature information. To make the learning procedure easier,
Song et al.[14] added a novel ranking layer into the classical CNN framework, which keeps the structural and
statistical attributes together. The addition of ranking layer increases the computational complexity, and the
computations involved in feature extraction from the individual pixel are redundant, since the neighboring
pixels have almost the same value. Li et al. [15] introduces all-in-one dehazing network (AOD-Net), and it is
designed using reformulated atmospheric scattering model and generates the clean image through a light-weight
CNN. Rashid et al. [16] have suggested a trainable CNN model which utilized the series of hidden layers for
the filtration of low intensity pixels present in the input hazy image, further these filtered pixels are used for
the estimation of transmission map to improve the visibility of dehazed image. However, this method provides
the better performance only for outdoor images with low density fog. Recently, Ren et al. [17] have proposed
an improved multiscale CNN architecture for the learning of parameters to establish the mapping between the
haze image and its transmission maps. In this model, the scene transmissivity is initially computed coarsely
and it is refined by a fine-scale network; the edge information is preserved by using the holistic edge guided
refinement. However, it fails in case of nonuniform atmospheric light.

From the literature survey, following three observations are made. First, the saturation and naturality
of the dehazed image are strongly dependent on the perfect level of transmissivity estimation, and it may
be achieved by the effective utilization of intermediate processed information in the subsequent processing
blocks, which is not effectively performed in the existing methods. Second, the feature extraction operation
involves some redundant computations due to the consideration of individual pixels, whereas the features of
neighboring pixels in a small section have nearly the same value, which can be exploited to reduce the some
computations. Moreover, all CNN based techniques described in the literature use an input color image with
three individual color channels (RGB). In CNN, these three color channels are filtered separately with same
kernel value and produces the single channel by computing the pixel-wise average of the filtered colored channels.
Here, it is possible to reduce the computation complexity by using hazy image information in other mode
such HSI in place of RGB. Third, it is observed that most of the researchers pay more attention to accurate
estimation of transmission map, while the global atmospheric light parameter also plays an important role in
the quality of dehazed image. These observations motivate us to develop the image dehazing technique which
may characterizes the optical atmospheric scattering model more accurately over the existing techniques.

Based on the observations above, the deep CNN-based image dehazing model is proposed. The afore-
mentioned model uses the cascaded filtering approach to preserve the degraded edges, Intensity channel of HSI
version of the image for transmission map estimation with reduced computational complexity. Besides, the
proposed model takes care the hallo, blocking artifacts, and fine edges, which are primarily responsible for
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image sharpening and structural stability. The qualitative and quantitative analysis of the simulation results
obtained for various foggy images belong to real world, and artificially developed (synthetic) foggy images shows
the effectiveness of the proposed image dehazing model. The key contributions in this paper are summarized
as:

• The proposed deep CNN model is utilizing only the intensity component of the foggy input image for the
estimation of the transmission matrix, which reduces the computational complexity up to 66%.

• Logarithmic filtering is employed for the correction of a dynamic range of medium transmission, which
provides the effective restoration of foggy images.

• The new method is developed by cascading the minimum and median filters for the better estimation of
atmospheric light (A) to minimize the chromatic distortions in the restored images.

The rest of the paper is organized as follows: The medium transmission estimation model using deep CNN is
proposed in Section 2. Section 3 discusses the training of proposed deep CNN model and its application in
image recovery model. The quantitative and qualitative comparative analysis of the experimental results is
discussed in Section 4. Finally, conclusion of the work is presented in Section 5.

2. Proposed medium transmission estimation model using deep CNN

The proposed deep CNN based medium transmission estimation model is shown in Figure 1. It utilizes feed-
forward network and HSI color model for the more accurate estimation of medium transmission with less
computational complexity. This model has four major operations: (i) input hazy image conversion in HSI
mode, (ii) patch extraction and nonlinear mapping, (iii) finely scaled feed-forward filters network, and (iv) local
extremum and reconstruction of transmission map. All of these are shown in Figure 1 with dashed line boxes
of purple, brown, violet, and blue colors, respectively.

Figure 1. Proposed architecture of deep convolutional neural network.
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(i) Conversion of input hazy image in HSI mode: Usually, the existing learning-based method uses the
RGB fogy image as an input with size (n × m × c), where n,m and c represent the number of rows,
columns, and color channels, respectively. The network processes this foggy image (RGB channels) and
generates estimated medium transmission map with only one single channel (i.e. n × m × 1), which
contains all the required features. Thus, the processing of all three channels (i.e. RGB) does not provide
any additional information. Besides, it involves more computations due to processing of these three
channels. Therefore, it is possible to reduce the computational complexity by applying new strategy
for the estimation of medium transmission. As we know from the coordinate geometry, whenever there
is a requirement of extracting additional information, the transformation of the coordinate system is
performed (i.e. Cartesian to cylindrical etc.). A similar phenomenon of transformation is available in the
representation of the Cartesian RGB color model to the cylindrical HSI model [18]. The mathematical
relation between RGB model and HSI model can be expressed as:

H =


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From the above equations, we have made the following observations:

• The hue (H) component includes majorly two out of three RGB image components and defines only
the principal color information.

• The saturation (S) component value is lies between 0 to 1. It refers the amount of white light mixed
with hue, which is not suitable for the brightness assessment.

• The intensity (I) component covers all the brightness information of all RGB components, and it is
primarily required for medium transmission estimation.

Aforementioned observations reveals that, the input RGB image is converted to HSI mode and utilized
only the I-channel as an input of the deep CNN. The utilization of a single channel saves the redundant
(f1 × f1 ×n×m× 2) number multiplications and (f1 × f1 × 2) number of addition in one filter operation
of filter size (f1 × f1 ).

(ii) Patch extraction and nonlinear mapping: In this part of the CNN block, an image patch is extracted
and give its required feature map using nonlinear mapping. It involves two layers, convolution followed
by reshaping and average pooling followed by reshaping layers. Further, the patch of size (f0 × f0 ) is
extracted using the convolution filter of size (f0 × f0 × 1). To extract the haze relevant features using
CNN, the input image is densely convolved by the n0 number of appropriate filters in the first layer [21].
The n0 maps generated from convolution layer are feed to the reshaping filter, which arranges the values
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of each map in column-wise and produces n0 number of columns. The second layer of this block consists of
two sublayers, namely ‘average pooling and reshaping layers’, and these are used to develop the nonlinear
activation function. In this layer, the batches of r number of columns from the received n0 number of
columns are selected sequentially and average pool each batch. Further, the reshaping filter is used to
arrange each output column values in the two dimensions vector. In other words, this layer transforms
the n0 number of maps into r number of maps (where, r < n0 ) by applying non linear-mapping. Based
on the above discussion, the mathematical representation of the patch extraction and nonlinear mapping
operations performed in the CNN model is expressed as:

gi,j0 = W0 ∗ I +B0; Gi
0 = Avg

j∈ [1,r]

[gi,j0 (x)] (4)

where, ∗ denotes the convolution operator, W0 represents the filter weight matrices of size (n0 × f0 ×
f0 × c0 ), and B0 shows the vector of biases or offset value of size (1× n0 ); n0 , f0 and c0 represent the
number of filters, spatial size of single filter and number of color channels in input image I (in proposed
modelc0 = 1), respectively. Intuitively, W0 has n0 number of filters each of kernel size (f0 × f0 × c0 ) to
convolve the input image and produces n0 number of feature maps. Further, average pooling is applied
to map n1 -dimensional vectors into r -dimensional vectors.

(iii) Finely scaled feed-forward filters network: The violet dashed line box in Figure 1 shows the finely scaled
feed-forward filters network. It has three sub-networks connected through the concatenation layers,
where each subnetwork consists of convolution, clipped ReLU, and maxpool layers. These subnetworks
collectively perform the sequential refinement of the individual features. The features generated from each
subnetwork are retained by feed-forwarding these feature information to the next subnetwork as shown
in Figure 1 by red, green, and blue colored connecting lines. Hence, each convolutional layer receives
an additional input from all preceding subnetwork through feed-forward path and passes the processed
output (feature map information) to all subsequent subnetworks.

The inner layer (conv_2) of subnetworks is designed in such a manner that the kernel size of the
convolutional network is going to be reduced (e.g.f1 > f2 > f3 ) so that the outcome of each subnetwork
provides more fine details of the features. The convolution layer is developed by taking stride-1 and
suitable padding according to kernel size, which maintains the constant size of the feature maps. The next
inner layer is a clipped rectified linear activation unit (ClipReLU), which is used to perform the threshold
operation on input values. The operation of ClipReLU is mathematically expressed by the function f(x)

given below:

f(x) =

 0, x < 0
x, 0 ≤ x < th
th, x ≥ th

(5)

where x and th represent the value at the input of Clip ReLU and ceiling/threshold value, respectively.
The Clipped ReLU upscales the negative input values to zero and higher input values (x ≥ th ) are
downscale to ceiling value th . The estimated medium transmission map of the proposed model is expected
to vary between 0 and 1. Therefore, the clipped ReLU function is employed as the activation function of
each neuron by selecting the ceiling value th = 1 .
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The two supplementary key benefits provided by clipped ReLU are sparsity and minimization of the
likelihood of vanishing-gradient effect. Moreover, the last layer of the subnetwork is the max-pooling
layer. The objectives of using this layer are to just provide the nonlinearity and to extract sharp and
smooth low-level features like edges, points, etc. The purpose of max-pooling is described in most of the
literature as a down sampler for the size reduction of input features by 2 with the help of stride-2 [17, 19].
However, in this subnetwork, our concern is to collect the features as much as possible. Thus, we employed
a max-pooling layer with the configuration of size (5 × 5), stride-1, and padding ‘same’ to maintain the
size of the feature maps so that it can be easily adopted by concatenation layers in further stages. The
mathematical representation of the subnetwork is as follows:

gi,jk = W i,j
k ∗ Ii,j +Bk (6)

hi,j
k = min(max(0, gi,jk (x)), th); Gi

k(x) = max
y=Ω(x)

(hi,j
k (y)) (7)

where Ω(x) symbolizes the local window size f4 × f4 centered at x and ∗ denotes the convolution
operator; Wk and B0 represent the filter weight matrices of size (nk × fk × fk × ck ) and vector of
offset values (biases) of size (1 × nk ), respectively, where nk, fk, and ck , j ∈ (1, 2, 3) represent the
number of filters, spatial size of a single filter, and the number of input feature maps, respectively. There
are three concatenation layers (Concatenation_1, Concatenation_2 and Concatenation_3) employed in
the proposed model. Each concatenation layer combines the output of subnetwork(s) and feature maps
coming from the feed-forward paths to strengthen feature propagation and to minimize the vanishing-
gradient problem. The Concatenation_1, Concatenation_2 and Concatenation_3 layers generate r+n1 ,
r + n1 + n2 and r + n1 + n2 + n3 number of features, respectively. The outputΨ(x) of the finely-scaled
feed-forward filters network block consists of r + n1 + n2 + n3 (say p) number of features which can be
expressed as:

Ψ(x) = concat(gr0,Ψ
n1
1 ,Ψn2

2 , gn3
3 ) (8)

where gr0,Ψ
n1
1 ,Ψn2

2 and gn3
3 are the outputs generated from patch extraction and nonlinear mapping

block, Concatenation_1 layer, Concatenation_2 layer and maxpool layer of third subnetwork of finely
scaled feed-forward filters network, respectively. This output is fed to the next processing block, which is
discussed in the following subsection.

(iv) Local extremum and reconstruction of feature map: The problem of local sensitivity can be resolved by
considering the maximum pixel value of the surrounding area. The spatial integration properties of the
complex cells are employed with the help of a sequence of pooling operations for object recognition, which
avoids the problem of local sensitivity [20]. Besides, the max-pooling helps to extract sharp and smooth
features. Therefore, the last block of the proposed model employed the following local extremum operation
on every channel of Ψ(x) .

Gl
4 = max(Ψl(y))

y=Ω(x)

, for l = 1, 2, 3, ..., p (9)
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where, Ω(x) is the local window of size f5×f5 centered at x , and Gl
4 represents the processed lth feature

map. In the image processing, these features converge to the single feature using nonlinear regression
operation. Hence, to integrate the local spatial information, the single convolution filter layer followed
by ClipReLU activation function is employed in the proposed model. The non linear regression operation
performed by this layer is expressed as

G5 = min(max(0,W4 ∗G4 +B4), 1) (10)

where, W4 is the weight matrix of size 1× f6 × f6 × p,B4 is a p -dimensional offset vector, and p is the
number of channels (feature vectors).

3. Training of proposed deep CNN model and its application in image recovery model

This section discusses the training-dataset collection and generation of transmission with ground truth followed
by network training methodology.

3.1. Training-dataset collection and generation of ground truth

In order to train the weights and biases of the deep learning network, it is not economical to collect a huge
amount of the labeled data [21]. On the other side, it is more difficult to collect the pair of hazy and clear
images of the same scene without any geometrical deflection for the training dataset. In [13], Cai et al. suggested
an interesting method for training data generation using haze formation model expressed mathematically by
Eq.(1). This method considered the two hypotheses: (i) the particular content of image may be seen at any
depth of scene, in other words, it is medium transmission independent, and (ii) image pixel in the small patch
is available at similar depth. Based on these hypotheses, we have collected the clear-scene images Rd(x) of
different domains (e.g. natural, buildings, city landscape etc.) from online Google image database, and these
are arbitrarily sampled in 16× 16 image patches Rp

d(x) . Using the dataset generation process shown in Figure
2, the synthesized hazy image patches Ipf (x) called ‘training dataset’ are generated from the collected haze-free
image patches Rp

d(x) , random transmission map tr(x) , and atmospheric light A . Here, we have considered that
the value of medium transmission tr(x) is uniformly distributed and lies between 0 and 1 i.e. tr(x) ∈ (0, 1) ,
and the value of atmospheric light is assumed to be fixed for the dataset generation as A = [1, 1, 1] .

Figure 2. Block diagram of the training dataset generator.
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3.2. Training methodology

The supervised learning method is used to train the proposed network by computing the weights (Wi ) and
biases (Bi ),∀i ∈ (0, 4) parameters. The optimum value of weights and biases are estimated by proper mapping
between I-channel (of input hazy image patch) and corresponding transmission maps. The proper mapping
between I-channel and transmission map is achieved by minimizing the mean square error (MSE) between
reconstructed transmission trj(x) and the ground truth medium transmission tgj (x) . The MSE is considered as
loss function and it is defined as:

L(trj(x), t
g
j (x)) =

1

N

N∑
j=1

∥ trj(x)− tgj ∥2 (11)

where N is the number of synthesized hazy image patches in the training dataset. This loss function is
used to train the proposed model. Besides, the adaptive moment estimation (Adam) method along with the
standard back-propagation algorithm is utilized to train the network. The Adam optimization is a computa-
tionally efficient method developed for gradient-based optimization of stochastic objective functions. It utilizes
the running averages of the gradients along with the second moments of the gradients [22]. This trained deep
network will be utilized for the automatic extraction of the haze-relevant features as compared to conventional
handcrafted methods. A detailed configuration and parameter setting of proposed deep network as shown in
Figure 1 is summarized in Table 1. Our network includes 5 convolutional layers, 2 reshaping layers, 5 pooling
layers, and clipReLU activations. This architecture consists of overall 21 layers and 26 connections.

3.3. Haze-free image recovery model using proposed trained deep CNN model
The image recovery model using proposed deep CNN is shown in Figure 3, which is used to recover the haze-free
image from its counterpart hazy image. Our major contributions in this model are in the blue colored blocks.
This model involves six operations (i) medium transmission estimation, (ii) atmospheric light estimation, (iii)
logarithmic filtering, (iv) refined transmission map, (v) radiance recovery, (vi) post-processing. The descriptions
of these operations are as follows:

(i) Medium transmission estimation: The medium transmission parameter is estimated using proposed deep
CNN model (shown in Figure 1). This parameter is utilized for estimation of atmospheric light.

(ii) Estimation of atmospheric light: The atmospheric light parameter is also an important role in the perfect
recovery of haze-free image. In the literature [1, 3, 23], with the consideration that the airlight is available
at far from the observer means at the infinite depth or it is available on the topmost region of the image
(i.e. at sky-region) and takes the brightest pixel value as an atmospheric light A . In some cases the
atmospheric light is selected as maximum value of pixel among the different color planes RGB (i.e. max
[RGB]) [4]. Unfortunately, in many cases the input image doesn’t contain sky region or it may also contain
the objects of brightest value (white). In all these cases, the assumption fails and the atmospheric light is
wrongly selected which may create adverse effect in dehazing.
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Figure 3. Complete haze-free image recovery model.

By keeping all these facts in mind, we have developed a simple algorithm for the estimation of atmospheric
light using the hazy image formation model given in Eq.(1). From Eq.(1), it can be seen that if tr(x) → 0

then If (x) is approximately equal to A . Thus, based on this approximation, we utilizes the darkest
pixels of learned medium transmission t(x) and input foggy image If (x) to develop an algorithm for the
estimation of atmospheric light which avoids the wrong estimation of the value A as in case of existing
approaches. The proposed atmospheric light estimation algorithm (given below) employed the median
filtering which provides the capability to handle the white region during the estimation of A .

(iii) Logarithmic filtering: In general, the density of fog is increases from bottom to top of the hazy image due
to the fact that the 2D image (height × width) captured from the camera is the projection of 3D scene
(height× width× depth) . Therefore, the depth information in the estimation of medium transmission is
missing in the captured image and it’s extraction from single 2D image is a critical task. However, by
simply viewing the image, human brain can perceived the depth on the basis of their past experiences.
The most interesting aspect is to be noticed that whenever anyone can see that at the 2D projection
created by the camera projects the near objects to camera in lower side and the farther ones on the top
of the image. Thus, it can be considered that the depth varies from bottom to top with in the image,
and, in the similar way, haze density also varies from close object to distant. Hence, the bottom part of
image is not much affected than the upper or top side. Due to this type of haze distribution creates the
uneven results of dehazing, all the existing methods treat the filtration process constantly throughout the
complete image. The parameters responsible for the dehazing are medium transmission and atmospheric
light. Thus, there is a requirement of some transformation of the intensity impact less on the dark pixel
in comparison to brightest one. It is clear that the intensity transformation of the transmission map is
required in the image recovery model. Therefore, we have employed the logarithmic filtering on a rough
transmission map generated from the CNN model. The logarithmic filtering performs the operation of
transformation by replacing the pixel value with its logarithmic value. This will create an expansion in
lower range magnitudes and compression in higher range of magnitudes input image. Mathematically, the
logarithmic filtering operation can be expressed as

t̂ = c ln(1 + (eσ − 1)× t(x)) (12)

c =
255

log[1 +max(t(x))]
; σ = median[t(x)] (13)

where, c and σ represent the scaling factor of image quantization and scaling factor of the input to
logarithmic function, respectively. After the transformation of the range values of transmission map the
output of logarithmic filtering block is t̂(x) and it is send to subsequent block of refined transmission map.
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(iv) Refined transmission map: The refined transmission map removes the problem of blocking artifacts, which
is generated due to the utilization of extremum filter (last block of Figure 1) in deep CNN. Therefore, the
guided image filtering is utilized to perform smoothing of an image and this filter also preserves the edges
during smoothing process. In this context, the I-channel of an input image is selected as guidance image
so that it can preserve the structure. The guided image filtering block receives the rough transmission
map t̂(x) and produces the refined transmission map tr(x) by suppressing the effect of blocking artifacts.
The problem of blocking artifacts and its resolved version by refined transmission map can be observed
easily in the images shown in Figure 4.

Figure 4. Complete haze-free image recovery model.

(v) Radiance recovery: After the estimation of refined transmission map tr(x) and atmospheric light A , the
last step of processing is to compute the radiance with the utilization of image formation model [5] in the
reverse manner. In the literature [1, 3, 4, 8], the transmission map is estimated by tr(x) = e−β.d(x) , where
β is the scattering coefficient and its value is selected according to the nature of fog (i.e homogenous or
heterogeneous). In many of the articles, it can be seen that researchers assumed that the atmospheric
scattering is homogenous and consider the value of β = 1 but it is not always true[1, 3]. However, in
proposed CNN model, the transmission map is directly computed from the input image, so scattering
coefficient of β is distributed according to the nature of the atmospheric scattering. Further, the radiance
recovery block in Figure 3 computes the radiance Rd(x) of haze free image using refined transmission
map tr(x) and atmospheric light A according to Eq.(2).

(vi) Postprocessing: In the post processing, the quality recovered radiance Rd(x) is enhanced by adaptive
histogram equalization (AHE). This operation is required for the removal of the intrinsic noise, improve
the contrast, and to maintain the sharpness. During the process of AHE, the input image is subdivided
into tiny section called tiles. The AHE performs operation on each tile to improve the individual contrast.
Further, the bilinear interpolation technique is utilized to combine the neighbouring tiles, which eradicate
the synthetically induced edges and improve the definition of edges in each area of a clear image. After
the post processing, the haze free clear image is available for the different multimedia applications.

4. Simulation results and comparative analysis

The dehazing method enhances the details of visibility, texture, and edges along with preserving the image
structure and color. Therefore, the quality assessment results in the fact that the different methods should
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be compared to visualize the effect of visibility, color refurbishment, and structure restoration. The experi-
mental analysis for proposed and existing state-of-the-art methods have been carried out on MATLAB-19(a)
(MathWorks, Inc., Natick, MA, USA) with PC having 64 bit Intel I7 Processor, 8GB RAM and NVIDIA
GeForce GTX 1650 GDDR5 4GB VRAM Graphics. To evaluate and compare the quality of image dehazing
methods, the various test fogy images of different domains available in the data set of Waterloo image and
vision computing (IVC) image database [24], NITRE [25] and RESIDE [26] are considered for experiments. For
the performance evaluation of the proposed method, the experiment has been performed for proposed method,
existing prior-based [3, 4] and deep-learning based defogging [12, 13, 15, 17] methods. The result obtained from
the experiments are analysed qualitatively and quantitatively and discussed in following subsections.

4.1. Qualitative assessment
In single image dehazing method there is an unavailability of the reference image; the dehazing quality of different
method can be assessed by the viewer’s opinion regarding accomplishment of the objective of image dehazing.
For the qualitative analysis, the nine hazy images from different categories are processed using proposed and
existing image dehazing methods, and processed out images are shown in Figures 5-9. Figures 5, 6, 7, 8 and
9 show the set of foggy images belong to indoor-outdoor scene, deep-depth scene, researcher challenging and
synthesized images, RESIDE dataset images along with reference images, respectively. It can be seen from
Figures 5-9 that the dehazed image obtained from the proposed model has significantly better quality over the
dehazed images generated by the state-of-the-art methods [3], [4], [12], [13], [15] and [17]. Besides, the image
recovered from the proposed method also maintained the naturality of the image, which can be observed from
Figure 5(h), where the colour of fruits and painting on table top in the first image as well as tiles of the garden
in second image restored perfectly as natural.

Figure 5. Comparison of the proposed with existing methods on indoor and outdoor images of NITRE dataset images.
The first column shows foggy indoor-outdoor images and others represent the restored images by [3], [4], [12], [13], [15],
[17] and proposed methods, respectively.

4.2. Quantitative assessment
The quantitative assessment approach refers to the performance evaluation of image dehazing methods on the
basis of parameters describing the quality of image. It is broadly classified in two types namely reference
and nonreference based assessments, where term reference denotes the availability of clear image along with
its foggy version. In the nonreference-based assessment, input hazy and dehazed output images are utilized to
evaluate the noticeable improvement in the dehazed image. The parameters frequently used for the nonreference
based quantitative assessment of image dehazing methods are blind assessment discriptors (e) , (r) , (σ) [27],
image visibility measure (IVM) [28], contrast gain (CG) [29], visual contrast measure (V CM) [30], histogram
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Figure 6. Visual comparison on foggy image of deep-depth scene (a) foggy image, (b–g) dehazed image using [3], [4],
[12], [13], [15], [17], and (h) proposed method.

correlation coefficient (HCC) [31], and universal quality index (UQI) [32]. In general, the good quality dehazed
image has larger values for e , r , CG , IVM , V CM , HCC , UQI and smaller value for σ .

The simulation is carried out using the proposed and existing methods for dehazing of three set of images
shown in Figures 6(a), 7(a) and 8(a). The processed images are shown in Figures (6-8) and the values of
evaluation parameters are listed in the Table 2.

Figure 6(a) shows the three foggy images containing deep-depth scenes in which the fog affects deeply
insight of the scene with variable density. In Figure 6(b-g), it can be seen that the existing methods produce
the restored images with good quality; however, color restoration fails in some cases that leads to unnatural
look. On the other hand, the restored images are generated using the proposed method, which enhances the
visibility and maintain the color distribution till depth of scene, and it can also be observed from the zoomed
version of selected patch (marked with red color) shown in the last row of Figure 6. The improvement in the
values of quality parameters shown in Table 2 is validating the effectiveness of the proposed method.

Figure 7(a) shows three challenging foggy image of Community Park, dog pair images, and pair of
girls. The fog in these images are spreaded in foreground and background with equal density. The defogged
images (Figure 7(h)) obtained from the proposed method show the enhancement of foreground as well as the
background of the foggy image, while the defogged images (Figure 7(b-g)) generated using the existing methods
enhanced either foreground or background of the recovered. From Table 2, it is clear that the proposed method
provides improvements in the quality parameters over the existing methods which verified the aforementioned
observations.

The set of normally distributed synthetic foggy images shown in Figure 8 (a) are considered for the
performance evaluation of the image dehazing methods. It can be observed from Figure 8 that all methods
perform well but at the same time they are unable to handle the intensity of fog. The method of [3] produces
good quality images over the other existing methods, which handles the intensity of fog perfectly but unable
to maintain contrast up to the desired extent. Whereas, the images obtained using proposed method produce
significant improvement in quality over the existing methods. The quantitative parameters of proposed method
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Figure 7. Visual comparison on challenging foggy images (a) foggy image (b–g) restored image using[3], [4], [12], [13],
[15], [17], and (h) proposed method.

Figure 8. Visual comparison on synthetic foggy images of IVC dataset (a) foggy image (b–g) restored image using [3],
[4], [12], [13], [15], [17], and (h) proposed method.

are given in Table 2, and improvement in the values validate the observations.
Moreover, to get a good insight in quantitative analysis, the reference based assessment is carried out

by using an input hazy image along with its ground truth and restored output images for the computation of
the peak signal to noise ratio (PSNR) and structural similarity index (SSIM) [23]. The good quality of the
restored image produces a high value of PSNR and SSIM. These parameters are computed by conducting the
test on synthetic foggy images available in RESIDE [26] dataset with its ground truth image shown in Figure
9. Besides, patches are extracted from the ground truth, foggy as well as restored images, and their zoomed
version is shown in the last row of Figure 9. It can be observed from the zoomed images that the image restored
from the proposed method provides good quality compared to the other existing methods. Further, the average
values of the reference-based parameters shown in Table 3 also justify the performance of proposed method,
and it appears that the proposed algorithm improves the values of PSNR and SSIM.
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Table 2. The quantitative comparison of results for existing and proposed methods.

Input Quality Para- Existing methods Proposed
image assessment meters [3] [4] [12] [13] [15] [17] Method

e 1.083 0.313 1.22 0.263 0.58 1.245 1.597
r 1.355 1.184 1.27 1.156 1.34 1.29 1.411

Visibility CG 0.242 1.421 0.31 0.351 0.53 0.216 1.295
Image V CM 73.654 69.230 70.12 69.038 59.78 71.923 75.961
in row-1 IVM 7.504 8.760 7.87 7.649 7.19 7.696 9.175
(Figure 6(a)) Color σ 0.0018 0.317 0.00019 0.0017 0.00082 0.0002 0.00016

refurbishment HCC 0.031 -0.062 0.43 0.253 -0.090 0.513 -0.092
Structure UQI 0.883 0.426 0.87 0.826 0.87 0.904 0.921
restoration

e 19.705 14.657 4.4 20.890 16.74 3.835 22.912
r 1.411 1.705 1.8 1.585 1.91 1.172 2.326

Visibility CG 0.449 0.480 0.112 0.797 0.36 0.066 0.632
Image V CM 44.666 52.833 36.8 48.833 38.6 37.833 57.166
in row-1 IVM 8.167 7.834 4.23 9.393 8.93 4.373 9.319
(Figure 7(a)) Color σ 0.0086 0.0972 0.02 0.0980 0.0063 0.0106 0.0085

refurbishment HCC -0.213 -0.135 0.28 -0.175 -0.21 0.266 -0.191
Structure UQI 0.312 0.477 0.30 0.287 0.36 0.324 0.487
restoration

e 13.879 10.791 10.12 8.469 13.56 10.627 13.759
r 3.118 2.31 2.48 1.918 5.12 2.348 4.983

Visibility CG 0.18 0.096 0.087 0.064 0.18 0.099 0.261
Image V CM 45.228 50.091 30.45 50.682 34.21 30.682 53.637
in row-1 IVM 3.908 3.232 3.11 2.698 3.73 3.208 4.268
(Figure 8(a)) Color σ 0 0 0 0 0.00001 0 0

refurbishment HCC -0.273 0.351 0.298 0.573 0.56 0.318 0.583
Structure UQI 0.781 0.97 0.96 0.989 0.86 0.971 0.89
restoration

4.3. Time complexity analysis

The time complexity of any method can be evaluated based on the number of operation performed for the
execution of the method. An input image of size (n × m × 3) has three channels which are utilized in the
existing methods; whereas, the proposed method is based on the single channel (I-channel) of HSI version of
input image. Hence, the proposed method involves operations on the single channel only. In general, for the
computation of convolution operation on (n×m×1) image with (f1×f1) sized filter requires (n×m×f1×f1)

multiplication and ((n×m)× (f1 × f1 − 1)) addition operations. In CNN model, the convolution is the main
operation and aforementioned numbers of computations are repeatedly required each time. In the proposed
method, the patch extraction and reshaping stages required 32 times less computations in comparison to the
existing methods. The overall processing time of the proposed and existing methods of [3], [4], [12], [13], [15]
and [17] are evaluated and shown in Table 4. It can be observed from Table 4 that the processing time of the
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Figure 9. Visual comparison on synthetic foggy images of RESIDE dataset (a) ground-truth image (b) foggy image
(c–g) restored image using [3], [4], [12], [13], [17], and (h) proposed method.

proposed method is less as compared to the other existing methods. Therefore, it can be concluded that the
proposed method is faster as compared to the others existing methods.

Table 3. Reference-based quantitative comparison on image dataset [26]

Parameter Existing methods Proposed method
[3] [4] [12] [13] [15] [17]

SSIM 0.78 0.82 0.81 0.82 0.83 0.85 0.87
PSNR 14.61 16.20 18.04 19.79 20.01 20.29 21.80

Table 4. Processing time (second) comparison of the proposed and existing methods

Size Existing methods Proposed method
[3] [4] [12] [13] [15] [17]

370× 290× 3 4.8 3.5 1.31 1.1 0.83 1.3 0.85
410× 380× 3 5.01 3.6 1.36 1.25 0.91 1.4 0.88
341× 512× 3 5.2 3.8 1.4 1.8 0.98 1.6 0.91
384× 512× 3 5.5 4.0 1.5 1.82 1.09 1.63 0.94
450× 600× 3 5.9 4.2 1.68 1.85 1.14 1.72 1.02
512× 512× 3 6.1 4.5 1.7 1.87 1.24 1.79 1.13

5. Conclusion
In this paper, an efficient deep CNN based image dehazing model is proposed, which also takes care the minute
information elements during the learning of feature map. In this model, the transmission map is estimated
only using I-channel of HSI image, which helps to reduce the computational complexity. Further, an algorithm
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for the accurate estimation of atmospheric light parameter is proposed to remove the white region handling
problem with improved dehazing results. Besides, the proposed model handles the hallo, blocking artifacts,
retainment of fine edges, and color fidelity problems, which are primarily responsible for image sharpening
and structural stability. For the evaluation of proposed method, the extensive experiments on synthetic and
real world images are performed using existing and proposed techniques. The qualitative and quantitative
analysis of experimental results shows that the proposed model is more efficient over the existing prior-based
and learning-based methods.
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