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1. Introduction
Pal et al. were the first to identify catalyst-mediated conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) [1]. 
The product of this reaction is 4-AP, an effective intermediate in the synthesis of painkillers. There are other uses for it 
in the photographic and cosmetic industries. Thermodynamics predict the feasibility of this process, but kinetically this 
reaction is not favorable, i.e. it does not occur in the absence of a catalyst if left for 2 days [2]. This reduction reaction is 
feasible in the presence of a nanocatalyst. Reaction monitoring is usually carried out by UV-Vis spectroscopy at a 400-nm 
wavelength. Spectrophotometry is a method applied to assess the quantitative level of an analyte in a particular solution. 
The basic principle is the absorption of light at a particular wavelength as it passes through the solution. This information 
is good enough to calculate different kinetic parameters such as entropy of activation, rate constant, activation energies, 
and frequency factor [3–5]. Organic pollutants are removed by various techniques from industrial wastes, including 
photocatalysis, membrane filtration, chemical precipitation, physical adsorption, and catalytic degradation. The present 
degradation method to remove organic pollutant is a simple, efficient, and applicable technique which is an alternative 
green method, because it has low energy consumption and does not produce a large amount of metal oxide sludge [6].

Gold nanoparticles (GNPs) possess fascinating optical, chemical, and electronic properties; because of these properties, 
they are used in the fields of catalysis, electronics, and biomedicine. In the field of catalysis, much higher rates than 
bulk metal have been reported owing to the unique properties of nanocrystals in catalyzing different reaction types 
[7–14]. Unsaturated valencies of surface atoms render nanocrystals with relatively higher surface energies. Size, shape, 
concentration, and temperature have been the variables focused on through the years for catalytic testing of nanomaterials 
[15–39]. However, the stability of the catalyst during the course of a catalytic reaction has not been reported in detail at 
different ranges of temperatures and concentrations of borohydride (BH). Previously, the SPR stability of gold nanoparticles 
has been evaluated for the reduction of potassium hexacyanoferrate (III) at room temperature only; it was observed that 
SPR remained stable over the course of the reduction reaction [20]. This fact is reported in detail in the Discussion section. 
Conversion of 4-NP and potassium ferricyanide by SBH is used as a model reaction [17–19].
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2. Materials and methods
All of the required chemicals for the present study were of analytical grade and were used as received. A previously reported 
method was used to synthesize GNPs (gold nanoparticles) of 12 ± 1.5 nm diameter [40]. Briefly, trisodium citrate (2 mL 
of 1% solution) was added dropwise to a boiling 20-mL (1 mM) gold salt solution. The solution was stirred until a red 
color was obtained, and stored in a cold location for further use. A Shimadzu 1601 (Shimadzu, Kyoto, Japan) was used to 
measure spectroscopic data; TEM at 100 kV (FEI Tecnai Spirit; FEI, Hillsboro, OR, USA) was used to characterize GNPs 
(Figure 1). Ultrasonication was carried out for 2 min before each catalytic experiment with these GNPs.

The reaction mixture consisted of 100 µL each of 8nM GNPs and 1 mM 4-NP added to a standard quartz cuvette. 
The volume was brought up to 3.5 mL with water. Freshly made and chilled NaBH4 (100 µL, 100mM) was added to the 
cuvette. The pale yellow color of the 4-nitrophenol changed immediately to dull green. Spectrophotometric changes were 
recorded in a time span of 1–3 min according to the reaction conditions. The rate constant was determined depending on 
experimental factors. An extinction coefficient of 12 ± 1.5 nm NPs was calculated from the UV-Vis spectrum using the 
method given in the literature [41], and was found to be 2 × 108 M–1 cm–1.

3. Results and discussion
GNPs were synthesized using the Frens method [40] and were utilized for catalytic reduction of 4-NP. Spectrophotometric 
monitoring of stability of GNPs during the course of the reaction was carried out. The stability of GNPs was studied in 
terms of surface plasmon resonance (SPR), as it is highly sensitive to the chemical environment, i.e. the refractive index 
of the species surrounding GNPs. SPR is a phenomenon that occurs as a result of the cooperative oscillation of valence 
electrons in the metallic nanoparticles. This research article deals with this physical phenomenon in GNPs during catalytic 
reduction reaction.
3.1. Stability of GNPs at different temperatures
The stability of GNPs at different temperatures was a new finding for this article. GNPs of 12 ± 1.5 nm diameter were found 
to be fairly stable at 30, 35, 40, and 45 °C for the reduction of 4-NP (Figure 2). At the studied range of temperatures, the 
GNPs were capable of withstanding the constant collisions of reactants and solvent molecules. Additionally, the surface 
atoms of the GNPs were not dissolved during the course of the reaction, as observed by its consistent OD. However, as 
the temperature increased from 45 to 50 °C, signs of catalyst dissolution started to appear, as observed from the gradual 
decrease in the OD values (Figure 3). This can be inferred from the collisions of reactant as well as solvent molecules 
against the catalyst surface as a result of their increased kinetic energy at higher temperatures, which leads to the surface 
atoms’ dissolution into the reaction mixture. This process of dissolution continued as the temperature varied from 50 to 60 
°C, but no sign of aggregation was observed (see Figures 2 and 3).
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Figure 1. UV-visible spectrum (A) and TEM image (B) of gold nanoparticles. 
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Furthermore, the effect of size on the stability of GNPs was examined. For this purpose, 30-nm Au nanoparticles were 
synthesized and characterized by UV-Vis spectroscopy and TEM as indicated in Figures 4A and 4B. SPR changes for the 
larger nanoparticles (30 nm) during the reduction of 4-nitrophenol were recorded in the UV-Vis spectra (Figure 4C), and 
the following conclusion was drawn. The SPR decreased in this case as well, which can be attributed to the dissolution of 
the surface gold atoms; this is consistent with our previous findings with 12-nm AuNPs. These results for 30-nm AuNPs 
are different from the results observed for 12-nm AuNPs.
3.2. Sensitivity of 4-NP reduction toward GNP concentration
In order to evaluate the sensitivity of this reduction process to GNP concentration, the process was varied from 11.8 nM 
to 15.5 nM at various temperatures.  The kinetic analysis of both of the concentrations was carried out using pseudo-first 
order kinetics.

lnA = –kt	 Eq. 1
Plotting lnA vs. time, rate constant values were attained [19,20] as shown in Table,

where A is depicting absorbance of 4-NP, t is time for reduction, and k is obtained rate constant. It was found that the rate 
constant of 15.5 nM GNPs was 5.2 times higher than for lower concentrations at 35 °C, 4.9 times higher at 40 °C, and 3.2 
times higher at 45 °C as shown in Figure 5. 
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Figure 2. Stability of GNPs in terms of their consistent OD at 30 °C (A), 35 °C (B), 40 °C (C), and 45 °C.



SAIRA et al. / Turk J Chem

85

This shows that the extent of the difference in the rate constants gradually decreased as the temperature increased. This 
may be attributed to the increase in the kinetic energies of the reactants with temperature, which ends in the proximity of 
both reaction rates. The Arrhenius equation was applied to attain activation energy.

Lnk = lnA – Ea / RT	 Eq. 2
Here, lnk (rate constant) was plotted against 1/T (temperature in K); the frequency factor k0 was obtained from the 

intercept, and Ea was obtained from the slope of the straight line. Ea was decreased from 30 to 19 kcal/mol for this small 
increase in catalyst concentration. On the other hand, entropy values were found to increase from 64 to 89 Cal/mol.K. At 
50, 55, and 60 °C, the catalyzed reaction was quick enough for the present ratio (1/637000/3076000 catalyst/4NP/BH) to 
evaluate the kinetic parameters. No induction period t0 was observed for either of the concentrations of the catalysts, and 
the reaction began immediately after mixing. With the addition of borohydride, a maximum of 9 nm blue shift was observed 
after mixing the reactants and the GNPs. This blue shift was not found to be linearly dependent upon BH concentration, 
and there was a saturation limit after which no further shift was observed. In addition, the SPR of GNPs was not seen to 
be affected by the 4-NP concentration. This effect and stability were monitored with a UV-Vis spectrophotometer at 30, 
35, 40, 45, 50, 55, and 60 °C. It was observed that the concentration of the catalyst plays a vital role in terms of kinetic 
parameters of the reduction reaction. At slightly higher concentrations of the catalyst, the rate of reduction as well as 
entropy values increase, while activation energy decreases. However, as the temperature increases, the concentration effect 
becomes negligible and rate constants for both of the concentrations come into proximity. This could be interpreted as 
dissolution of the surface gold atoms from GNPs as a result of increase in the kinetic energy of the reactants and solvent 
molecules and their collisions against the superficial atoms of GNPs, which results in decrease of GNPs size.
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Figure 3. GNPs dissolution at higher temperatures 50 °C (A), 55 °C (B), and 60 °C (C) during the course of reduction of 4-NP.
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3.3. Effect of BH concentration towards stability and reactivity of GNPs
This reduction reaction does not strictly follow pseudofirst-order kinetics, which is why the initial concentrations of 
4-nitrophenol, borohydride, and catalyst affect the rate of reaction [37]. The effect of BH concentrations on the stability as 
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Figure 4. UV-visible spectrum (A), TEM image (B) of 30 ± 5 nm gold nanoparticles, and GNPs (30 nm diameter) dissolution at 50 
°C during the course of degradation of 4-NP (C).

Table. Comparison of kinetic parameters of 4-Nitrophenol reduction reaction at two concentrations of gold nanoparticles.

GNPs conc.
(nM)

Rate constant at
35 °C (min–1)

Rate constant at
40 °C (min–1)

Rate constant at 
45 °C (min–1)

Activation energy
(kcal/mol)

Frequency factor
(min–1)

Entropy of 
activation

11.8 0.019 ± 1.2×10-3 0.04 ± 9.6×10-4 0.09 ± 2.3×10-3 30.24 ± 1.025 3.49 × 1019 64.11
15.5 0.099 ± 9.9×10-4 0.198 ± 1.1×10-2 0.29 ± 8.3×10-3 19.87 ± 3.417 1.03 × 1014 89.4
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well as reactivity of gold nanoparticles during 4-NP reduction was investigated for a range of BH concentrations at room 
temperature. GNPs were found to be stable (in terms of their consistent optical density) throughout the BH concentration 
range studied. The dependence of reaction rate on BH concentration is not a linear relationship but a complex one 
[17,19]. The present studied range shows a linear dependency, although the extent of blue shift was enhanced at the higher 
concentrations. The higher the hydrid ions surrounding the GNPs, the more displacement of citrate ions will occur [42]; 
because of this displacement, the SPR shifts toward the lower wavelength region. The extent of the blue shift is because of 
the change in the refractive index of the surrounding environment of these catalysts, as shown in Figure 6.

The BH adsorbs on the nanoparticle surface and produces H2 gas and hydrid ion; these lighter species with a refractive 
index of 1 displace water, which has a refractive index of 1.33. Thus, this particular blue shift is not because of the size, 
shape, or interparticle distance change for the catalysts, but only because of the refractive index change of their surrounding 
medium [22,23]. Hence, there was only one abrupt SPR blue shift for these nanocatalysts even after the completion of the 
whole 4-NP reduction, unlike the gold nanocages, where a time-dependent gradual blue shift was observed because of the 
inner and outer surfaces of the cavities being available to the reactants [22,23]. The present ratio of GNPs/4NP/BH did not 
contribute to the aggregation of the GNPs, as reported previously.

BH is known to inject electrons on the exterior surface of gold nanoparticles, which causes the removal of the citrate 
layer from their surface. If this displacement is effective enough to cause anisotropy of charges on the GNPs’ surface, it 
can lead to the aggregation of the catalyst [15,36]. It has been reported that capping material is usually stripped off during 
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Figure 5. Concentration sensitivity of 4-NP reduction process towards GNPs investigated at different temperatures.



SAIRA et al. / Turk J Chem

88

the synthesis or catalytic reaction; this may contribute to the nanocatalyst aggregation [15], which was not observed in 
the present case, with varying concentrations from10 µM to 20 µM. The Langmuir–Hinshelwood model was applied to 
interpret this reduction reaction [18,19,21]. According to this model, both reactants must be adsorbed to the exterior of 
the nanocatalyst to react. This reaction was found to be controlled by kinetics, where the transportation of the reactants 
through the solution was not the rate-determining step; rather, the formation of 4-AP was the rate-determining step. The 
adsorbed reactants may react, and the product is desorbed from the exterior of GNPs. In a control experiment, there was 
no reduction of 4-NP observed in the absence of GNPs or in the presence of trisodium citrate, but gold salt solution was 
found to degrade 4-NP to some extent. The plausible reason for this effect of gold salt solution was the formation of larger-
sized GNPs inside the reaction mixture, which catalyzed this reaction to some extent as depicted in Figure 7.

4.  Conclusion
The stability of any catalyst is important during the course of catalytic reaction. We have studied surface plasmon resonance 
(SPR) stability of colloidal gold nanoparticles during the catalytic reduction of 4-NP (an organic pollutant) at different 
temperature conditions and BH concentrations. The SPR shift of GNPs or the formation of 4-nitrophenolate ion can be 
taken as evidence for adsorption of both reactants on the surface of GNPs, proving the Langmuir–Hinshelwood model. 
The concentration of GNPs varied from 11.8 nM to 15.5 nM at various temperatures. It was found that the rate constant 
of 15.5 nM GNPs was 5.2 times higher than for the lower concentration at 35 °C; the difference decreased with increasing 
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Figure 6. SPR stability of GNPs during catalytic reduction of 4-NP at different sodium borohydride concentrations: 10 µM (A), 15 
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temperature. This study may find applications in spectrophotometrically designing catalysts for industrial wastewater 
removal.
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