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Abstract: The flawless functioning of the protein is essentially related to its three-dimensional structure. Therefore,
predicting protein structure from its amino acid sequence is a fundamental problem that draws researchers’ attention
in many areas. The protein structure prediction problem (PSP) can be formulated as a combinatorial optimization
problem based on simplified lattice models such as the hydrophobic-polar model. In this paper, we propose a new hybrid
algorithm that combines three different known heuristic algorithms: the genetic algorithm, the tabu search strategy,
and the local search algorithm to solve the PSP problem. Regarding the evaluation of the proposed approach, we
present an experimental study, where we consider the quality of the product solution as the main assessment criterion.
Furthermore, we compared the proposed algorithm with state-of-the-art algorithms using a selection of well-studied
benchmark instances.

Key words: Protein structure prediction, 2D triangular lattice, HP model, genetic algorithm, local search algorithm,

tabu search strategy, minimal energy conformation

1. Introduction

In molecular biology, the native structure of proteins is considered as the most important indicator that
determines their biological role [1]. Predicting the native structure of proteins, called conformation, is a
challenging problem in biology that has an immediate appeal to physicists, mathematicians, and computer
scientists. This problem is called the protein structure prediction (PSP). A slight modification in the native
structure of some particular proteins or an error throughout its folding causes many serious diseases, such as
Alzheimer’s and mad cow [1, 2]. Furthermore, predicting the tertiaries’ structure of a protein from its primary
structure information has many applications in understanding and treating these diseases [3]. Besides, the
correct behavior of proteins depends essentially on its minimal energy conformation. Simplified models have
been proposed to reduce the complexity of PSP, the most widely used one is the hydrophobic-polar model (HP
model) [4]. In this model, the free energy of a valid conformation is inversely proportional to the number of
hydrophobic nonlocal bonds of H-H type (topological H-H contacts) existing in this conformation. This type
of contact occurs if two of the nonconsecutive hydrophobic monomers occupy adjacent points in the lattice [5].
Moreover, each occurrence of this type of contact reduces the global energy value by one unit [6]. PSP is an
optimization problem where the goal is to find a confirmation c¢* of the specific protein chain that minimizes
the total induced energy E(c) in all possible set of conformations C, i.e. ¢* = argmin{E(c) | c € C} [7]. As

we mentioned above, H-H contacts reduce the induced energy. Thus, finding the minimum energy conformation
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(optimal conformation) amounts to find a conformation that maximizes the number of H-H contacts [6]. As one
may expect, solving this problem is very difficult due to the exponential number of possibilities when the size of
the string is large. The PSP has been proved to be NP-complete, even for simplified lattice models [8, 9]. Due
to the complexity of the PSP, a number of well-known heuristic optimization algorithms have been proposed
to solve this problem for the HP model. In the two-dimensional square lattice, the first genetic algorithm
was introduced by Unger and Moult [10], and then followed by other versions (see [11, 12] for details). Later
on, an improved genetic algorithm was proposed in [13]. Shmygelska et al. used the ant colony optimization
algorithm (ACO) in [7, 14]. Furthermore, an adaptation of memetic algorithms were suggested in [15, 16]. The
particle swarm optimization algorithm (PSO) was applied in [17]. Jiang et al. proposed a hybrid approach that
combines the tabu search and the genetic algorithm [18]. The Immune algorithms are introduced by Cutello
et al. in [19, 20]. Recently, Islam et al. have proposed a clustered memetic algorithm with local heuristics
in [21]. In addition, a number of metaheuristic algorithms have been used to solve the PSP problem in the
two-dimensional triangular lattice. In [22], the authors suggested a new hybrid algorithm, called hybrid genetic
algorithm (HGA). This latter enhances the performance of a classical GA implementation by reducing the
encountered conformations throughout the generational process. Furthermore, the authors showed considerable
quality improvements when compared to a simple genetic algorithm implementation SGA [22]. Later in [23],
the authors proposed a new approach based on the tabu search algorithm using a generalized local move set
to improve the landscape exploration and the quality of the produced solutions. Moreover, two approaches
have been proposed in [24], including the elite-based reproduction strategy-genetic algorithm (ERS-GA), and
a hybridization of hill-climbing and genetic algorithm (HHGA) that combine the ERS-GA with a hill-climbing
algorithm. Recently, an extended particle swarm optimization method (EPSO) was applied to PSP in [25]. A
new approach called IMOG was proposed in [26], which combines ions motion optimization algorithm (IMO)
with a greedy algorithm, the authors showed that IMOG algorithm has good search ability and stability using
benchmark data sets.

The rest of this paper is organized as follows: In Section 2, we present the 2D triangular lattice and the HP
model used in this study. Furthermore, we present a 0—1 mathematical program with a detailed description of
solutions encoding, the objective function, and constraints. We present a detailed description of the proposed
hybrid algorithm in Section 3. Besides, in Section 4, we present the experimental study and the obtained results

compared with state-of-the-art approaches. Finally, we give the main conclusions in the last section.

2. Hydrophobic-polar simplified model in a 2D triangular lattice

In the HP model, twenty amino acids are represented by two letters H and P, referring to their hydrophobicity
characterization chosen among the two following options: hydrophobic (H) or polar (P) [4]. For any given
protein sequence of n amino acids, the HP model consists of converting this latter into another sequence
s = (81,82,...,8,) such that each element of the sequence s; € {H, P}, represents the hydrophobicity of the
corresponding amino acids in the protein sequence. As we show in Figure 1, each node of the two-dimensional
triangular lattice has six neighbors [27]. Hence, we use the symbols 1,2,3,4,5 and 6 to encode the following
movement directions on the two-dimensional triangular lattice: right-up, up, left-up, left-down, down, and
right-down, respectively.

Figure 2 represents a feasible conformation in the 2D triangular lattice model for the protein sequence
of 20 amino acids given in the HP model by HPHPPHHPHPPHPHHPPHPH. The green points represent
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Figure 1. Six possible neighbors of a node in the 2D triangular lattice model.

the hydrophilic amino acids while the hydrophobic amino acids are represented in red. The energy of this
conformation is E(s) = —15, i.e. 15 topological contacts of H-H type. We can represent a valid confor-
mation by a sequence of n — 1 movements in the lattice using the neighbor encoding given in Figure 1.
For example, the movements sequence corresponding to the conformation given in Figure 2 is as follows:
mu(s) = [2,6,2,6,5,4,5,1,5,6,2,6,2,3,2,1,5,1,5]. The sequence mu(s) allows us to deduce the position of
each amino acid in the lattice.

Figure 2. A feasible conformation in the 2D triangular lattice.

2.1. Mathematical program for the PSP problem

In this section, we suggest a mathematical program for the PSP problem in its 2D triangular lattice model.
The aim here is to construct a mathematical program that can be implemented using mathematical modeling
languages and compatible with the existing software solvers. Each node in a 2D triangular lattice has six
neighbors represented in a lattice on a canonical basis. We consider the following encoding neighbors for a given
position (4,7):

Let n be the length of the protein sequence, and let yfj be a three-dimensional variable such that:

. { 1, if the position (i,7) contain the k** amino acid in the protein sequence,
Yij =

0, else.
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Figure 3. Six positions close to the position (i,7) in the 2D triangular lattice.

2.1.1. Constraints

First, we fix the first amino acid in the protein sequence at the position (n,n) as a starting point, i.e.

Yn = 1.

Regarding the constraints, we can identify three different constraints that guarantee the admissibility of the

resulting solution:

e A path in the lattice is a feasible solution if it occupies exactly n nodes in the lattice. This constraint

can be written as follows:
n 2n 2n

2. u=n

k=1i=1 j=1

« A node in the lattice can contain at most one amino acid at the k*" position, hence:
n
nyj S 1’ VZ € {17"'72n}7 vj S {1,,21],}
k=1

e A node in the lattice can contain the amino acid at the position k£ + 1 if, and only if at least one of its

neighboring nodes contains the k'* amino acid in the protein sequence:

k1 & k k k k k -
i <Y Yy Yot Yo T Yy UGy Vi g € {1, 20}, VR e {1,...,n— 1}

2.1.2. Objective function

Let aj be a numerical interpretation of any given amino acid into a binary value, where:

{ 1, if the k" amino acid in the protein sequence is hydrophobic, i.e. H,
a =

0, if the k' amino acid in the protein sequence is hydrophilic , i.e. P.

Thus, the objective function can be calculated as follows:
1 n—1
max(Z) = 53* - ];akak+17
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where

2n 2n n n
Zr = m;xx {z; z; <; ak?/fj) <; QAL (yf—1j+1 + yf—u + yf—lj—l + yf+1j—1 + yf—o—lj + yf+1j+1>> } .
i=1j=1 \k= =
We notice that this objective function is quadratic. In addition, this mathematical model guarantees an optimal
solution which is included in the lattice enclosed by the points {(1,1), (1,2n), (2n, 1), (2n,2n)}, with a starting
point (n,n). The choice of these limit points is based on the fact that in a path graph P, on the lattice,
the maximal distance between the fixed starting node and the rest of the nodes (i.e. essentially for the last
node) is at most equals to n — 1 movements. More precisely it represents the radius of the graph, which is the
number of edges in the case of a path graph P, . With the view to its space complexity O(n?), this model has
a rather high cost in terms of memory. However, it provides a rather good equilibrium with the computational

complexity, since all variables are binary strings.

3. New hybrid approach for the PSP problem

The most commonly used hybridization in literature consists to combine two metaheuristics, one based on a
single solution, known as s-metaheuristics, and the other based on a population, known as p-metaheuristics.
The s-metaheuristics have proved their effectiveness for intensification, while the p-metaheuristics known by
their exploration capacity [28]. Thus, this type of hybridization allows to establish a good balance between
the diversification and the intensification of the research process [29, 30]. In this work, we propose a hybrid
approach to solve the PSP problem, called GALSTS, referring to the adopted combination of the following
metaheuristics: genetic algorithm, local search, tabu search strategy. The procedure of the proposed method is
shown in algorithm 1. As all population-based approaches, the first step of GALSTS is to generate an initial
population P of m feasible solutions (see Algorithm 2). The individuals of the new population P, , are
generated by tabu search crossover operator and improved by local search algorithm, in which the crossover
operator is guided by a prohibition mechanism with a FIFO tabu list that prohibits the use of previously applied
movements and to explore new regions in the search space. At each iteration the reproduction strategy of the
suggested algorithm consists of selecting pairs of solutions (called parents) from the current population using
the roulette wheel selection operator. Then, we generate iteratively a set of offsprings for the same selected
parents by applying the tabu search crossover operator with random cut points. If a given crossover point is
selected more than once, the crossover operation generate a solution that have been previously visited. In order
to avoid this previously generated movements, we use a static tabu list T with a short-term memory, which is
initially 7" = (). This list stores the k crossover points previously applied. At each iteration the tabu list T, is
updated, the last crossover point is added in the list T' and the oldest one is removed from T'. All the points
stored in T are excluded from the selection for the next iteration. This reproduction strategy is applied if a
random generated u € [0, 1] is less than a fixed probability p., otherwise, two offsprings will be generated by
applying random mutation operator to the selected parents in order to maintain the diversity of the population
in GALSTS (see Algorithm 3).

As to improve the quality of the offsprings produced by the crossover operator, each one of them is introduced
with a probability p,, as an initial solution of a local search algorithm, such that the transition from a solution
s to one of its neighbors s’ is carried out by a random choice of amino acid 7 and replacing its direction by one
of the other possible directions. If the quality of s’ is better than s, then it replaces the current solution for

the next iteration. This process is repeated until the satisfaction of the stopping criterion (see Algorithm 4).
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This improvement phase allows to use of the information provided by parents more efficiently to produce high
quality of solutions. The two solutions with the lowest fitness value are introduced into the new population
Ppew, if they do not already exist in the current population. The best m solutions of P U Py, replace the
individuals in the population P for the next generation. This approach is intended to avoid the premature
convergence towards local optima, ensures a wide diversification of the current solutions throughout the search

space explorations, and thus ensures the quality of solutions.

Algorithm 1 Suggested hybrid algorithm GALSTS.
Input: A protein sequence of n amino acids.

Output: The best confirmation for the protein sequence.

Begin
Initialization: P < Generate a initial population of m solutions by applying Algorithm 2;
while the stoping criterion is not met do
Create a new population by the following steps:
k<« Oa Pnew A 0;
while £k <m do
Select two parents (p1,p2) from P using the roulette wheel selection operator.;
if random v € [0,1] < p. then
of fsprings <— Generate offsprings from the same parents by applying the crossover operator
guided by the tabu search (see algorithm 3);
Improve the quality of the offsprings using the local search algorithm (see algorithm 4);
else
of fsprings < Mutate (p1,p2);

end if
if bestoffsprings does not exist in the new population P,., then
Pnew — Pnew U {beStoffspT'ings};

k+—k+2;
end if
end while
P + the m best solution of P U Py ;
end while

End

The mechanisms of the suggested approach can be summarized by the following steps:

Step 1 Generate m solutions for the initial population using Algorithm 2.
Step 2 Evaluate the fitness of each solution.
Step 3 Create a new population by the following steps:

Step 3.1 Select two parents from the m solutions.

Step 3.2 Apply Algorithm 3, with a probability p..

Step 3.3 Apply Algorithm 4, with a probability p,, .

Step 3.4 Replace the previous population, with the current population.
Step 4 If the stopping criterion is not met go to Step 2.
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3.1. Initial population

We start with a random initial population of m individuals. An initialization algorithm is proposed to allow
generating only valid conformations for the initial population of GALSTS. We use a T list containing all the
positions used in the current solution. We put the first amino acid at one point in the lattice and save their
position in T'. Then, for each amino acid, we select a random direction among the six directions given in Figure
1. If the selected direction generates an already occupied position existing in T, we randomly generate a new
direction. If all six directions create an existing position in 7', i.e. all directions create an invalid solution, we
generate a new solution (see Algorithm 2).

Algorithm 2 Generation algorithm for the initial population.
Input: A chain length n.

Output: A feasible conformations for the protein sequence.

Begin
Initialization: T < @; // Table containing the position of each amino acid in the lattice.
T[1] < (x1,y1); // Put the first amino acid in one node of the lattice.
14— 2;
while (i <n) do
K +{1,2,3,5,4,6}; // The set of all possible directions on the 2D triangular lattice.
t < true;
while (t = true) do
u < Random direction generated from the list K
K+ K\{u};
(z4,y;) < The position generated by the direction u;
if (x“y,) ¢ T then
t < false;
T(i) < (@i, yi);
else if (K =0) then
t < false;
14— 2;
end if
end while
11+ 1;
end while
End

3.2. Crossover operator

The crossover procedure consists of combining two or more solutions, called parents, to create other solutions,
called offsprings. Many kinds of crossover methods exist. In our case, we chose a random cutting point operator,
which consists to swap after selecting two parents p; and ps, and generating a random cut point ¢1, 1 < ¢; < n,
the parent subsequences limited by ¢; and n. As we show in Figure 4, the new two conformations (offsprings)
f1 and fs, are obtained by combining p; and py after generating a random cut point (¢; = 5). The energy
value of offspring f1 is E(f1) = —7, which is lower than the energy values of its parents, F(p;) = —2 and
E(p2) = —5.
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Algorithm 3 Reproduction algorithm guided by the local search algorithm and the tabu search strategy.

Input: Two selected parents pi, ps.
Output: Two offsprings produced by two parents.

Begin
Initialization:
E; + 0, offspring} < (); Ey < 0, offsprings + 0;
K« 0, T <— 0; // The tabu list.
while the stopping criterion is not met do
K<+ K+1;
u < a random crossover point;
if w¢T then
(offspring, offsprings) < crossover (p1,p2);
uy + random [0, 1];
if u; < p,, then
offspring; <+ local search(offspring );
offsprings <+ local search(offsprings );
end if
if F(offspring;) < F; then
offspring; < offspring ;
E, + E(offspring );
end if
if FE(offsprings) < F3 then
offspring3 < offsprings;
E5 + E(offsprings );
end if
end if
T +— TU{u};
end while
return (offspringj, offspring3);
End

Algorithm 4 Local search

Input: A feasible solution s and its associated energy value E(s).

Output: The best-found solution spes -

Begin
Initialization:
E(Sbest) «— E(S);
Sbest < S;
while the stopping criterion is not met do
u < a random mutation point ;
s < applying the mutation operator over the solution s at the position u;
Evaluate s, i.e. calculate E(s);
if E(s) < E(Spest) then
Sbest < S}
E(spest) < E(s);
end if
end while
End
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The circled nodes indicate the cutting points positions.

Figure 4. Crossover operator applied on two conformations of the sequence HZPH2P2?HPH?2. The circled nodes
indicate the cutting points positions.

3.3. Mutation operator

Generally, it consists of modifying some components, called genes, from an existing solution, to introduce more
diversity into the solutions; they are generally applied with low probability p,,. In the proposed local search
algorithm (see Algorithm 3), the neighbors of a given solution are defined similarly with the mutation operator,
but the performed movement is acceptable if the quality of the current solution is improved. As we show in
Figure 5, the new conformation s,, is obtained by applying the mutation operator on a solution s at the
mutation red point 10, by changing the direction from 3 to 6. The energy value of s,, is E(s;) = —7, which
is less than the energy of s, E(s) = —5.

3.4. Selection operator

It is a technique that prefers the best solutions to participate in the reproduction phase, to create new solutions
with satisfactory quality. In this work, we used the roulette wheel selection technique. This latter consists of
associating for each solution i, between m solutions, a probability of selection P; according to its fitness value
fi as follows:

fi

P = m :
Zj:l fi
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Figure 5. Mutation operator applied to the sequence H2PHP2H2PH?2. The circled node indicates the position of the
mutation point.

4. Experimental results and discussion

In this section, we present the conducted experimental study aiming to assess the performance of the suggested
approach. For the following experimental study, we used several benchmark instances presented in the HP
model of different sizes [10, 11]. Furthermore, we have selected the most used instances in the literature to
conduct the forthcoming experiments. The used benchmark sequences are shown in Table 1, where the symbol
(...)" represents i fold repetitions of the respective subsequence in the brackets; for example, (PH)? is the
simplified form of the sequence PHPH. In this experiment, the parameters we used for the suggested algorithm
are fixed as follows: population size m = 80 for sequences 1 to 5, and m = 120 for sequences 6 to 10. For
all sequences, the experiments ran the suggested algorithm for 100 generations. The tabu list size &k = 15 for
sequences 1 to 6, and k = 20 for the sequences 7 to 10. The parameter values p. and p,, are fixed to 0.8 and

0.3, respectively.

Table 1. Used benchmark instances in the HP model.

Seq. | Length | Protein sequence in the HP model

1 20 (HP)?PH(HP)?(PH)?HP (PH)?

2 24 H2P?(HP?)5H?

3 25 P2HP?(H?P*)3H?

4 36 P(P2H?)2P°H® (H2P2)2P?H(HP?)?

5 40 P2H(P2H?2)2P°H!PS(H2P?)2HP?H?

6 50 H2(PH)PH*PH(P3H)2P*(HP?)?HPH*(PH)3PH?
7 60 P(PH?)2H°P*H°PHP3H'?P*HSPH?PHP

8 64 H'2(PH)2((P?H?)2P2H)3(PH)?H!!

9 85 HAPAH2PS(H'2P3)3HP2(H2P2)2HPH

10 100 P3H2P2H4P2H3 (PH2)*H2P*HO P2HC PP HPH2PH! ' P2H*PH2PHP2HPH3 PO H?

Table 2 shows a comparison of the best results taken from the above-stated algorithms used to solve the
PSP problem in the 2D triangular lattice model, namely HGA [22], TS [23], ERS-GA [24], HHGA [24], IMOG
[26], EPSO [25], and our suggested approach GALSTS. For each instance given in Table 2, we observe that the
best solutions obtained by GALSTS are better or equal than all the cited approaches bellow. According to their

energy values, all approaches can obtain the best known solution when the length of the sequence is less than
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36. However, GALSTS is better than the other approaches for sequences 4, 6, 5, and 7. Moreover, the best
solutions obtained by GALSTS are better than those of HGA, ERS-GA and SGA algorithms, for all sequences
used in this experimental study. The number of possible solutions increases exponentially while the size of the
instance increases. The best results obtained by GALSTS for the instance of large size demonstrates the ability
of GALSTS to explore the search space more effectively compared with the other approaches. Instances larger
than 64 are not covered in the literature for the 2D triangular lattice model. However, they were processed
for the two-dimensional square lattice model [31]. According to the obtained results in Table 2, a strong
improvement in energy appears compared with the 2D square lattice model.

Table 3, represented graphically in Figures 6 and 7, shows a performance comparison on the stability of
our approach and three other algorithms HHGA, IMOG and ERS-GA, such that the efficiency of the algorithms
is measured by the best and mean results in 30 independent runs for each sequence. We notice that for most
instances, GALSTS can find the best optimal solutions and achieves better mean results than other algorithms.

So the mean results obtained by GALSTS are very encouraging.

Table 2. The best conformations obtained by GALSTS compared with other algorithms.

Seq. | Length | SGA | HGA | TS | ERS-GA | HHGA | IMOG | EPSO | GALSTS | Conformation
1 20 —11 -15 -15 | -15 -15 -15 NA -15 Figure 8a
2 24 -10 -13 17 | -13 -17 -17 17 -17 Figure 8b
3 25 10 10 —12 12 —12 —-12 —12 —-12 Figure 8c
4 36 -16 -19 —24 | 20 —23 —24 —24 —24 Figure 8d
5 48 —26 | 32 —40 | -32 —41 —40 —40 —43 Figure 8e
6 50 -21 -23 NA | -30 -38 -40 NA -40 Figure 8f
7 60 40 46 —70 | -55 66 67 NA —70 Figure 8g
8 64 -33 | 46 —50 | —47 —63 —63 NA —67 Figure 8h
9 85 NA NA NA | NA NA NA NA -98 Figure 8i
10 100 NA NA NA | NA NA NA NA —87 Figure 8j

Values in bold indicate the lowest energy for the correspondent instance. NA refers to not available data in the literature.

Table 3. A comparative study on the stability and the best prediction of GALSTS with other algorithms.

ERS-GA HHGA IMOG GALSTS

Seq. | Length | Best | Mean | Best | Mean | Best | Mean | Best | Mean

1 20 -15 | -12.50 | —15 | -14.73 | —15 | -14.73 | —15 | —14.86
2 24 -13 -10.20 | =17 | -14.93 | —17 | -14.93 | —17 | —15.53
3 25 12 -8.47 —12 | -11.57 | -12 | -11.57 | -12 | —12

4 36 —20 -16.17 | -23 -21.27 | 23 —21.27 | —24 | —21.93
5 48 -32 | 2813 | 41 | -37.30 | -41 | -37.30 | —43 | —39.86
6 50 -30 | —25.30 | -38 | —34.10 | -38 | —34.10 | —40 | —37.6
7 60 -55 | —49.43 | 66 | 61.83 | 66 | 61.83 | =70 | —68.26
8 64 —47 | 4237 | -63 | -56.53 | 63 | —56.53 | —67 | —58.46
7 60 -55 | —49.43 | -66 | -61.83 | 66 | —61.83 | =70 | —68.26
8 64 —47 | 4237 | 63 | -56.53 | 63 | —56.53 | —67 | —58.46

Values in bold indicate the best obtained evaluation for the correspondent instance.
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Figure 6. Mean energy comparison of GALSTS with IMOG and ERS-GA algorithms.
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Figure 7. The best prediction comparison of GALSTS with IMOG and ERS-GA algorithms.

Table 4 summarizes the obtained results for 30 independent runs per each of the above-stated instances.
This experiment aims to compare the suggested algorithm GALSTS with two competing algorithms ERS-GA
and SGA. The results are derived according to the best and worst overall evaluation and their corresponding
deviation from the best known value (BKV). The proposed algorithm GALSTS is proved to be more effective
than the other competing algorithms, even when comparing its worst produced conformation to their best
ones, with the sole exception of the first tested sequence, where it shows a slight difference. However, when
increasing the size of the instance, it is clear that GALSTS is incrementally taking advantage over the competing
algorithms, even when comparing its worst solution to their best ones. Furthermore, GALSTS can attain good
quality conformations or even optimal, with the sole exception of the sixth tested instance, where it shows a

one unit deviation of the best known evaluation.

Table 4. The best and worst evaluations comparison of GALSTS with SGA and ERS-GA algorithms.

GALSTS ERS-GA SGA

Seq. | Length | E* | Best (dev. BKV) | Worst | Best (dev. BKV) | Best (dev. BKV)
1 20 15 | —15 (00) “14 | —15 (00) 11 (04)

2 24 17 | —17 (00) 15 | -13 (04) 10 (07)

3 25 -12 | —12 (00) -12 —12 (00) -10 (02)

4 |36 —24 | —24 (00) 21 | —20 (04) 16 (08)

5 | 48 43 | —43 (00) 38 | 32 (11) 26 (17)

6 50 —41 | —40 (01) 36 | —30 (11) 21 (20)

7 60 - =70 (-) —65 -55 (-) —40 (-)

8 |64 - 67 () 56 | 47 () 33 ()

Values in bold indicate the best obtained evaluation for the correspondent instance and E™ is the best energy value.
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Figure 8. Results of the best conformation structure of ten protein sequences.

5. Conclusion

In this paper, we presented an efficient hybrid algorithm called GALSTS for solving the protein structure

prediction in 2D triangular using the simplified hydrophobic-polar model. We suggested an initialization

511



BOUMEDINE and BOUROUBI/Turk J Elec Eng & Comp Sci

algorithm that allows generating only valid conformations for the initial population of GALSTS. This algorithm

eliminates the reverse movements during the construction of solutions. GALSTS consists of using Tabu and

Local Search algorithm to explore the search space more efficiently. From our experimental results, GALSTS

can find the best known solutions and it is more effective than other existing algorithms in terms of stability.

In terms of future scope of applications, GALSTS can be used to solve the PSP problem in the 3D cubic and

3D triangular lattice models; it can also be used to solve other optimization problems in the combinatorial

optimization framework.
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