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Abstract: Gimbaled imaging systems require very high performance inertial stabilization loops to achieve clear image
acquisition, precise pointing, and tracking performance. Therefore, higher bandwidths become essential to meet recent
increased performance demands. However, such systems often posses flexible dynamics around target bandwidth and
time delay of gyroscope sensors which put certain limit to achievable bandwidths. For inertial stabilization loops, widely
used design techniques have difficulty in achieving large bandwidth and satisfying required robustness simultaneously.
Clearly, high performance control design hinges on accurate control-relevant model set. For that reason, combined
system identification and robust control method is preferred. In the system identification step, accurate nominal
model is obtained, which is suitable for subsequent robust control synthesis. Model validation based uncertainty
modeling procedure constructs the robust-control-relevant uncertain model set, which facilitates the high performance
controller design. Later, with skewed-µ synthesis, controller is designed which satisfies large bandwidth and robustness
requirements. Finally, the experimental results show that significant performance improvement is achieved compared
to common manual loop shaping methods. In addition, increased performance demands for new imaging systems are
fulfilled.
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1. Introduction
In the last decades, increasing demands related to higher target detection and tracking range have increased
the importance of good inertial stabilization and precise pointing-tracking performance of imaging systems on
mobile platforms. Therefore, good disturbance rejection is becoming more essential to minimize the effects of
vibrations and platform motions to sensor line-of-sight (LOS). Similarly, more rapid and precise response is
needed for new tracking-pointing purposes.

Typical control structure is composed of inner inertial stabilization loops and outer position or tracking
loops as depicted in Figure 1. Inner stabilization loops are closed around fast gyroscope sensors; whereas, outer
loops use relatively slow feedback signals based on image processing or sensor position and attitude estimation in
the inertial frame. Clearly, accuracy of pointing and tracking is directly determined from inner loop performance.

Therefore, high performing stabilization loop is necessary for pointing, tracking, and sensor isolation
purposes. Consequently, bandwidth of the stabilization loop has to be increased while maintaining sufficient
loop stability. However, recent performance demands require that target bandwidth and flexible dynamics are
close. If low-cost micro-electro-mechanical systems (MEMS) gyroscopes are used, time delay of the sensors
∗Correspondence: mbaskin@aselsan.com.tr
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Figure 1. Control structure of a typical imaging system.

becomes a major limiting factor for achievable bandwidth. This is also valid for the gimbaled system considered
in this study. Traditional manual loop shaping methods select target bandwidth in the dominant rigid body
region where the effects of flexible modes and time delay are small. In either case, model based control methods
are needed to enlarge the bandwidth beyond common techniques. Among all, robust control methods can be
more effective if high bandwidth and certain robustness should be satisfied simultaneously.

In traditional design techniques, feedback controller is often designed directly based on frequency re-
sponse functions (FRF). These controllers originate from standard double-proportional-integral (PI) controller.
Sometimes, notch filters are added to guarantee robust stability. Generally, to increase the stabilization loop
performance two strategies are followed. In the first one, the disturbances are estimated by an observer, and
their effects are compensated through feedforward path of the observer. H∞ -based robust disturbance observer
control in [1] has been used recently. Different loop shaping methods to achieve desired loop bandwidth con-
stitute the second strategy. General H2 and H∞ -norm optimization based mixed sensitivity designs in [2]
are sometimes preferred since they are convenient loop shaping methods. Moreover, to meet some robustness
requirements µ synthesis [2] and robust PI controller design [3] techniques are reported. In this paper, robust
control type problem is considered since a finite order linear model is an approximation of the true model. In
this respect, finite number of available states in the model to represent many resonance modes and time delay
result in modeling errors. In addition, parasitic nonlinearities such as friction and nonlinear damping may exist
in the true system, and all these errors should be addressed accurately. However, the main difficulty is to
construct an uncertain model set which encompasses the model errors and facilitates high performance robust
control for all possible plants in this set. This model set should be structured suitably to enable nonconservative
robust control synthesis.

Standard additive and multiplicative uncertainty structures used in [2] generally fail to give similar
performance for all candidate models in the set and may lead to conservative control design. In this respect,
coprime factor based dual-Youla-Kucera uncertainty structure selection reduces conservatism in the design [4].
In addition, specific coprime factors for the nominal model and the controller enable connection of system
identification and robust control. In the system identification step, robust control criterion is minimized jointly
during successive nominal model and uncertainty computations [5]. Resulting robust-control-relevant model set
enables a nonconservative control design and gives high performance for all candidate models unlike separate
identification and control design techniques [2, 6].

Moreover, model validation based uncertainty modeling is used to determine the uncertainty bound.
Model validation methods, where the nominal model residual is all attributed to uncertainty, may lead to overly
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conservative design as applied in [2]. If all residual is attributed to additive disturbance, resulting control design
may cause instability [6]. Therefore, model validation method suggested in [7] is used to obtain more accurate
model set.

Contribution of this paper can be summarized as follows. In this paper, first implementation of combined
system identification and robust control for a gimbaled platform is discussed. Resulting robust-control-relevant
model set addresses two essential points. Firstly, for all plants in the model set similar high performance is
achieved. Secondly, resulting tight model set significantly reduces conservatism in robust controller synthesis. In
these aspects, significant contribution to previous works for inertial stabilization problem is made. Moreover, to
the authors’ knowledge, model validation based uncertainty modeling, and skewed-µ synthesis were not applied
to any other gimbaled imaging system previously. However, these methods are important to construct accurate
model set and to achieve high performance.

The outline of this paper can be summarized as follows. Firstly, combined system identification and
robust control framework is reviewed. Secondly, resulting system identification problem is introduced. Next,
construction of model set is summarized. Model validation based uncertainty modeling and skewed-µ synthesis
based robust control design method are reviewed. After that, application of this methods to gimbal platform is
reported. To visualize the performance improvement compared to common controller choices, different design
and test results are illustrated. Finally, paper is finished with conclusion section.

2. Problem formulation
In this section, robust-control-relevant identification problem is introduced. During formulation following
notations are used. The notation P is used to denote any linear time invariant system which may represent the
actual plant Po , or the nominal model P̂ . Moreover, P and C denote the model set and feedback controller,
respectively. Finally, H∞ -norm based performance measure selection gives a control criterion J(P,C) as

J(P,C) = ∥WT (P,C)V ∥∞, (1)

where W = diag(Wy,Wu) and V = diag(V2, V1) are bistable weighting filters and transfer matrix T (P,C) is
the mapping defined as (2) corresponding to the feedback configuration in Figure 2.

PC
-

+
+

yur1

r2

Figure 2. Feedback configuration for imaging system application.

T (P,C) :

[
r2
r1

]
→

[
y
u

]
=

[
P
I

]
(I + CP )

−1 [C I
]

(2)

The aim of the norm-based control design is to find an optimal controller Copt such that following
performance cost is minimized.

Copt = argmin
C

J(Po, C) (3)
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Since Po is unknown, the optimal controller (3) can not be found. In order to represent the actual plant
dynamics accurately, a model set P is constructed such that

Po ∈ P. (4)

Then, the worst-case performance for this model set P is defined as

JWC(P, C) = sup
P∈P

J(P,C). (5)

Robust control design aims to minimize this worst-case performance criterion.

CRP = argmin
C

JWC(P, C) (6)

Then, the following performance bound for the true plant Po is the basis for joint identification and
robust control [9].

J(Po, C
RP) ⩽ JWC(P, CRP) (7)

The performance guaranteed by (7) depends on shape and size of the model set P , and it is structured
using upper linear fractional transformation (LFT) [13] as

P =
{
P | P = Fu(Ĥ,∆u),∆u ∈ ∆u

}
. (8)

Ĥ , which is shown in Figure 3 essentially contains the nominal model P̂ and the uncertainty structure.
In addition, H∞ -norm-bounded perturbation ∆u ∈ ∆u ⊆ RH∞ in (9) is considered.

∆u = {∆u ∈ RH∞ | ∥∆u∥∞ ⩽ γ} (9)
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Figure 3. General control structure for worst-case performance evaluation.

Therefore, low complexity model set P which leads to nonconservative control design, and small perfor-
mance bound (7) is needed. Specific coprime factor based approach introduced in [10] eventually satisfies these
two requirements.

3. Robust-control-relevant identification
The minimization of performance bound (7) can not be solved explicitly. However, separate nominal model
identification and uncertainty modeling step can be used jointly to reach approximate solution [5].
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3.1. Uncertainty structure for robust control

Robust-control-relevant model set should give a small bound (7) for high robust performance. Therefore,
following identification criterion selection is reasonable,

min
P

JWC(P, Cexp) , subject to (4) (10)

where Cexp denotes the controller which stabilizes the system during identification experiment. If the distance
between Cexp and CRP is too large, (6) and (10) can be solved iteratively similar to the iterative identification
method introduced in [12]. Since the iterative identification and control using model set gives monotonically
improved performance, the effect of initial controller usage Cexp instead of CRP is greatly reduced after several
iterations [11]. In this respect, it is assumed that initial controller Cexp and CRP are close, and only one
iteration is performed.

The uncertainty structure selection is important to simplify the minimization of (10). Let the LFT
description of P is augmented with weights and Cexp as in Figure 3.

Then, the worst-case performance evaluation of this structure leads to following equation where M̂ is

partitioned suitably as M̂ =

[
M̂11 M̂12

M̂21 M̂22

]
.

JWC(P, Cexp) = sup
∆u∈∆u

∥Fu(M̂,∆u)∥∞ = sup
∆u∈∆u

∥M̂22 + M̂21∆u(I − M̂11∆u)
−1M̂12∥∞ (11)

For a model set constructed with plants that are stabilized by Cexp , (11) can be simplified, and bounded
performance can be obtained. This is achieved by using dual-Youla-Kucera uncertainty structure (12), which
requires coprime factorization approach. Right coprime factorization (RCF) of P̂ is denoted by the pair {N̂ , D̂}

if D̂ is invertible, N̂ , D̂ ∈ RH∞ , P̂ = N̂D̂−1 , and ∃Xr, Yr ∈ RH∞ satisfying Bezout identity XrD̂+YrN̂ = I .
Similarly, it is assumed that the stabilizing controller Cexp has a RCF {Nc, Dc} .

PDY =
{
P | P = (N̂ +Dc∆u)(D̂ −Nc∆u)

−1,∆u ∈ ∆u

}
(12)

Therefore, this structure has a LFT representation (13), and upper LFT of it gives the model set (12).

ĤDY =

[
D̂−1Nc D̂−1

P̂Nc +Dc P̂

]
(13)

Evaluation of ĤDY in the feedback connection in Figure 3 gives a LFT representation (14).

M̂DY(P̂ , Cexp) =

 0 (D̂ + CexpN̂)−1
[
Cexp I

]
V

W

[
Dc

−Nc

]
WT (P̂ , Cexp)V

 (14)

Therefore, worst-case performance (10) reduces to an affine function in ∆u and becomes bounded.

JWC(PDY, Cexp) = sup
∆u∈∆u

∥M̂22 + M̂21∆uM̂12∥∞ (15)
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Even if bounded performance is reached, the minimization of (15) is not clear due to existence of frequency
dependent M̂21 and M̂12 terms. This can be further simplified in the next sections by selecting specific coprime
factorization of Cexp [11].

3.2. Nominal model identification

Minimization of (10) is achieved by first identifying nominal model P̂ according to certain criteria, followed
by uncertainty modeling step. Therefore, control-relevant nominal modeling requires tight model set such
that designed and achieved performance are close. The triangle equality is the basis of the nominal model
identification criterion [12].

J(Po, C) ≤ J(P̂ , C) + ∥W (T (Po, C)− T (P̂ , C))V ∥∞ (16)

The first term on the right is related to model based control design, whereas the second term corresponds
to performance degradation term since the controller C is designed for P̂ instead of Po . Therefore, the nominal
model identification aims to minimize this performance degradation term when evaluated for Cexp which is the
controller used during identification experiment.

min
P̂

∥W (T (Po, C
exp)− T (P̂ , Cexp))V ∥∞ (17)

Dual-Youla–Kucera based uncertainty structure requires coprime factors of P̂ . In fact, specific coprime
factorization introduced in [10] connects nominal model identification (17) and identification of these coprime
factors.

Let {Ñe, D̃e} be a LCF of [CexpV2 V1] with a co-inner numerator, i.e. ÑeÑ
∗
e = I , where Ñe = [Ñe,2 Ñe,1] .

Then, robust-control-relevant identification criterion (17) reduces to robust-control-relevant coprime factor
identification problem (18),

min
N̂,D̂

∥W
([

No

Do

]
−
[
N̂

D̂

])
Ñe∥∞ (18)

subject to N̂ , D̂ ∈ RH∞

where {N̂ , D̂} and {No, Do} denote the coprime factors for P̂ and Po respectively, and they are defined
according to (19) [10].

[
N
D

]
=

[
P
I

]
(D̃e + Ñe,2V

−1
2 P )−1 (19)

Since Ñe is coinner that does not affect the H∞ -norm, it can be omitted from (18). Using the H∞ norm
definition at a discrete frequency grid and introducing appropriate parametrization θ for [N̂T (θ) D̂T (θ)]T , the
problem can be reduced to (20).

min
θ

max
wi∈Ω

σ̄

(
W

([
No(wi)
Do(wi)

]
−

[
N̂(θ, wi)

D̂(θ, wi)

]))
subject to N̂ , D̂ ∈ RH∞

(20)
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The minimization of (20) is converted to linear least squares problem by using Lawson’s algorithm for ℓ∞

approximation and by applying Sanathanan–Koerner (SK) iterations. Instead of using standard monomials for
θ , choosing orthonormal polynomials with respect to data-dependent inner product [14] improves the numerical
conditioning of the problem. Subsequent SK and Gauss–Newton iterations give accurate parametric coprime
factors as discussed in [9] in a detailed way.

4. Robust-control-relevant model set
In this section, the final step of the robust-control-relevant identification is discussed. Firstly, (Wu,Wy) -
normalized coprime factorization satisfying (21) of Cexp is needed.

[
WuNc

WyDc

]∗ [
WuNc

WyDc

]
= I (21)

Finally, the robust-control-relevant model set PRCR is derived from dual-Youla uncertainty structure
(12) with a specific choice of {N̂ , D̂} and {Nc, Dc} as

PRCR =
{
P | P ∈ PDY, {N̂ , D̂} satisfies (19) , {Nc, Dc} satisfies (21)

}
. (22)

The LFT representation given in (14) for the feedback connection in Figure 3 is now updated for these
particular coprime factors as

M̂RCR =

 0
[
Ñe,2 Ñe,1

][
WyDc

−WuNc

]
WT (P̂ , Cexp)V

 . (23)

Then, the worst-case performance shown in (11) is evaluated for PRCR .

JWC(PRCR, Cexp) = sup
∆u∈∆u

∥MRCR
22 +MRCR

21 ∆uM
RCR
12 ∥∞ ⩽ ∥MRCR

22 ∥∞ + sup
∆u∈∆u

∥MRCR
21 ∆uM

RCR
12 ∥∞ (24)

= J(P̂ , Cexp) + γ (25)

Norm preserving properties of MRCR
12 and MRCR

21 give the result (25) [11]. It shows that uncertainty
bound γ directly affects the worst-case performance. When the robust-control-relevant model set (22) is used,
nominal model identification and uncertainty modeling procedure to determine γ together minimize the criterion
(10).

5. Model validation
The aim of the model validation is to check the consistency of an uncertain model with measured data.
Model residuals should be partitioned correctly between additive disturbance term at the system output and
perturbation term. Allocating larger portions of residuals to disturbance may result in poor performance and
instability; whereas, allocating larger portions to perturbation may result in overly conservative design. To
address this ill-posedness of model validation problem, an estimator is suggested in [7, 8] for a disturbance
model. When the disturbance model and the input-output data sets are available, model validation problem
can be solved by using the generalization of structured singular value for implicit LFTs. The problem is briefly
introduced by following similar strategy followed in [7, 8].
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5.1. Problem formulation

The model validation problem is considered in the framework depicted in Figure 4, where Mo ∈ RHnx×nw
∞

, xm , dtrue and w denote the actual system, measured output, disturbance term, and manipulated input,
respectively. Consequently, the true system is governed by (26).

Δu

M
^

+
-

+

Mo

true system

model

d

e

zv

w x

xm

dtrue

ε

Figure 4. Model validation framework.

xm = Mow + dtrue (26)

Let M̂ ∈ RH(nz+nx)×(nv+nw)
∞ be the interconnection structure including the controller, nominal model,

uncertainty structure and weighting functions, and x and d denote the uncertain model output and disturbance
model. Then, the uncertain model is defined as

x = Fu(M̂,∆u)w + d, (27)

where the H∞ -norm bounded perturbation block ∆u is specified as in [13].

∆c
u = {diag(δ1Ir1 , ..., δsIrs ,∆S+1, ...,∆S+F ) : δi ∈ C,∆S+j ∈ Cnvj

×nzj , 1 ⩽ i ⩽ S, 1 ⩽ j ⩽ F}

∆u = {∆u ∈ ∆c
u : σ̄(∆u) ⩽ γ} (28)

Let the measured signals w and xm have discrete Fourier transform (DFT) W (wi) and Xm(wi) on a
DFT grid wi ∈ Ω , and Ωval is the part of Ω where W (wi) ̸= 0 . Then, the uncertain model residual is equal
to E(wi) = Xm(wi)−X(wi) , where X(wi) is the DFT of x(t) . Moreover, let D(wi) denote the DFT of d(t) ,
and let it belong to certain set D(wi) . Then, model validation problem requires two problem definition from
[7].

Frequency domain model validation decision problem (FDMVDP): It is assumed that the
uncertain model (27), norm bound γ(wi) = σ̄(∆u(wi)) , measurements W (wi) and Xm(wi) on wi ∈ Ωval and
disturbance D(wi) ∈ D(wi) are known. Then, FDMVDP determines whether the uncertain model reproduces
the measured signal at frequency wi , namely E(wi) = 0 .

Frequency domain model validation optimization problem (FDMVOP): It is assumed that the
uncertain model (27), measurements W (wi) and Xm(wi) on wi ∈ Ωval and disturbance D(wi) ∈ D(wi) are
known. Then, FDMVOP aims to find minimum γ(wi) such that E(wi) = 0 .
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The disturbance model D(wi) ∈ D(wi) is obtained by approximating stochastic disturbances by deter-
ministic models for each frequency wi ∈ Ωval . In this study, an estimator suggested in [8] is followed. In
the FDMVDP, the model is not invalidated if the corresponding structured singular value test is satisfied [8].
Therefore, FDMVOP can easily be solved by using bisection algorithm and applying invalidation test each time
for a new γ(wi) .

6. Robust controller synthesis

In this section, robust controller design method is reviewed for the determined uncertain model set Pdyn . For
the identified parametric uncertainty bound Wγ , the generalized plant (29) is obtained. Structured singular
value synthesis (30) is used for this generalized structure depicted in Figure 5.

G =


WγD̂

−1Nc 0 WγD̂
−1V1 WγD̂

−1

Wy(Dc + P̂Nc) 0 WyP̂ V1 WyP̂
0 0 WuV1 Wu

−(Dc + P̂Nc) V2 −P̂ V1 −P̂

 (29)

CRP = argmin
C

JWC(P, C) = argmin
C

sup
w∈[0,2π)

µs

(
Fl

(
G(ejw), C(ejw)

))
(30)

H
^

+ Wy

G
-

+

Wu

V2

V1

Δu

C

Wγ z

2

v

1

Figure 5. Generalized plant for robust controller synthesis.

Standard µ synthesis aims to optimize robustness and performance at the same time. Therefore, this
method is not suitable to problems where the uncertainty is already determined and required robustness is
known. For that reason, skewed-µ definition is used for ∆̄ as
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µs,∆̄ =
(
min{σ̄(∆t) | ∆̄ ∈ ∆̄, det(I −M∆̄) = 0}

)−1 (31)

∆̄ = {diag(∆u,∆t) | σ̄(∆u) ≤ 1, ∆u ∈ ∆u, ∆t ∈ ∆t} . (32)

Solution method of skewed-µ synthesis is D − K iterations as in the standard case. However, the
aim of the D − K iterations is slightly modified as minK,D ∥DUM̂D−1∥∞ by introducing a new matrix
U = diag(In, 1

µs
Inp

) , which is updated at each iteration.

7. Inertially stabilized gimbal platform system identification and robust control
Control-relevant identification and robust controller design methods discussed in the previous sections are now
applied to the gimbal platform shown in Figure 6. Even if it is a two-axis platform, both gimbals are designed
symmetrically to decouple the axes approximately in the inertial frame. Moreover, no multivariable resonance
is observed during identification experiments. Therefore, separate SISO designs are preferred for each axis. In
this paper, only elevation axis control problem is discussed.

Figure 6. Experimental gimbal platform.

7.1. Frequency response function identification

The frequency response functions (FRF) are derived by manipulating mapping (2) for Figure 2. During
identification tests, signals r1 , u and y are measured, and r1 excitation signal is applied and r2 is kept
at zero. Therefore, following equation is obtained where the DFTs of measured signals R1, U , Y ∈ C .

[
Y
U

]
=

[
Po

1

]
(1 + CexpPo)

−1 R1 (33)

Then, the estimation of T (Po, C
exp) is obtained as (34) on Ωid = {w | w ∈ Ω,R1 ̸= 0} .
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T̃ (Po, C
exp) =

[
Y
U

]
R−1

1

[
Cexp 1

]
(34)

r1 =
∑
k

ak sin(wkt+ ϕk) (35)

Multisine input signals (35) are used to reduce the variance of estimate where wk ∈ Ωid . Finally, the
estimate of Po is obtained by P̃o = T̃12T̃

−1
22 on Ωid and depicted in Figure 7. Similarly, nonparametric estimate

of {No, Do} on Ωid is obtained by manipulating the equality between (17) and (18) as

[
Ño

D̃o

]
= T̃ (Po, C

exp)V Ñ∗
e . (36)
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 P
 [

o
]

Figure 7. Identified frequency response function of P̃o on Ωid .

In this paper, frequency grid Ωid (37) is used during identification, and the data sets are obtained applying
three different tests corresponding to different frequency ranges. Data sets are obtained with a sampling frquency
of 2 kHz, and multisine input signals are periodic with a period of 1 second. Moreover, phases are selected
according to Schröder rule. Identification tests take nearly 900 seconds, which corresponds to 900-period input
excitation which is essential to reduce the covariance estimate of the disturbance and to obtain accurate FRFs
[7].

Ωid = 2π{4, 8, 12, ..., 68} ∪ 2π{72, 80, 88, ..., 256} ∪ 2π{264, 272, 280, ..., 512} (37)

Weight determination: Firstly, standard double-PI controller Cexp with integral cut-off at fbw/5 and
fbw/3 which gives approximately fbw = 25 Hz bandwidth, 30◦ phase margin and 2.5 gain margin is designed
based on an open loop FRF. The main motivation is to reach approximately 55 Hz bandwidth and satisfy certain
robustness. In this paper, bandwidth refers to gain crossover frequency fbw . Weighting functions are selected
to shape the loop similar to method in [15]. The two-block problem considered in [15] is equivalent to four-
block problem considered in this paper if weighting filters are selected as W = diag(Wy,Wu) = diag(W2,W

−1
1 )
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and V = diag(V2, V1) = diag(W−1
2 ,W1) in (1). In this paper, this method is applied, and weighting filters are

selected such that W2PW1 has desired open loop shape of PC . Since P̂ is not available yet, the estimate P̃o can
be used directly. The weight selection method suggested in [16] for position loops is extended for stabilization
(rate) loops. In this respect, W1 is selected to have a double integrator for good disturbance rejection, and
their cut-offs are at fbw/5 and fbw/3 as shown in Figure 8 where fbw = 55 Hz. W2 is selected to satisfy 0 slope
around fbw such that desired open loop shape has –1 slope in this region. Moreover, high frequency roll-off
beyond 10fbw is also enforced with W2 . Finally, W2 and shaped open loop W2PW1 are depicted in Figure 8.

10
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10
2

f [Hz]

(a)

10-2

10 0

10 2

10 4

|.|
 [

ab
s]

10
1

10
2
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(b)

10-4

10-2

10 0

10 2

|.|
 [

ab
s]

Figure 8. (a) Magnitude of weighting filters: W1 (solid blue), W2 (dashed red). (b) Magnitude of FRF estimate P̃o

(solid blue), shaped system W2P̃oW1 (dashed red).

Coprime factorization: Nonparametric frequency response functions of Ño and D̃o are obtained by using
(36). As mentioned earlier, least squares fitting of these coprime factors using data-dependent orthonormal
polynomials is obtained. These estimates are used in subsequent Gauss–Newton optimization step and results
shown in Figure 9 are obtained.

7.2. Construction of model set

The identified coprime factorization is used to construct the robust-control-relevant model set PRCR in (22).
The uncertainty bound γ is estimated by applying model validation based uncertainty modeling. During this
procedure, it is assumed that u is known exactly and it is omitted from (14) where x = y and w = [r2 r1]

T in
the Figure 2. Since the validation procedure is applied by using measured variables, weighting filters are also
omitted from (14), and following matrix is used.

M̂DY(P̂ , Cexp) =

[
0 (D̂ + CexpN̂)−1

[
Cexp 1

]
Dc P̂ (1 + CexpP̂ )−1

[
Cexp 1

] ]
(38)

Data sets are collected under different operating conditions by modifying excitation signal (35) as follow-
ing.
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Figure 9. Coprime factors: nonparametric No (blue dots), Do (cyan dots), eleventh order parametric coprime factors
N̂ (dashed red), D̂ (dashed magenta).

1. Data sets are collected with the same frequency components wi ∈ Ωid and same phases ϕk as the
signals used during identification experiments.

2. Data collected with the same frequency components wi ∈ Ωid and with random phases ϕk . This set
is used to investigate the effects of different phases around the resonances.

3. Data collected with different frequency components wi ∈ Ωval (39), and wi /∈ Ωid and phases are
selected according to Schröder rule. This set is used to investigate interpolation errors on the discrete frequency
grid.

Ωval = 2π{6, 10, 14, ..., 70} ∪ 2π{76, 84, 92, ..., 260} ∪ 2π{268, 276, 284, ..., 516} (39)

γ̃(wi) = σ̄(∆u(wi)), wi ∈ Ωid ∪ Ωval (40)

Different norm-bounds γ̃(wi) as defined by (40) are shown in Figure 10a. Then, the model uncertainty
bound is obtained as γ = supwi∈Ωid∪Ωval γ̃(wi) = 0.5967 , and bistable dynamic overbound Wγ is illustrated in
Figure 10a.

After that, two model sets are constructed using static overbound γ and dynamic overbound Wγ as

Psta = {P ∈ PRCR | ∥∆u∥∞ ⩽ γ}, (41)

Pdyn = {P ∈ PRCR | ∥∆uW
−1
γ ∥∞ ⩽ 1}. (42)

Using tight dynamic overbound Wγ does not affect the performance bound (25); however, it has certain
advantage. Mainly, it reduces possible conservatism compared to static overbound during controller synthesis
since Pdyn ∈ Psta [5]. The resulting model sets are visualized using the method introduced in [17]. This method
uses generalized structured singular value µg and standard µ to determine minimum and maximum gain of the
uncertain model set, respectively. Resulting model sets are depicted in Figure 10b.
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Figure 10. (a) Resulting model uncertainty norm bound γ̃(wi) on data sets: 1) on identification grid (blue ×), 2) with
varying phases (red ×), 3) on validation grid (green ×), parametric overbound Wγ (dashed black). (b) Magnitudes
of nonparametric estimate P̃o (blue dots), fifth order parametric nominal model P̂ (solid red), model set Pdyn (yellow
shaded), Psta (cyan shaded).

7.3. Controller design and implementation

The uncertain model set Pdyn is used to synthesize robust controller. In addition, using standard H∞

optimization, CNP is synthesized for nominal model P̂ . These three controllers are illustrated in Figure 11,
and corresponding nominal and worst-case performances are given in Table .
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Figure 11. Bode plots: initial controller Cexp (solid blue), CNP (dashed green), CRP (dashed red).

Although, CNP gives optimal performance for nominal model P̂ , it gives worse robust performance for
Pdyn than CRP . Moreover, CRP gives improved performance compared to Cexp , which is tuned using manual
loop shaping rules. Smaller performance criterion indicates that achieved bandwidth is closer to desired one.
Since J(P,C) < 4 indicates successful loop shape [15], CRP has closer properties to desired loop shape. Table
indicates that all candidate models in the uncertain model set give similar high performance for CRP since J
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Table . Robust-control-relevant identification and robust control synthesis results.

Controller Minimized criterion J(P̂ , C) fbw JWC(Pdyn, C)

Cexp None (double-PI) 9.95 25.5 10.01
CNP J(P̂ , C) 3.44 36.8 4.24
CRP JWC(Pdyn, C) 3.78 35 3.80

and JWC are almost equal. In addition, robust-control-relevant set Pdyn shown in Figure 10b is relatively tight
and enable nonconservative controller synthesis.

Since CNP turns out to be unstable and its worst-case performance is higher, only CRP and Cexp

are implemented. During implementation, instead of 46th -order controller, 10th -order reduced controller is
implemented which leads to less than 0.01% worst-case performance decrement, which is insignificant.

Dominant angular rate disturbances to LOS can be illustrated with a sum of dominant sinusoids for
small naval platform. For this paper, reference signal composed of sinusoids at 0.5, 1.5 and 3 Hz are generated.
Tracking accuracy of this reference signal is used to investigate the performance of the stabilization loop. The
command following properties are shown in Figure 12a. Since, LOS error is the main concern, corresponding
cumulative power spectrum (CPS) of the LOS errors are depicted in Figure 12b. Since the error components
are in the low frequency region, increasing the bandwidth gives better performance, and LOS error is decreased
approximately by a factor of 2.5 with CRP . Moreover, 50 µrad standard deviation of LOS error is good
performance indicator for a typical two-axis gimbaled system. Consequently, CRP gives significantly improved
performance corresponding to Cexp .
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Figure 12. (a) Reference tracking: reference r2 (solid black), system response with Cexp (dashed blue), CRP (dashed
red). (b) Cumulative power spectrum of LOS error: Cexp (dashed blue), CRP (dashed red).

8. Conclusion
In this paper, combined system identification and robust control method were studied and implemented on a
sample gimbaled system. Important performance improvement is achieved compared with a standard manual
loop shaping method. The test results show that sufficient performance is achieved in terms of tolerable LOS
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error for a typical two-axis gimbaled imaging system. Therefore, satisfactory design is provided considering
both high disturbance rejection capability and accurate tracking and pointing purposes.
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