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1. Introduction
Polymer/clay nanocomposite has gained remarkable attention in recent years because the incorporation of nanoclay with 
polymer matrix leads to significant improvements in its mechanical and thermal properties when compared to the virgin 
polymer [1]. Due to their large surface area interacting with the polymer matrix, modification of the clays, distribution of 
clay layers in the matrix, and selection of preparation methods are key factors for polymer/clay nanocomposites. The clays 
are natural earth materials that are incompatible with organic polymers. In order to eliminate this limitation, the clays are 
commonly modified with quaternary ammonium salts ion-exchange reactions. This modification not only gives the clays 
organophilic character but also increases their layer’s distance; hence, polymer chains can easily diffuse the clay galleries 
and these layers can be homogenously distributed in the matrix [2]. There are three main methods for the preparation of 
polymer/clay nanocomposites, including solution exfoliation, melt intercalation, and in situ polymerization [3,4]. Among 
them, the latter method where clay layers are exfoliated during the polymer forming reaction is the most efficient method 
to obtain well-dispersed polymer/clay nanocomposites [5–13]. In recent years, a conceptually different approach has been 
developed by introducing polymer chains into the clay layers via click chemistry reactions as they bring a number of 
advantages, including high efficiency under mild conditions, and simple preparation set-up and purification steps [14–22]. 
In this way, clickable groups such as azide-alkyne [14–20], thiol-ene [23,24], thiol-epoxy [25,26], and maleimide-diene 
[27] partners can be integrated in either the clay surface or polymer chain-ends. The following click reaction such as 
copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC), gives highly exfoliated polymer/clay nanocomposites, as it can 
be carried out with high efficiency under ambient conditions [28,29]. The CuAAC click reaction has also been applied 
for the preparation of different types of polymer nanocomposites using silica [30–32] and POSS [33–37] nanoparticles, 
carbon nanotube [38,39], and graphene [40,41].

A new concept that is based on simultaneous click reactions of two different alkyne-functionalized molecules 
in conjunction with an azide-functionalized molecules in a single step has been very recently reported [42–44]. 
Moreover, orthogonal combinations of two (or more) mutually exclusive click reactions allow the fabrication of complex 
macromolecular architectures as well as multifunctionalization of materials [45–60]. This strategy not only shortens the 
synthetic steps but also reduces the number of work-up, purification operations, and cost [61]. In this study, simultaneous 
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CuAAC click reactions have been applied for the preparation of poly(epsilon-caprolactone)-poly(ethylene glycol)/
montmorillonite in one-pot fashion. For this purpose, alkyne-functionalized PEG [62] and PCL [15] that were easily 
convertible into azide or alkyne functions were prepared according to literature procedures and subsequently clicked 
onto azide-functionalized MMT [14] clays via CuAAC click reactions. This simple strategy enables the attachment of the 
mechanistically two different polymers on to clay galleries, enabling the delamination of clay tactoids and formation of 
polymer/clay nanocomposites.

2. Materials and methods
2.1. Materials
Methanesulfonyl chloride (Acros 99.5%), epsilon caprolactone (CL, Aldrich, 97 %), ethanol (Acros 96%), N, N, N’, 
N’’, N’’’-pentamethyldiethylenetriamine (PMDETA, Aldrich, 99%), dichloromethane (Aldrich, HPLC grade), and 
triethylamine (Aldrich, HPLC grade) were purified by distillation just before use. Sodium azide (NaN3, Acros 99 %), 
tin(II) 2-ethylhexanoate (Aldrich 98%), copper (I) chloride (Cu(II)Cl, Acros, 97%), poly(ethylene glycol) methyl ether 
(mPEG, Aldrich, Mn = 5000 g/mol), propargyl bromide solution (C3H3Br, Aldrich, 80 wt. % in toluene), sodium hydride 
(NaH, Aldrich, 90%),  and N,N- dimethylformamide (DMF, Aldrich HPLC grade) were used as received. Cloisite 30B as 
an organically modified clay, was purchased from Southern Clay products, Gonzales, TX, USA. Its organic content was 
determined by TGA and calculated as 21 wt. %. The organo-modified clay was dried under vacuum at 110 °C for 1 h before 
use. The azido-functional MMT-N3[14], alkyne-functionalized poly(ethylene glycol) (PEG-Alkyne) [62], and poly(epsilon-
caprolactone) (PCL-Alkyne) [15] were prepared according to previously reported procedures. 

MMT-N3: FT-IR (cm–1) = 3660 (free O-H), 2820–2980 (C-H), 2120 (N3), 1010 (Si-O); TGA (wt. loss %) = 26.2; yield: 
0.78 g (78%, gravimetrically).

PCL-Alkyne: FT-IR (cm–1) = 2810–3000 (C-H), 1720 (C=O), 1470 (C-H), 1160 (C-O-C); 1H-NMR (CDCl3), δ (TMS, 
ppm) = 4.65 (s, 2H, CH2–C≡CH), 4.05 (m, CH2O on PCL), 3.70 (t, 2H, CH2OH), 2.45 (s, 1H, CH2–C≡CH), 2.35–2.25 (m, 
CH2C=O on PCL), 1.65–1.55 (m, CH2 on PCL), 1.40–1.35 (m, CH2 on PCL), Mn,GPC= 5500 g/mol, Đ = 1.38; yield: 3.43 g 
(67%, gravimetrically).

PEG-Alkyne: FT-IR (cm–1) = 2940–2780 (C-H), 1462 (C-H), 1284 (C-H), 1099 (C-O-C); 1H-NMR (500 MHz; CDCl3; 
δ, ppm)= 2.45 (t, -C≡CH), 3.40 (s, -CH2CH2OCH3), 3.65–3.75 (br, -CH2CH2O-), 4.20 (d, -CH2C≡CH); Mn,GPC=  5200 g/
mol, Đ = 1.26; yield: 4.61 g (87%, gravimetrically).
2.2. Preparation of the PCL/PEG heteropolymers-MMT nanocomposites by CuAAC click chemistry
Azide-montmorillonite clay (1%, 3%, 5%, and 10% of the polymers by weight) and the same weight of PEG-Alkyne and 
PCL-Alkyne (0.11 g, 0.02 mmol) were dissolved in (2 mL) DMF in a round-bottomed flask and stirred. The required Cu(I)
Cl (3.96 mg, 0.04 mmol) and PMDETA (8.36 µL, 0.04 mmol) were added into the mixture and then heated in an oil bath at 
50 °C and mixed overnight. The obtained polymers were precipitated into methanol and then filtered, dried, and weighed.
2.3. Characterization
Thermal gravimetric analysis (TGA) was performed on Perkin–Elmer Diamond TA/TGA with a heating rate of 10 °C 
min under nitrogen flow. The powder X-ray diffraction (XRD) measurements were performed on a Siemens D5000 X-ray 
diffractometer equipped with graphite-monochromatized Cu Kα radiation (λ = 1.5405 A˚). TEM micrographs were 
obtained with a Philips CM100 apparatus using an acceleration voltage of 100 kV. Ultrathin sections (ca. 80 nm thick) 
were cut at –100°C from 3 mm thick hot-pressed plates using a Reichert-Jung Ultracut FC4E microtome equipped with 
a diamond knife. Because of the large difference in electron density between silicate and polymer matrix, no selective 
staining was required.

3. Results and discussion
The use of click chemistry reactions for the preparation of polymer nanocomposites is a promising tool, providing high 
conversion under mild conditions and site-specific functionalization in easily removable or benign solvents. Among them, 
the CuAAC is the foremost utilized click reaction with unique properties of azides and alkynes, and the resulting triazoles. 
Therefore, it has been widely employed in both homogenous and heterogeneous conditions with solvent and substrate 
insensitivity. In the CuAAC, a clickable azido group can be simply incorporated by nucleophilic substitution reactions 
of halide- or hydroxyl-functionalities with sodium azide. In our case, hydroxyl-functionality of commercially available 
organomodified montmorillonite (Cloisite 30B) was firstly converted into the methanesulfonate group by treating with 
methanesulfonyl chloride. Subsequently, this methanesulfonate group was reacted with sodium azide to obtain the desired 
azido-functional montmorillonite (MMT-N3). This modification procedure was followed by FT-IR and XRD spectroscopies 
and thermogravimetric analysis. According to Figure 1, the characteristic O-H band at 3450 cm–1 gradually disappeared, 
while the azido band clearly appeared at 2120 cm–1. 
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In addition, the d001 spacing for MMT-N3 initially presented at 4.87° shifted to 4.71° after nucleophilic substitution 
reaction. This change increased the d001 spacing of clay layers from 1.81 to 1.87 nm. Furthermore, weight loss of was 
slightly increased from 21.1% to 26.2% after modification. The difference of 5.1% might be due to the attachment of azido 
groups that increase the organic content of MMT clay. On the other hand, the clickable PCL-Alkyne and PEG-Alkyne 
were synthesized by well-known ring-opening polymerization and nucleophilic substitution reactions. Their structures 
were confirmed by FT-IR, 1H-NMR, and GPC techniques (See experimental part).  Finally, these clickable polymers were 
simultaneously attached onto the MMT-N3 surfaces by CuAAC click reactions to delaminate the stacked clay layers in the 
matrix. The fine distribution of clay layers on the nanometer level may lead to formation of nanocomposites with improved 
properties (Scheme).

The chemical structure of resulting nanocomposites was confirmed by comparing with spectra of their components; 
neat MMT-N3, PEG-Alkyne, and PCL-Alkyne using FT-IR spectroscopy (Figure 2). The characteristic peak of azide 
functionality of MMT-N3 at 2120 cm–1 clearly disappeared after the CuAAC click reactions. In addition to this, the typical 
siloxane, ether, and ester peaks of MMT-N3, PEG-Alkyne, and PCL-Alkyne were also verified at 1099, 1720, and 1160 
cm–1, respectively. Overall, the disappearance of the azide band as well as the presence of siloxane, ether, and ester bands 
confirmed that the nanocomposite consisted of MMT, PEG, and PCL components.

Figure 1. FT-IR spectra of MMT- (Cloisite 30B) and MMT-N3.

Scheme. In situ preparation of PEG-PCL/MMT nanocomposites by simultaneous CuAAC click reactions.
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In order to support these data, the chemical structure and polymer composition of PEG-PCL/MMT-1 was examined 
by 1H-NMR analysis (Figure 3).The successful synthesis of PEG-PCL/MMT-1 nanocomposite was confirmed by the 
appearance of new peaks belonging to PCL repeating units at 4.29 ppm (Hf) (repeating unit CH2O(C=O)), 2.31 ppm 
(Hc) (repeating unit O(C=O)CH2), 1.64 ppm (Hd) (repeating unit O(C=O)CH2CH2CH2CH2CH2O(C=O)), 1.38 ppm (He) 
(O(C=O)CH2CH2CH2CH2CH2O(C=O) and PEG repeating units at 3.71 ppm (Hc’) (repeating unit CH2O)in the spectrum 
(Figure 2b). In addition, a new peak belonging to the triazole ring was also observed at 7.97 ppm. Furthermore, the 
composition of PEG-PCL/MMT-1 was also calculated from integration ratios of specific resonances (Hc’ proportioned 
with Hc + Hd + He + Hf) belonging to both PEG and PCL segments. According to this calculation, the molar content of 
the PEG was found to be 46%, while it was 54% for PCL.

XRD analyses of the PEG-PCL/MMT nanocomposites with 1, 3, 5, and 10 wt. % nanoclay loadings were performed 
to determine their crystal structures and compared with initial MMT-N3.  The strong and sharp crystalline peak at 4.71° 
was attributed to a basal space of 1.87 nm coming from the crystallographic planes of silicate layers of MMT-N3. After the 
CuAAC click reactions, this peak completely disappeared in all PEG-PCL/MMT nanocomposite samples. The absence of 
a diffraction peak implied that all silicate layers were likely to be exfoliated in the polymer matrix (Figure 4). 

The similar results for the polymer/clay nanocomposites prepared by CuAAC click reaction were also reported in the 
literature [15,19,20]. However, the XRD analysis alone may not be a conclusive tool in determining the exfoliated clay 
plates, especially at low concentration. Therefore, the use of TEM analysis was crucial to provide a better understanding 
of the morphology of the nanocomposites. In order to get more detailed information on the exfoliation and dispersion 
of individual galleries, TEM analysis with two different magnifications as displayed in Figure 5 for PEG-PCL/MMT-
1 sample was carried out. In these micrographs, dark lines represented cross-sections of the individual silicate layers, 
whereas the brighter area displayed the polymer matrix. From the TEM observation, it appeared that mixed morphologies 
consisting of exfoliated and intercalated structures (highlighted by e and i) existed. The coexistence of mixed exfoliated/

Figure 2. FT-IR spectra of MMT-N3, PEG-Alkyne, PCL-Alkyne, and 
PEG-PCL/MMT-10 nanocomposite.

Figure 3. 1H-NMR spectrum of PEG-PCL/MMT-1 nanocomposite.
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Figure 4. XRD graphs of MMT-, MMT-N3, and PEG-PCL/MMT 
nanocomposites with different MMT-N3 loadings (1%, 3%, 5%, and 
10%).

Figure 5. TEM micrographs of PEG-PCL/MMT-1 in low (scale bar: 50 nm) and high (scale 
bar: 20 nm) magnifications (e and i assigned to exfoliated and intercalated layers).

Figure 6. DSC thermograms of PEG-Alkyne, PCL-Alkyne, and PEG-
PCL/MMT nanocomposites with different MMT-N3 loadings (1%, 
3%, 5%, and 10%).
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intercalated morphologies might be explained by a competition between polymer diffusion and clay delamination. The 
limited mobility of polymer chains as well as high surface energies of clay layers kept them tight rather than dispersed 
in the polymer matrix. Overall, both XRD and TEM analyses verified mixed exfoliated/intercalated morphologies in the 
PEG-PCL/MMT nanocomposites.

Thermal properties of PEG-PCL/MMT nanocomposites were also investigated by both DSC and TGA measurements. 
The melting temperature (Tm) of PEG-Alkyne and PCL-Alkyne were measured as being very close to each other at 54.7 
and 57.5 °C. After the nanocomposite formation, the Tm values of all nanocomposites were detected between those of 
PEG-Alkyne and PCL-Alkyne. Furthermore, a slight increase was also recorded on the Tm of related nanocomposites 
by increasing MMT-N3 loadings. Consequently, the formation of nanocomposites did not significantly influence the 
crystallization behavior of the both PEG and PCL segments (Figure 6).

The onset (T10%) and maximum (T50%) weight loss temperatures, and the char yield were summarized in Table. It can 
be seen that all precursors and nanocomposites displayed a single-step degradation between 320 and 450 °C (Figure 7).  
This degradation could be due to the depolymerization, removal of low molecular weight compounds and side-groups, 

Table. Physical properties of PEG-PCL/MMT nanocomposites and their components for 
comparison.

Entry d001
a

(nm)
Tm

 b

(°C)
T10%

c

(°C)
T50%

c

(°C)
Char yieldc

(%)

MMT- 1.81 - 570 - 79.9
MMT-N3 1.87 - 256 - 74.8
PEG-Alkyne - 54.7 328 389 -
PCL-Alkyne - 57.5 338 388 -
PEG-PCL/MMT-1 n.d. d 54.9 333 394 2.0
PEG-PCL/MMT-3 n.d. d 55.3 341 397 4.8
PEG-PCL/MMT-5 n.d. d 55.5 344 400 9.6
PEG-PCL/MMT-10 n.d. d 55.6 353 404 18.7

a Basal spacing (d001) is calculated by XRD analysis. b determined by DSC and analyses under 
a nitrogen flow at a heating rate of 10 °C/min. c onset (T10%) and maximum (T50%) weight loss 
temperatures determined by TGA analysis under a nitrogen flow at a heating rate of 10 °C/
min. d probably complete exfoliated nanocomposites.

Figure 7. TGA thermograms of MMT, MMT-N3, PEG-Alkyne, PCL-
Alkyne, and PEG-PCL/MMT nanocomposites with different MMT-N3 
loadings (1%, 3%, 5%, and 10%).
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and random chain-breakage of the polymer chains. The incorporation of MMT-N3 not only improved the T10% and T50% 
temperatures of neat PEG and PCL but also remarkably increased those of the nanocomposites. Furthermore, the char 
yields of nanocomposites were higher than that of neat polymers and slightly increased by clay loadings under nitrogen 
atmosphere. These thermal improvements could be due to the barrier effects of nanoclay that hinder the diffusion of gas 
in the nanocomposites.
4. Conclusion
In conclusion, a series of PEG-PCL/MMT nanocomposites with different nanoclay loading were prepared in situ using 
CuAAC click reactions. The simultaneous attachments of PEG-Alkyne and PCL-ALkyne chains onto MMT-N3 not only 
triggered the exfoliation of clay plates but also enabled the formation of nanocomposites. The chemical, morphological, 
and thermal properties of the resulting nanocomposites were explored by FT-IR, 1H-NMR, XRD, TEM, DSC, and TGA 
analyses. The presence of MMT nanoclay and fulfillment of the CuAAC click reactions were confirmed by following the 
characteristic Si-O and azide bands using FT-IR spectroscopy. The chemical structure of the resulting nanocomposite was 
also verified by following characteristic bands of PEG and PCL segments using 1H-NMR spectroscopy. The molar content 
of the PEG was found to be 46%, while it was 54% for PCL in PEG-PCL/MMT-1 nanocomposite. The nanocomposites 
with mixed exfoliated/intercalated morphologies were evidenced in both XRD and TEM investigations. According to 
DSC and TGA analyses, the thermal properties of the nanocomposites were higher than those of neat PEG-Alkyne and 
PCL-Alkyne. This simple route will open a new avenue to prepare the multifunctional polymer nanocomposites using 
mechanistically different kind of polymers.
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