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Abstract: Daubechies 5-tap/3-tap (Daub 5/3) wavelet and Kale 5-tap/3-tap (Kale 5/3) wavelet are computationally
efficient wavelets which can be implemented by bitwise shifts and additions in the lifting scheme. In this work, presented is
a formulation for computationally efficient wavelet prediction (P) and update (U) filters of two-channel lifting structures.
Their subband decomposition scheme counterparts are also given. This research bases itself on the Daub 5/3 and Kale
5/3 wavelets and develops a formula for wavelets (which can be implemented with bitwise shifts and additions) that are
derived from these two wavelets. The proposed wavelets are tried on 16 test images for three-level wavelet decompositions

and better decorrelation results are achieved for the proposed wavelets for higher-level decompositions.
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1. Introduction

In addition to the classical subband filtering structure, lifting scheme is widely popular for discrete wavelet
transform because of its design flexibility [1-5]. The discrete wavelet transform applies two different filters to
the same signal. On the other hand, for the lifting scheme, the signal is divided into two (namely into odd and
even indices). Then a chain of convolution and accumulation operations across these two signals are applied.

Extensive investigation has also been done for the development of a technique to define the wavelet
transform as a transform matrix: block wavelet transform (BWT) [6-8]. Instead of a conventional discrete
wavelet transform, the discrete wavelet transform is achieved using matrix multiplications.

The first research of the author consisted of the iterative development of a 2V x 2V BWT matrix devel-
opment algorithm (from smaller BWT counterparts) and the design of a filter by considering the orthogonality
limitations of BWT matrices of the lifting scheme. In the same research, the author proposed another filter
whose output BWT matrices converged to the Karhunen-Loéve transform matrices of test images [7, 8]. Here,
there was a problem: The wavelets were signal-dependent. The second research of the author fixed this problem
by declaring a general and computationally efficient Kale 5-tap/3-tap (Kale 5/3) wavelet [9].

In the area of integer-to-integer wavelet transforms, Adams and Kossentni made a performance evaluation
and analysis for image compression [10]. In addition, Calderbank et al. designed their famous wavelet transforms
that map integers to integers [11, 12]. Other integer-to-integer wavelet transform studies can be listed as follows:
[13-19]. This research investigates an integer-to-integer wavelet transform methodology which bases itself on
the Daubechies 5-tap/3-tap (Daub 5/3) wavelet and Kale 5/3 wavelet as the first- and second-degree wavelets

respectively and constructs the following degree wavelets using the relationship between Daub 5/3 and Kale
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5/3 wavelets.

The Daub 5/3 wavelet can be realized in the lifting scheme with bitwise additions and shifts and so can
the Kale 5/3 wavelet [9, 11, 20]. This property makes these wavelets computationally efficient. The motivation
behind this research is to answer this question: ”Can there be a formulation for the computationally effective
wavelet design?” The author has found that there is indeed a formulation for the purpose and more wavelets
can be designed. Using that formulation, the user can pick an arbitrary degree of a wavelet and the wavelet will
still be computationally efficient and wavelet transforms can be achieved using bitwise additions and shifts.

The paper starts with the lifting scheme in Section 2. The lifting scheme is followed by the description
of the Daubechies 5-tap/3-tap (Daub 5/3) wavelet. Section 4 presents the description of the Kale 5-tap/3-tap
(Kale 5/3) wavelet. Section 5 formulizes the computationally efficient wavelet design and then presents the

results.

2. Lifting scheme

Lifting is both a wavelet design and a discrete wavelet transform technique [1-3]. The lifting scheme separates
discrete wavelet transform (DWT) using finite filters into a group of elementary convolution operators. These
convolution operators are called the lifting steps.

Because the downsampling operation precedes the filtering, lifting scheme reduces the number of arith-
metic operations approximately by two. The analysis operation of the lifting scheme is shown in Figure 1. A
very convenient way of the lifting scheme is that the synthesis operation is completely symmetric to the analysis

operation.

Figure 1. 1-level lifting analysis operation.

The lifting scheme uses biorthogonal wavelets as an alternative method for accomplishing the DWT. The
lifting and scaling steps are generated from the biorthogonal wavelets in order to perform the DWT using the

lifting scheme. In the lifting scheme, the polyphase matrix is described as

H = HO,E’U(Z) HO,od(Z)
P Hl,ev(z) Hl,od(z)

The polyphase matrix is a 2 x 2 matrix which contains the low-pass and high-pass analysis filters. Each

of these filters are divided into their even and odd polynomial coefficients. Of the polyphase matrix, these

111



KALE/Turk J Elec Eng & Comp Sci

coefficients are

Hyen(2) =1 — P(2)U(2)
Hyoa(2) =U(2)
(1)
Hl,ev(z) = — P(Z)
Hl’od(z) =1

where the subband analysis filters are

and the subband synthesis filters are

Go(z) = — 27 Hy(—2)

- 3)
G1(z) =2 Ho(—2)

Wavelets must have at least one vanishing moment in order to have their scaling and dilation equations

to converge. This can only be achieved when

Hy(—1) =0
Hi(1) =0

If the prediction P(z) and update U(z) filters are in the form
P(z) = Z iz
U(z) = Z Biz "¢
it must be made sure that
o= Z a; =1
B=D> Bi=05

The lifting scheme operates in a perfect reconstruction environment. The synthesis is done with the inverse

(6)

of the polyphase matrix described in the above paragraphs [1-3]. None of the proposed wavelets described in
the below sections violates the perfect reconstruction character of the lifting scheme. This research focuses on
the design of the prediction P(z) and update U(z) contents which will not make structural changes to the

analysis and synthesis stages of the lifting scheme; thus, the perfect reconstruction is preserved.
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3. First degree: Daubechies 5-tap/3-tap (Daub 5/3) wavelet

The Daubechies wavelets, which are based on the extensive studies of Ingrid Daubechies, are a group of
orthogonal and biorthogonal wavelets. As a discrete wavelet transform technique, the Daubechies wavelets
possess the maximal number of vanishing moments for some given support. In each wavelet of this group, there
is a scaling function which is also called the father wavelet [21, 22]. The father wavelet generates an orthogonal
or a biorthogonal multiresolution analysis [11, 20]. Our case is biorthogonal wavelet design; thus, we may focus
on one of the most famous biorthogonal wavelets of Ingrid Daubechies: The Daubechies 5-tap/3-tap wavelet.

Daubechies 5-tap/3-tap (Daub 5/3) wavelet has the following subband analysis/synthesis filters:

1
Hél)(z) :g(—z2 +22 4642271 —272)
7
(1) Lo » "
H" (%) 25(—2 +2z-1)
(1) 1 -1
Gy ' (2) 25( z4+142277)

1
Ggl)(z) :g(fz — 246271 —2272 - 273)

and the following prediction P(z) and update U(z) filters:

PYD () =
9)

— N =

U(l)(z) :1 + ZZ

The prediction and update implementation of the Daub 5/3 wavelet can be implemented using bitwise
shifts and additions. This makes the Daub 5/3 wavelet computationally efficient. The general wavelet proposed

by Kale possesses such properties [9].

4. Second degree: Kale 5-tap/3-tap (Kale 5/3) wavelet

Although not having vanishing moments as much as Daub 5/3 wavelet, Kale have proposed a general wavelet
as shown in Equation 10 which has plausible regularity properties and also provides better decorrelation

performances than the Daub 5/3 wavelet on 16 test images [9].

1
P (z) = Z + 77
. (10)
@)= — 4+ — -1
U (2) 61 167

As shown in Equation 11, these prediction and update filters can be explained using bitwise additions
and shifts as in Daub 5/3.

1 1
@(y)=1—2-2=
P@(z)=1 1 + 17

1 1
I

e A TRT:

N =
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The scalar components (i.e. 1, -1/4, 1/2, and -1/16) and delayer components (i.e. z/4 and 2! /16) are
simple bitwise shift operations. The wavelet introduced by Kale has shiftings of 4 for prediction (1/4 and z/4)
and 9 for update (1/2, 1/16 and 2~*/16) [9] compared to the Daubechies’ bitwise shifts of 2 for prediction (i.e.
2 for 1/2 and z/2) and 4 for update (i.e. 4 for 1/4 and z~' /4). Moreover, there are 2 addition operations for
prediction and another 2 addition operations for update realizations compared to the Daubechies’ 1 addition

for prediction and 1 addition for update.

The lifting scheme filters of Equation 10 issue analysis subband wavelets such as

1

H?(2) = i (=72% +282+ 42+ 4271 — 3277)

1 (12)
Hl(z)(z) =1 (—2" +4z—3)

and the subband scheme filters of the synthesis become

Gy (2) = —2 " Hi(~2)

1 -1

=1 (z +44 3z )
(13)

G (z) = 2 Ho(—2)

1
=1 (=72 — 28442271 — 4272 — 32:7?)

5. Following degrees

The Daub 5/3 wavelet represents the first-degree computationally efficient biorthogonal wavelet and the Kale 5/3
wavelet represents the second-degree computationally efficient biorthogonal wavelet. The main purpose of this
research is to achieve the following degrees. These computationally efficient biorthogonal wavelets are given in
this section. In order to generate the algorithm, the scope of interest would be the third-degree computationally
efficient wavelet.

The third-degree computationally efficient 5-tap/3-tap wavelet would be

1
PO (2) + g%
31 1 (14)
B(y) = 224 = -1
URE =5t e
or to write it more suitably
3) 1
P (z)=1—-+ 37
(15)
U (z) = 11 + izfl
2 64 64
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The subband analysis filters become

1
HP (2) = — (—3122 + 2482 + 294 + 82~ — 7272)

- 512
1 (16)
HP(2) = 3 (=" +82-7)
and the subband scheme filters of the synthesis become
G§)(z) =~z Hi(-2)
1 —1
=3 (z +84 7z )
(17)

G (2) = 27 Ho(~2)

=05 (-312 — 248 + 29427 — 8272 — 727?)

Here there are 6 bitwise shifts for P (1/8 and z/8) and 13 bitwise shifts for U (1/2,1/64 and 2~! /64). By
describing the third-degree computationally efficient wavelet, the general formula can be generated. Considering

the previous degree wavelets, the general formula for the filters can be written as

1 1

(18)
U(i)(z) _ro1 + lz—l
2 4 4
() 1 i1 2 i—1 _ o
H, = ——(—(2471 -1 4871 -2
o (2) (23)l( ( )z + (4.8 )z
+6.77 42027 — (20— 1)272) (19)
@)y L i i
H"(2) = o7 (=" + 22+ 1-2)
G (2) = —271Hy(~2)
1 ) .
=5+ 27+ (2 - 1)z7h)
GY(z) = 2 Ho(~2) (20)
= & (—(2x 4"t = 1)z — (4 x 871 -2

+6x 7T 22072 (20— 1)278)

In general, we can state that an ¢ degree wavelet has 2¢ bitwise shifts for P and 4¢ + 1 bitwise shifts for
U. The number of addition operations do not change. Table 1 shows the number of shift and addition operations
in detail.
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Table 1. Numbers of shifts and additions for each degrees of wavelets.

Degree | P U
2 shifts 4 shifts

1 & &
1 addition | 1 addition
4 shifts 9 shifts

2 & &
2 additions | 2 additions
6 shifts 13 shifts

3 & &

2 additions | 2 additions

2i shifts 4i+1 shifts
i & &
2 additions | 2 additions

In order to give an idea for the higher degrees

lim P(i)(z) =1

1—>00
X (21)
lim U9 (z) ==
Hence, if we want to investigate the wavelets’ behavior for ¢ — oo, we can state that
gy L1
fm Ho'(2) =5 + 52
lim Hl(i)(z) =z—1
1—> 00
) (22)
lim G (z) =14 271
71— 00
. @y 1 1 1
Am G (2) 2 2

For higher degrees, not only the lifting scheme but also the subband decomposition scheme (i.e. 1/2,
2/2, z,-1,1, 271, 271 /2 and -1/2) can be implemented using simple bitwise shift and addition operations.

To help readers comprehend the scaling and wavelet functions, the frequency responses of all degree
scaling and wavelet functions are displayed in Figures 2 and 3. Moreover, the frequency responses of Patil’ s 2
bit and 4 bit 5/3 wavelets are shown as PSPG 2 and PSPG 4, respectively [21, 22]. Le Gall’ s 5/3 wavelet is
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not included because it has the same frequency response as the Degree 1 (Daub 5/3) wavelet; thus, Le Gall 5/3
wavelet is represented with Degree 1 (Daub 5/3) wavelet [23].

[H, ()]
2.5 T T T T T T
PSPG 2
PSPG 4
ol —— Degreel |
—— Degree 2
—— Degree 3
—— Degree inf
1.5¢ E

3.5

Figure 2. Frequency responses of |Ho(e?*)| for all degree wavelets.
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Figure 3. Frequency responses of |H(e?*)| for all degree wavelets.

Degree 1 (Daub 5/3) wavelet seems to have the best curve because of its highest number of vanishing
moments. However, other degree wavelets also prove to have better decorrelation results as can be seen in the
next section. Note that |H;(e/?)| frequency response is the same for PSPG 4 (4 bit Patil 5/3) wavelet and
Degree 1 (Daub 5/3) wavelet.
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6. Results

As datasets, there are 16 test images. The images Lena* and Mandrill* are canny edge detection over original
Lena and Mandrill images, respectively. On the other hand, Bus* and Foreman* are frame differences of the
famous Bus and Foreman video sequences, respectively. In order to observe the decorrelation performances
of the wavelets introduced in this paper, the variances of the outcomes (that are obtained in 3 level lifting

decompositions) are calculated and listed in Tables 2 and 3. The L /H variance ratios are desired to be maximized.

Table 2. Variances of the wavelet tree images after three-level decomposition (Images 1-8).

Test image, Degree i | LLLL LLLH LLHL LLHH | LLH LHL LHH LH HL HH
Aerial, i=1 1474.75 | 927.91 1316.4 | 1730.7 | 489.75 | 812.23 | 575.57 | 110.45 | 192.70 | 60.402
Aerial, i=2 1147.75 | 595.03 | 803.03 | 1226.74 | 441.27 | 693.76 | 527.72 | 147.36 | 248.71 | 92.33
Aerial, i=3 950.01 | 459.77 | 622.091 | 937.265 | 418.518 | 631.614 | 527.242 | 189.883 | 310.016 | 145.604
Aerial, i— oo 845.493 | 444.334 | 600.116 | 841.448 | 432.953 | 627.863 | 602.742 | 247.986 | 395.137 | 243.692
1%¢ Plane, i=1 2322.74 | 747.636 | 603.588 | 532.46 | 186.485 | 259.872 | 116.906 | 48.5499 | 85.0399 | 10.9563
1%t Plane, i=2 2002.32 | 437.057 | 419.323 | 380.71 181.419 | 264.845 | 117.483 | 82.6466 | 106.396 | 17.6138
1%t Plane, i=3 1810.46 | 338.545 | 426.645 | 342.322 | 194.729 | 274.025 | 129.892 | 114.887 | 131.601 | 29.0483
1%¢ Plane, i— 0o 1707.46 | 369.411 | 531.482 | 360.59 | 231.329 | 307.165 | 162.78 | 157.329 | 166.474 | 50.6679
274 Plane, i=1 580.353 | 321.072 | 310.957 | 242.338 | 134.552 | 114.132 | 79.011 | 19.8558 | 23.0125 | 20.4354
274 Plane, i=2 475.771 | 132.006 | 113.617 | 165.385 | 123.8 111.163 | 66.9966 | 23.629 | 29.3979 | 28.3982
274 Plane, i=3 407.832 | 93.3917 | 74.0332 | 138.283 | 116.919 | 105.319 | 65.8411 | 29.3041 | 35.24 39.4793
274 Plane, i— oo 383.712 | 127.443 | 108.398 | 145.056 | 121.375 | 107.354 | 74.5404 | 37.7735 | 43.113 | 58.3611
Barbara, i=1 2171.94 | 369.743 | 259.986 | 277.296 | 536.058 | 148.513 | 623.975 | 472.443 | 34.799 | 75.5528
Barbara, i=2 1986.21 | 260.59 | 178.464 | 231.889 | 423.452 | 140.82 | 518.516 | 472.849 | 51.3802 | 131.041
Barbara, i=3 1865.93 | 256.95 | 163.781 | 184.232 | 351.748 | 134.636 | 449.898 | 489.335 | 68.9417 | 215.574
Barbara, i— oo 1794.68 | 307.056 | 184.889 | 172.346 | 318.521 | 138.73 | 407.004 | 531.058 | 88.6745 | 359.426
Bus*, i=1 399.856 | 1216.95 | 332.905 | 1145.89 | 1880.08 | 563.4 1688.61 | 2412.79 | 221.111 | 453.78
Bus*, i=2 236.097 | 933.059 | 229.243 | 705.079 | 1514.98 | 434.68 | 1380.21 | 2461.03 | 258.386 | 649.34
Bus*, i=3 152.791 | 703.602 | 157.557 | 493.694 | 1281.11 | 338.548 | 1174.42 | 2561.64 | 301.135 | 935.023
Bus*, i— o0 103.789 | 556.131 | 112.461 | 397.022 | 1130.91 | 273.212 | 1067.83 | 2755.65 | 354.185 | 1401.54
Elaine, i=1 2329.48 | 286.069 | 268.352 | 210.787 | 109.29 | 121.275 | 84.1716 | 26.867 | 47.5747 | 110.481
Elaine, i=2 2115.84 | 209.891 | 155.34 | 170.111 | 112.564 | 122.161 | 73.3208 | 35.4041 | 53.7308 | 125.469
Elaine, i=3 1983.44 | 211.95 | 150.311 | 157.921 | 120.513 | 124.136 | 70.4157 | 45.0581 | 60.4423 | 146.426
Elaine, i— oo 1910.74 | 264.714 | 201.783 | 179.223 | 141.539 | 138.092 | 78.5744 | 58.0226 | 69.8929 | 179.732
Foreman*, i=1 3.9733 | 20.391 | 8.8136 | 45.206 | 41.385 | 16.918 | 50.441 | 58.892 | 9.7729 | 21.404
Foreman*, i=2 2.6965 | 12.511 | 8.8461 | 37.203 | 32.544 | 12.870 | 40.667 | 58.312 | 10.686 | 28.093
Foreman*, i=3 2.19834 | 9.01273 | 7.05417 | 26.5281 | 25.8532 | 9.95975 | 34.476 | 59.0593 | 11.813 | 37.6981
Foreman*, i— oo 1.83685 | 6.29548 | 5.37842 | 17.9742 | 20.9903 | 8.19589 | 31.1571 | 61.8062 | 13.2657 | 53.2045
House, i=1 2348.49 | 557.813 | 565.01 | 478.884 | 296.748 | 337.392 | 191.885 | 96.7139 | 127.167 | 19.0444
House, i=2 2019.58 | 532.601 | 390.338 | 357.519 | 261.488 | 316.891 | 173.928 | 131.831 | 149.172 | 30.8287
House, i=3 1862.8 | 557.798 | 383.293 | 298.017 | 256.159 | 309.179 | 172.621 | 171.119 | 174.852 | 49.6032
House, i— oo 1793.37 | 618.417 | 461.923 | 300.508 | 281.494 | 329.983 | 196.109 | 225.406 | 210.326 | 83.8993

In Tables 2 and 3, the Degree 2 (Kale 5/3) wavelet is seen to provide more credible decorrelation results
(i.e. it has better low pass/high pass variance ratios) than the Degree 1 (Daub 5/3) wavelet. On the other
hand, in the third-level decomposition, Degree 3 and Degree ¢ — co wavelets provide lower variances than the
Daub 5/3 wavelet for LLLH, LLHL, and LLHH. On the test image House, the proposed wavelets provide lower
variances than the Daub 5/3 wavelet for LLHL and LLHH, while on the Ruler, the proposed wavelets give lower
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Table 3. Variances of the wavelet tree images after three level decomposition (Images 9-16).

Test Image, Degree i | LLLL LLLH LLHL LLHH | LLH LHL LHH LH HL HH
Lena, i=1 2464.13 | 272.89 | 518.885 | 490.206 | 122.431 | 212.094 | 138.107 | 21.9546 | 46.9018 | 21.1248
Lena, i=2 2253.33 | 157.469 | 362.422 | 330.592 | 120.968 | 209.867 | 119.307 | 31.2051 | 64.3419 | 29.632
Lena, i=3 2101.45 | 135.062 | 343.814 | 273.065 | 120.744 | 213.289 | 122.743 | 41.5706 | 85.733 | 43.404
Lena, i— oo 2008.84 | 161.18 | 408.508 | 276.037 | 131.344 | 239.605 | 147.279 | 55.5454 | 115.941 | 68.5239
Lena*, i=1 0.01251 | 0.02472 | 0.01225 | 0.05748 | 0.06479 | 0.02912 | 0.10691 | 0.07247 | 0.03463 | 0.10023
Lena*, i=2 0.01033 | 0.01731 | 0.00819 | 0.03913 | 0.04807 | 0.02109 | 0.08784 | 0.07151 | 0.03423 | 0.11957
Lena*, i=3 0.00848 | 0.01221 | 0.00555 | 0.02665 | 0.03748 | 0.01607 | 0.07378 | 0.07232 | 0.03428 | 0.14523
Lena*; i— oo 0.00723 | 0.00901 | 0.00402 | 0.01915 | 0.03018 | 0.01245 | 0.06454 | 0.07545 | 0.03486 | 0.18541
Mandrill, i=1 1408.32 | 544.516 | 610.79 | 1253.65 | 459.305 | 850.513 | 950.538 | 187.441 | 572.74 | 156.942
Mandrill, i=2 1248.15 | 345.986 | 400.348 | 825.676 | 379.435 | 678.221 | 784.919 | 218.704 | 616.323 | 202.834
Mandrill, i=3 1153.36 | 269.262 | 334.074 | 599.906 | 332.973 | 554.816 | 708.831 | 252.668 | 662.079 | 299.753
Mandrill, i— oo 1108.98 | 258.217 | 328.642 | 500.912 | 315.907 | 483.293 | 708.891 | 299.574 | 734.694 | 475.89
Mandrill*; i=1 0.01889 | 0.02714 | 0.03419 | 0.09875 | 0.07832 | 0.10237 | 0.23089 | 0.09852 | 0.14420 | 0.21238
Mandrill*; i=2 0.01572 | 0.01949 | 0.02668 | 0.06299 | 0.05796 | 0.07552 | 0.18036 | 0.09832 | 0.14050 | 0.25232
Mandrill*, i=3 0.01304 | 0.01348 | 0.01914 | 0.04212 | 0.04356 | 0.05614 | 0.15059 | 0.09836 | 0.13983 | 0.30732
Mandrill*, i— co 0.01119 | 0.00971 | 0.01323 | 0.02989 | 0.03328 | 0.04195 | 0.13185 | 0.10006 | 0.14281 | 0.39427
Peppers, i=1 3090.76 | 413.967 | 403.286 | 254.218 | 141.06 | 162.715 | 82.4316 | 26.875 | 31.1291 | 20.0732
Peppers, i=2 2833.27 | 309.113 | 224.123 | 198.988 | 147.07 | 162.443 | 76.6928 | 39.4183 | 43.0221 | 23.4969
Peppers, i=3 2638.11 | 302.576 | 203.14 | 172.552 | 162.576 | 164.737 | 79.1569 | 54.456 | 56.4512 | 31.572
Peppers, i— oo 2508.73 | 366.211 | 257.88 | 193.348 | 195.989 | 182.596 | 93.1009 | 75.4749 | 75.1189 | 46.9371
Ruler, i=1 496.437 | 649.295 | 647.757 | 670.04 | 7368.59 | T188.88 | 2342.07 | 2826.18 | 2771.34 | 527.882
Ruler, i=2 399.439 | 867.421 | 915.513 | 308.622 | 5431.19 | 5262.7 | 1970.89 | 3608.94 | 3557.94 | 651.943
Ruler, i=3 484.767 | 913.519 | 956.509 | 200.192 | 3911.56 | 3767.3 | 1442.12 | 4579.4 | 4515.96 | 879.277
Ruler, i— oo 508.005 | 961.088 | 980.776 | 175.073 | 2566.08 | 2452.02 | 1031.23 | 5935.24 | 5859.56 | 1289.55
Sailboat, i=1 44927 | 701.039 | 741.515 | 790.858 | 230.075 | 276.786 | 205.657 | 69.6518 | 91.1597 | 83.4426
Sailboat, i=2 4126.54 | 520.709 | 519.342 | 560.864 | 236.577 | 264.346 | 193.951 | 101.328 | 129.34 | 101.095
Sailboat, i=3 3877.02 | 475.044 | 463.289 | 466.511 | 265.965 | 276.485 | 201.277 | 135.318 | 168.296 | 128.493
Sailboat, i— oo 3723.56 | 516.835 | 514.574 | 470.951 | 322.877 | 318.592 | 241.197 | 181.208 | 220.763 | 176.458
Tank, i=1 758.424 | 245.605 | 269.936 | 177.249 | 124.279 | 146.336 | 104.447 | 36.6123 | 52.689 | 36.8455
Tank, i=2 685.756 | 105.309 | 124.1 127.275 | 111.903 | 129.876 | 86.7573 | 40.9287 | 59.5856 | 49.0407
Tank, i=3 626.389 | 73.6693 | 93.5861 | 97.9967 | 103.485 | 119.114 | 79.9073 | 47.1095 | 67.546 | 65.93
Tank, i— oo 595.779 | 92.8755 | 116.832 | 90.2886 | 103.463 | 118.359 | 83.3077 | 56.312 | 79.2899 | 93.9844

variance than the Daub 5/3 wavelet for only the LLHH outcome. The lower variances on the high pass end
is desired. In the third-level decomposition, the variance of LLLL outcome also decreases (which is desired to
increase) for Degree 1-2-3 wavelets, but lower variances achieved on the LLLH, LLHL, and LLHH compensate
this drawback. If the reader carefully looks at the L/H ratios like LLLL/LLHH, it will be seen that better
performance (greater ratio) is given by the proposed Degree 3 and Degree i — oo wavelets.

In the second-level decomposition, on some images, Degree 3 and Degree i — oo wavelets yield lower
variances than the Daub 5/3 wavelet such as Aerial (for LLH and LHL), 2" Plane (for LLH, LHL, and LHH),
Barbara (for LLH, LHL, and LHH), Bus (for LLH, LHL, and LHH).

None of the proposed wavelets provided lower variances than the Daub 5/3 wavelet for the first-level

decomposition. However, as mentioned in the above paragraphs, for latter decompositions, the results are
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better compared to the Daub 5/3 wavelet. Thus, the proposed wavelets Degree 3 and Degree i — oo can be
a better tool (i.e. provide better decorrelation results) for two- and three level-lifting decompositions than the
Degree 1 (Daub 5/3) and Degree 2 (Kale 5/3) wavelets.

7. Conclusions

The main contribution of this research is to develop a formula for computationally efficient realizations of
prediction and update filters in the lifting scheme. A general formula is provided for the users for all subband
or lifting schemes.

For all cases, the prediction and update implementation on the lifting scheme consists of simple bitwise
shifts and additions. However, it must be underlined that as the degree increases, the number of bitwise shifts
increases as well. As for higher degrees, the wavelets in the subband decomposition scheme converge to much
simpler bitwise shifts and additions as the degree goes to infinity.

The proposed wavelets are tried on 16 test images. Although they cannot outperform Daub 5/3 wavelet
in the first wavelet decomposition, on some images they have performed credible compared to the Daub 5/3
wavelet in the second-level wavelet decompositions. On the other hand, the proposed wavelets performed better
in the third-level wavelet decompositions. The variance at the LLLL outcome also decreases (which is meant
to increase), but as mentioned previously, the low variances achieved at LLLH, LLHL, and LLHH compensate
this disadvantage and provide better performance (greater LLLL/LLHH ratio).

The computationally efficient wavelets are designed exclusively for the lifting scheme. In addition to the
lifting scheme wavelets, their subband decomposition scheme counterparts are also provided; however, subband
decomposition realizations cannot be implemented using simple bitwise shifts. The convenience of the lifting

scheme is understood once again in this research.
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