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Abstract: Crowd behavior understanding is recognized as a complex problem due to unpredictable behavior of humans
and complex interactions of individuals in groups. For crowd managers, it is crucial to understand the crowd dynamics
to manage the crowd efficiently and effectively. Current practice of crowd management is based on manual analysis
of the scene. Such manual analysis of the scene is a tedious job and usually prone to errors due to limited human
capabilities. Therefore, the task of automatizing crowd analysis has received tremendous attention from the research
community during the recent years. In this paper, we propose a deep model framework that automatically characterizes
different crowd behaviors based on motion and appearance. We first extract dense trajectories from the input video
segment and then generate trajectory image by projecting trajectories on to image plane. Trajectory image effectively
captures relative motion in the scene. We use stack of trajectory images to train deep convolutional network that learns
compact and powerful representation of motion in the scene. We evaluate our approach on UCF, CUHK, and Crowd-11
benchmark datasets. From the experiment results, we demonstrate, both in quantitative and qualitative ways, that the

proposed framework outperforms other existing methods by a great margin.
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1. Introduction

With growing urbanization, public safety in crowded events is the prime concern of crowd managers and dwellers.
Typically in religious and political gatherings, a large number of people gather in a restricted environment.
Although such gatherings serve peaceful purposes, crowd disasters still occur. To control and avoid crowd
disasters, usually, surveillance cameras are mounted in different areas of the crowded scene. These surveillance
cameras provide a significant amount of information that can be utilized for crowd analysis. Usually, security
personnel manually analyze live streams to detect suspicious activities and behaviors. Such manual analysis is
a cumbersome job and usually prone to errors due to limited human capabilities. Therefore, automatic analysis
is required to efficiently characterize different crowd behaviors.

Automated crowd behavior understanding has a wide range of applications, such as congestion detection
and anomaly detection. The goal of this work is to develop a framework that automatically identifies specific
crowd behaviors. Due to the complexity of the problem, a few strides have been made to address the problem in
recent years. Most of the existing methods focus on detecting abnormal crowd behaviors [1-6], counting people

in crowds [7-13], characterizing different motion flows, and segmentation [14-16].
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For automated crowd analysis, motion representation plays a vital role in action recognition systems.
Traditionally, motion information (trajectories) is extracted from the videos via detection and tracking. This
conventional method works well in low-dense situations; however, it suffers a significant setback in crowded
scenes. This reduces performance attributes to partial/full occlusion of human body that limits the performance
of pedestrian detectors. Several methods are reported in the literature to capture motion information from the
video. For example, [18-59] achieved high performance by learning low-level visual features using optical flow
fields. Histogram of oriented gradients [21] and histogram of optical flow were extracted in [22] and features
were then encoded with bag of features. To accurately capture motion information, Wang et al. [59] extracted
dense trajectories by tracking dense points at multiple scales. The method was further improved in [18] by
incorporating camera motion estimation. In [23], spatial and temporal extents were learned by employing dense
trajectories. The abovementioned motion extraction methods achieve noticeable success in recognition of short
duration actions. However, these methods cannot model long-term behaviors. Therefore, as a solution, we
extract motion information by adopting a holistic approach and employ optical flow computation method to
obtain global motion information from input videos.

Convolutional neural network (CNN) achieves tremendous success in object detection, recognition, and
segmentation tasks. The features learned by CNN are robust and generic compared to hand-craft features. For
this reason, researchers have employed various CNN architectures to learn motion representation from videos. In
order to learn motion from videos, several methods [24-27] have been proposed. To model motion representation
from videos, Ji et al. [28] used 3D-CNN that performs 3D convolutions on multiple channels of the input. In the
same way, Simonyan et al. [19] proposed a two-stream network that extracts spatial and motion features. Unlike
these models, Wang et al. [27] proposed a deep trajectory model that exploits deep and hand-craft features.
Hasan et al. [29] proposed a dynamic learning strategy for streaming videos. However, these models cannot
capture long-term motion information from video sequences.

In this paper, we propose an approach of identifying multiple crowd behaviors. We first extract spatial
and temporal motion information based on low-level motion features, i.e. optical flow. After extracting motion
information, we generate trajectory images (TIs) by projecting trajectories on a 2D plane. We then use multiple
TIs to train a CNN that learns long-term representations of motion. The overview of our framework is depicted

in Figure 1. Our contributions can be summarized as follows:

o For motion extraction, our method eliminates the prevalent paradigm of detection and tracking and uses

low-level local features combined with high global-level motion information.

e Our model learns compact representations of motion by learning from TIs and avoids the need of learning

directly from optical flow.
o Our approach, in contrast to Solmaz et al’s [30], identifies multiple crowd behaviors.

e Our approach identifies multiple crowd behaviors in a single scene and is not restricted to isolated activities
as in [31].

o We evaluate our method on Crowd-11 [32], UCF [30], and CUHK [33] datasets. The experiment results
show that our proposed method outperforms the state-of-the-art methods.
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The rest of the paper is organized as follows: In Section 3, we discuss the proposed methodology of
extracting motion information from videos. Section 4 discusses TT generation. Section 5 discusses experiment

and comparative results. Finally, Section 6 concludes the paper.

Figure 1. Overview of the proposed framework. Trajectories are extracted from input video using multiplescales. TIs
are then generated using extracted trajectories. TIs are stacked together and applied as input to the network. The
learned model is then used to test the new video and to assign behavior class probabilities.

2. Related work

A considerable amount of work is reported in the literature regarding vision-based crowd analysis. Most
of the existing methods mainly focus on finding the correlation among the individuals and employ different
techniques to estimate coherent motion patterns [34, 35]. Furthermore, these methods exploit low-level motion
information, i.e. optical flow, to find independent and dominant motion patterns [36, 37]. Li et al. [38] reported
a comprehensive survey about crowd flow segmentation methods.

As mentioned above, most of the existing methods focus on crowd analysis as a whole and do not
particularly focus on characterizing crowd behaviors in the scene. Therefore, we find limited work on detecting
and identifying crowd behaviors. Andrade et al. [39] and Hu et al. [40] adopt a holistic approach to extract
motion information from the scene. Later on, the extracted motion information is utilized to understand the
crowd scene. Other methods, such as Sultani et al’s [41], focus on detecting abnormal behaviors in the scene. In
contrast to these methods, our method is mainly concerned with identifying different crowd behaviors. Widhalm
et al. [42] and Li et al. [43] proposed models to learn motion patterns from the crowded scenes. Rao et al. [44]
proposed a method that learns the orientation field from the optical flow to detect critical locations [45]. Helbing
et al. [46] proposed a model based on fluid dynamics for simulating the crowd movement and demonstrate how

the phenomenon of lane formation occurs in high-density crowds.
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For understanding crowds, various methods exploit low-level features to describe crowd motion. Mehran
et al. [47] incorporated theoretical social force model for understanding dynamic interactions among the in-
dividuals in the scene. Wu et al. [48] measured motion characteristics by Lyapunov exponent that measures
the correlation among the individuals. For identifying different crowd behaviors, Solmaz et al. [30] computed
jacobian matrix, where the eigenvalues of jacobian are used to identify different crowd behaviors.

To intuitively describe the crowd characteristics, several methods have been reported to measure intrinsic
and extrinsic characteristics of the crowd, such as crowd complexity, crowd collectives, and stability analysis.
Ali et al. [36] proposed a particle-based dynamic system to compute the complexity and stability of crowded
scenes. Zhou et al. [33] measured the degree of collectiveness of the crowd with a crowd descriptor by exploiting
correlation among different motion paths. Shao et al. [49] proposed a model that measures collectiveness,
conflict, and stability using a single-stage model. Yi et al. [50] detected stationary groups of pedestrians by
using 3D stationary maps. Also, some methods exploited contextual information [51, 52] to classify different
human actions in videos.

Generally, most of the existing methods propose various solutions for crowd counting, crowd density
estimation, crowd tracking, and anomaly detection. However, a limited amount of work has been reported in
the literature on characterizing crowd behaviors. One of the reasons is the lack of proper datasets, which are
challenging to acquire. Most datasets aimed to study a specific behavior, such as panic detection [53], opposite
flow [54], and violence flow [55]. These datasets do not cover natural crowd behaviors. Furthermore, the size
of these datasets is small, and for a covolutional neural network, it is impossible to learn the representations
of different behaviors. Most related studies, [56] and [49], propose models that can identify limited crowd

behaviors, i.e. merging, divergence, bottleneck, and crossing.

3. Extracting motion information

Trajectories capture local spatial and temporal information from videos. To provide good coverage of foreground
moving objects, long and dense trajectories are highly desirable. There are two ways to capture motion
information: (1) sparse features (like corner points and SIFT features), (2) dense optical flow. In the first type,
interest points are extracted from the initial frame of the video segment and then tracked through multiple
frames. The most commonly used method for obtaining sparse trajectories are KLT [57] and SIFT flow [58].
The trajectories obtained through these methods are sparse and cannot provide detailed information for crowd
behavior understanding. In the dense optical flow method, optical flow is computed for every pixel and dynamical
system is initialized with the grid of particles overlaid on the initial frame of the video. Trajectories are then
extracted through time integration of the dynamical system. The trajectories obtained through this method are
long and dense enough to capture long-term motion information. However, these trajectories are not reliable
as the optical flow is sensitive to the illumination changes. Nonetheless, trajectories achieved through this
method are reliable when extracted from structured crowd scenes, where the pedestrians perform the same
behavior like a group of people moving in the same direction. However, in the case of unstructured crowds, the
trajectories are unreliable, since people display different behaviors like people moving in arbitrary directions.
In these cases, particles cease to follow a stable path and mix with different motion patterns. Therefore, as
a solution, we proposed a new approach that can extract dense, long, and reliable trajectories for extracting

motion information from the scene.
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3.1. Reliable descriptive motion information

The framework takes a sequence of video frames as input. The input video sequence is divided into N number
of temporal segments where the size of each segment is k. For each segment S, we first compute the dense
optical flow between two consecutive frames of segment S. Consider a particle ¢ at time ¢ of segment S. Let
X+ be the spatial location X, = (x;4, ;) of particle ¢, and V;, be the flow vector that encodes the change

in the horizontal and vertical position, which is given by Equation 1.

Vi,t = @)(Xz,t) (1)

We launch a grid G of particles over the first optical flow field at initial time ¢; of the segment S.
We keep the resolution of the grid the same as the resolution of the image in order to capture dense motion
information. Let the initial location of particle ¢ at time ¢ be X, ; = (4,4, ¥i¢), its next position at time ¢ + 1

is computed by using Equation 2.

Xit+1) = O(X(5,0)) + Xii (2)

During the particle advection process, we generate and maintain a pair of motion maps, 1, and %, . These
motion maps contain the initial and all subsequent locations of all particles of the grid. However, trajectories
extracted through Equation 2 cannot provide reliable motion information particularly in unstructured crowd
scenes. This is because in unstructured crowd scenes, motion particles drift from the original flow and become
part of another flow which may have a different direction. In order to avoid this defect, we introduce a binary
indicator that will allow the particle to stop the advection process to avoid drifting. For this purpose, we modify
Equation 2 as Equation 3.

X(i,t+1) = X(i,t) + (O)(X(z,t)) * Bz (3)

B, = { 1, if || 91-71.— Ot |l2 < ¢
0 otherwise

The particle, as mentioned above, will stop the advection process if the circular distance between its
position at ¢ and its next position at ¢+ 1 is greater than a threshold £. After particle advection, some of the
trajectories belong to the background and are generated due to noise. In order to suppress these trajectories,
we simply compute trajectory length, which is the euclidean distance between the start and end points of the
trajectory. We then suppress those trajectories for which || (xl,y!) - (27,yl) |2 < &. The trajectories
obtained through this method are long and dense and provide reliable information for further analysis of crowd

behavior.

3.2. Motion and structural descriptors
After obtaining dense, long, and reliable trajectories, the next step is to compute descriptors that encode the
motion and structural information of the trajectories. However, before computing descriptors, we encode local
motion patterns by computing the shape of trajectory. Consider a trajectory of length L, we describe its shape
by a set of displacement vectors as (AP;...AP.y;_1), where AP, is a displacement vector and computed as
AP, = ( Py — P ).

Let Q(V) = {w1,wa,...wi} represent the set of trajectories extracted from the input video V. Each

trajectory w; is represented by (i, j, u, v), where ¢ and j represent spatial coordinates of the video frame and
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u, v represent the displacement vector along the x-axis and y-axis, respectively. These trajectories will be used

in constructing TTs.

4. Generating trajectory images

For action recognition tasks, most of the existing work relies on histogram of optical flow, histogram of gradient,
and motion boundary histogram [59]. These descriptors utilize trajectory-level information and extract different
features which are then encoded using bag of words or fisher vector. However, these descriptors cause high
computation costs for long-duration actions. In order to overcome this problem, we propose a novel way of
trajectory motion representation. We convert the 3D long-term motion information to two-dimensional space
that can be effectively and efficiently processed through CNNs.

Given a video sequence S of an action, we extract trajectories € from video sequence S. We then convert

Q(S) to image plane I(S) using Equation 4

Vu?z + 02, ifi, =iand j; =j
I(i,j):{ P ' = (4)

0 otherwise

The above equation converts 3D trajectories to euclidean space. However, we observed that trajectories
overlap in such dense representations. These overlapping trajectories cause serious problems in the action
recognition process. In order to reduce the effect of overlapping trajectories, we extend the equation above by
including an overlapping constraint. In order to incorporate the overlapping constraint, we define two terms,

¥ in Equation 5 and Y in Equation 6 for trajectory image I.

1, ifl; . #0
g = ) # (5)

_ N T
Tti,j) = { Tfi,jl) + Zn:1 Zt:l \I/(i,j)v (6)

where U checks the nonzero value in TT at location (i,j) after trajectory conversion and T represents the
number of overlapped trajectories. We set a threshold value of 0.6 and if the value of T is greater than 0.6, we

reconstruct TI.

5. Experiment results

In this section, we present quantitative and qualitative evaluations of different state-of-the-art methods. For
evaluation purpose, we use three publicly available benchmark datasets, namely, UCF [30], CUHK, and Crowd-
11. We discuss the details of each dataset below.

UCF dataset was initially proposed by Solmaz et al. [30]. This dataset covers five different crowd
behaviors, namely, Lane, cArch, ccArch, fountainhead, blocking, and bottleneck. The dataset was collected
from different sources, for example, Youtube, Thought Equity, and BBC Motion gallery. The dataset covers
different scenarios with different view points, resolutions, frame rates, and duration. The dataset contains 66
videos of Lane, 20 of ccArch, 8 of cArch, 29 of fountainhead, and 20 of bottleneck. We do not consider the
blocking behavior during performance evaluation due to limited number of samples.

CUHK crowd dataset was proposed by Zhou et al. [33]. It contains 95 videos that were collected

from different indoor and outdoor scenes. This dataset also covers five behaviors, i.e. Lane, cArch, ccArch,
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fountainhead, and bottleneck. The dataset contains 91 videos of Lane, 20 of cArch, 18 of ccArch, 9 of
fountainhead, and 20 of bottleneck behaviors.

UCF and CUHK datasets are predominately used for evaluating crowd behavior models. However, these
datasets suffer from the following limitations. (1) They have a limited number of samples per class, which leads
to inefficient modeling of crowd behaviors. (2) Definitions of classes are ambiguous. Definition of different crowd
behaviors contain many discrepancies that lead to poor learning of the models. Deep learning requires a large
amount of data to learn the best representations of different classes. However, we observed that the UCF and
CUHK are small enough to train a deep neural network.

To train an efficient crowd behavior model, a substantial amount of data is needed. Moreover, the dataset
should incorporate more crowd behaviors.

To address the above problems, Dupont et al. [32] proposed Crowd-11 dataset that covers crowd behaviors
that have representation in daily life. This dataset contains 11 classes of crowd behaviors and provides sufficient
amount of data to train a deep neural network. The dataset was collected from other datasets such as Violent-
Flow [55], WorldExpo’10 [60], Agoraset [61], PETS [62], and Hockey Fight [63].The comparison of datasets is
presented in Table 1. The summary of Crowd-11 dataset is presented in Table 2.

Crowd-11 dataset has the following class labels: gas free, gas jammed, laminar flow, turbulent flow,
crossing flow, merging flow, diverging flow, static calm, static agitated, interacting crowd, and no crowd.
Laminar flow represents the smooth motion of the crowd. Turbulent flow occurs in unstructured crowds, where
pedestrians move in different directions, obstructing each other’s flow. Crossing flow occurs when pedestrians
move in opposite directions but do not obstruct the motion of each other. Merging flow occurs when groups of
pedestrians from different locations of the scene merges at one location, for example, a train station. Diverging
flow occurs when pedestrians move in different directions. Gas free flow represents situations where pedestrians
can freely move around the environment without any obstruction. Gas jammed flow represents situations where
pedestrians gather in a constrained environment and increase crowd density to a critical level. Static calm
occurs when pedestrians are static and do not move. Interactive crowd refers to the behavior when pedestrians
move opposite to each other in a violent manner. No crowd contains the video sequence with no crowd and

contains vehicles and background.

Table 1. Summary of crowd behavior datasets.

Dataset Total number of videos | Total number of frames | Number of behaviors | Resolution
UCF [30] 126 - 5 Various
CUHK [33] 474 60,384 5 Various
Crowd-11 [32] | 6272 621,196 11 Various

For the implementation of the proposed framework, we use caffe library. We train and test our model
on Nvidia Titan Xp GPU. After generating TIs, we use a pretrained model of GoolgeNet to learn compact
representation of crowd motion. We use stacked TIs and provide input to the network. Our network is composed
of five convolution layers, three normalization layers, two pooling layers, and one fully connected layer. Early
convolution layers learn the features from the local neighborhood while last convolution layers learn the context
associated with the action/behavior.

We use different state-of-the-art methods for comparison. Since the source code of most of the state-of-

the-art methods are not publicly available, we followed our own implementation of these models. The existing
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Table 2. Number of videos per each crowd behavior in Crowd-11 dataset.
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related baseline methods are briefly discussed as follows:

1. ER is the eigenvalue ratio [30] method proposed by Solmaz et al. The method starts by first extracting
motion information using optical flow and then particle advection is employed to extract long and dense
trajectories. Jacobian matrix is employed to find the candidate regions, where the eigenvalues of jacobian

matrix are used to classify different behaviors of the crowd.

2. ER-G is the variant of ER that follows the same pipeline of extracting motion information; however, this

method uses ground truth and predicted points for computation of eigenvalues of the jacobian matrix.

3. Two-SCNN is the two-stream architecture (two-streamCNN) [19] which computes optical flow from a
temporal segment of video. The stack of consecutive optical flow frames is combined with the corresponding
stack of RGB images fed to convolutional neural network. The authors use the architecture of AlexNet. At
the end of two stream network, the features from both branches of the network are combined by averaging

corresponding scores. For the comparison, we use the publicly available code of this method.

4. C3D is the 3D convolution (C3D), where the first and second dimension correspond to horizontal and
vertical axis of the image and the third dimension corresponds to stack of optical flows for each temporal
segment. Here temporal segment represents a group of 16 consecutive color images. The basic architecture
of the network consists of five 3D convolution + pooling layers (3D), and fully connected layers are added

to end of the network for classification.

5. V3G is a blend of C3D [64] and VGG network along with batch normalization [65]. The network follows
the baseline architecture of VGG with a modification of using 3D convolutions and pooling layers instead
of 2D. Batch normalization layer is added after 3D pooling layer. Moreover, the network is converted into
a full convolutional network by converting fully connected layers to 1 x 1 convolutional layers. Dropout

with the ratio of 0.7 is added to enhance the generalization capability of the network and avoid overfitting.

We evaluate and compare the performance of different methods on all datatsets in Tables 3—5. We use
true-positive and false-positive values (based on fixed threshold) as the evaluation metric. We used two variants,
i.e. appearance network and motion network of two-SCNN [19]. These networks are learned independently. We
observed from experiments that appearance (RGB)-based network performs better than motion-based network.

Motion-based network suffers from the overfitting problem due to utilization of large amount of complex motion
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information, which ultimately increases the complexity of the network due to increased number of parameters.
However, we observed that fusion model (concatenation of feature maps of both appearance and motion network)
yields better results. We also observed that this configuration yields far better results than simply averaging
the score of both network as proposed in the original work [19]. This is because concatenating feature maps
from both networks capture correlated information that cannot be captured by simply averaging the scores of

both networks. We report the results of different configuration on all datasets in Figure 2.

Table 3. Summary of classification performances of different methods using Crowd-11 dataset. TP is the true-positive
rate and FP is the false-positive rate. Our proposed method achieves higher a TP rate and a lower FP rate.

Behavior class ER ER-G Two-SCNN C3D V3G Proposed
TP FP TP FP TP FP TP FP TP FP TP FP

Static agitated 45.21% | 29.74% | 36.72% | 41.09% | 65.87% | 35.19% | 72.42% | 29.34% | 68.72% | 45.19% | 73.26% | 27.34%
Gas free 37.42% | 64.79% | 42.62% | 32.48% | 60.27% | 42.94% | 68.84% | 40.69% | 60.66% | 50.36% | 72.92% | 34.37%
Gas jammed 46.22% | 43.10% | 46.37% | 42.62% | 67.49% | 33.27% | 62.76% | 35.19% | 63.74% | 34.13% | 68.25% | 23.71%
Divergence flow 62.34% | 32.43% | 55.39% | 29.30% | 72.35% | 33.67% | 75.12% | 34.22% | 67.96% | 36.62% | 75.27% | 29.33%
Crossing flow 55.79% | 34.10% | 52.71% | 33.95% | 65.21% | 38.64% | 69.63% | 24.16% | 65.15% | 29.63% | 71.25% | 28.62%
Laminar flow 45.72% | 39.62% | 52.37% | 40.74% | 69.49% | 29.38% | 69.32% | 25.79% | 68.22% | 33.68% | 70.10% | 22.43%
Turbulent flow 37.16% | 45.32% | 39.20% | 34.02% | 55.23% | 37.00% | 59.64% | 30.97% | 57.65% | 28.77% | 65.73% | 27.88%
Static calm 55.24% | 33.16% | 52.39% | 29.64% | 62.12% | 29.64% | 65.00% | 25.13% | 64.36% | 27.34% | 69.65% | 23.60%
No crowd 65.30% | 24.10% | 63.03% | 27.39% | 71.09% | 28.62% | 67.97% | 30.11% | 65.43% | 32.46% | 72.94% | 26.30%
Merging flow 67.63% | 33.16% | 65.32% | 30.76% | 73.19% | 28.62% | 75.17% | 30.13% | 63.29% | 38.90% | 74.09% | 29.62%
Interacting crowd | 54.23% | 37.13% | 55.10% | 35.12% | 67.29% | 36.73% | 71.08% | 26.64% | 67.33% | 34.02% | 72.04% | 32.01%

Table 4. Summary of classification performances of different methods using UCF dataset. TP is true-positive rate and
FP is the false-positive rate. Our proposed method achieves a higher TP rate and a lower FP rate.

. ER ER-G Two-SCNN C3D V3G Proposed
Behavior class
TP FP TP FP TP FP TP FP TP FP TP FP
Lane 84.85% | 24.44% | 75.38% | 32.10% | 85.26% | 32.14% | 87.49% | 32.16% | 85.67% | 27.43% | 88.10% | 27.34%
cArch 82.14% | 13.33% | 50.00% | 31.36% | 82.16% | 21.06% | 85.67% | 25.16% | 84.32% | 24.16% | 87.22% | 20.13%

Fountainhead | 79.31% | 11.11% | 55.17% | 17.09% | 82.74% | 32.76% | 84.04% | 20.12% | 80.73% | 34.97% | 86.70% | 25.13%
Bottleneck 80.00% | 6.67% | 52.38% | 16.00% | 81.46% | 20.78% | 82.16% | 26.04% | 78.34% | 30.76% | 82.79% | 16.37%

Table 5. Summary of classification performances of different methods using CUHK dataset. Our proposed method
achieves a higher TP rate and a lower FP rate.

X ER ER-G Two-SCNN C3D V3G Proposed
Behavior class
TP FP TP FP TP FP TP FP TP FP TP FP
Lane 65.12% | 23.10% | 63.78% | 26.34% | 71.02% | 25.75% | 73.19% | 19.64% | 72.32% | 25.78% | 74.67% | 15.10%
cArch 55.67% | 23.49% | 45.17% | 45.92% | 60.79% | 26.37% | 67.19% | 23.74% | 65.44% | 27.10% | 69.17% | 20.99%

Fountainhead | 62.37% | 24.30% | 57.62% | 29.61% | 65.42% | 20.32% | 65.97% | 15.16% | 66.42% | 35.73% | 67.10% | 20.93%
Bottleneck 65.45% | 35.60% | 62.00% | 30.44% | 65.27% | 15.32% | 66.43% | 14.13% | 64.83% | 27.94% | 68.21% | 20.39%

For the C3D method, we use two variants of the model. The first variant of the model is trained directly
using the Crowd-11 data set. In the second variant, we first train the model on UCF dataset and then fine-
tuned the model on Crowd-11 dataset. From the experiment results, we observed that the first variant achieved

49.71% accuracy while the second variant achieved 52.31% accuracy. This is because the second variant already

177



ALZAHRANI and KHAN/Turk J Elec Eng & Comp Sci

70 . T T

[ Fusion via concatenation
[ Fusion via averaging

| — )
I Motion

60

50+

301

20+

104

Crowd—H UCF CUIH(

Figure 2. Performanced of different configurations of Two-SCNN [19]. Four variants are used to perform the comparison.
First variant (fusion via concatenation) concatenates the features from both appearance and motion network. The second
variant (fusion via averaging) fuses features from appearance and motion model. The third variant (RGB) is trained
to learn only appearance features from video clips, while the fourth variant (motion) learns motion features from video
clips.

learned features from UCF dataset and was able to precisely classify both dynamic and static behavior of the
crowd in Crowd-11 dataset.

We also generate two versions of V3G in the same way. In this case, we also observed that model trained
on Crowd-11 dataset achieves lower accuracy than training the model on UCF dataset first and then fine tunned
on Crowd-11 dataset.

We select the best-performing variant of reference methods and report the comparison results in Tables 3—
5 for each dataset.

From Table 3, it is obvious that the proposed method beats reference methods by producing higher TP
and lower FN values. The reference method C3D produces comparable results and achieves better performance
compared to V3G, two-CNN, and other reference methods. The superior performance of C3D can be attributed
to adoption of 3D convolutional and pooling layers. Furthermore, the C3D model fuses appearance and motion
features in the early stage, which further increases the performance of the model. However, we noticed that C3D
network got confused in classifying merging flows with those of dense crowds, since the movement is almost zero.
Furthermore, the C3D method incurs high computation costs due adoption of 3D convolutional and pooling
layers. We also observed that the ER and ER-G methods produce relatively low TP values and high FP values
compared to other reference methods. These methods are based on weak motion feature, i.e. optical flow that
is susceptible to illumination changes and noise. This is why these methods could not precisely detect crowd
behaviors that have real representation in daily life. Compared to other behavior classes, we observed that
all methods recognize "no crowd” class by producing higher TP and lower FP values. However, some of the
reference methods still get confused by vehicle motions, which leads to increased FP values.

Table 4 shows the performances of all methods on UCF dataset. From the table, it is obvious that the
proposed method achieves better performance compared to the reference methods by producing higher TP and
lower FP values. For Lane behavior, the proposed method performs better than the other related methods.
Furthermore, the proposed method correctly distinguishes clockwise and anticlockwise motion patterns, which

allows the proposed method to correctly classify cArch behavior. The performances of ER and ER-G are worse
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than the other methods. This can be attributed to the fact that these methods are based on optical flow feature
that is not properly fine-tuned for each video sequence. The reference method C3D produces comparable results
for all four behaviors.

Table 5 shows the performance of methods on CUHK dataset. These results indicate that the proposed
method outperforms the reference methods by detecting four crowd behaviors.

The results reported in Tables 3-5 are generated using a fixed threshold value (0.5) for deciding whether
a behavior class is detected or not. However, we observed that using a single threshold value cannot provide
conclusive information about the performance of all methods. Therefore, for a comprehensive evaluation, we

use the receiver operating characteristic (ROC) curve as shown in Figure 3.
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Figure 3. ROC curves of different methods. Our proposed method outperforms other state-of-the-art methods by a
significant margin.

ROC provides a more detailed evaluation than fixed threshold evaluation metrics. One of the limitations

of fixed threshold metrics is that they do not provide an overview of the range of performance with varying the

thresholds. Although using a fixed threshold divides the given dataset into positive and negative classes and it
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may be reasonable for some particular applications, it is difficult to find the correct value of the threshold. The

alternative powerful solution is to use threshold-free measures, i.e. ROC.
ROC curve is graphical plot between true-positive rate (TPR) and falsepositive rate (FPR). The graph is

plotted between TPR and FPR at different thresholds. (TPR) is computed as % and (FPR) is measured as

FPJZ_%. True-positive (TP) represents the number of correctly identified behaviors. False-negative represents
the count of incorrectly identified behaviors. We compute the ROC for all the methods and for the all datasets
and the results are shown in Figure 3. From Figure 3, it is obvious that our proposed framework outperforms
other reference methods by a significant margin.

We observed from the experiments that the proposed model is robust in Figure 4. In Figure 4, we evaluate
the discriminating power of the proposed method.

For this purpose, we used Crowd-11 dataset, since it contains more realistic behaviors compared to the
other datasets. We trained the proposed method independently for each behavior and tested the model on other

behaviors and report results in the form of confusion matrix in Figure 4.

Figure 4. Confusion matrix of our proposed method on Crowd-11 dataset. The classes are labeled as 1: Gas free, 2:
Gas jammed, 3: laminar flow, 4: turbulent flow, 5: crossing flow, 6: merging flow, 7: diverging flow, 8: static calm, 9:
static agitated, 10: interacting crowd.

From Figure 4, it is clear that the proposed method can effectively discriminate different behaviors.
For example, the first row of Figure 4 shows the performance of the proposed method trained on samples of
1:Gas free behavior. As obvious from the first row of Figure 4, the model discriminates gas free behavior from
other behaviors. The model (trained on gas free samples) yields a high score when tested on sample from the
same class and produces lower values when tested on other behaviors. Furthermore, we also observed that

proposed model can discriminate the behaviors that involve motion from the behaviors that involve no motion,
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for example static calm and static agitated.
We also report qualitative results of the proposed method in Figure 5. From the figure, it is obvious that
the proposed framework precisely identifies the crowd behaviors in given complex crowd scenes. The superior

performance of our proposed model can be attributed to the better representation of spatio-temporal features

embedded in trajectory images.

Figure 5. Qualitative results of our proposed approach. Our network classifies and assigns top two class probabilities
to each input video. (best view in zoom)

6. Conclusion
In this paper, we proposed an effective framework for characterizing motion behaviors in complex scenes. We
extract motion information from videos using point trajectories. These trajectories are then projected on a 2D
plane to generate TIs. The TIs are then used to train the CNN model. Our approach achieves a state-of-the-art
performance on all benchmark datasets, and beats the existing methods by a considerable margin.

In this paper, we proved the significance of modeling long-term motion using TIs. The current method
can be improved further by incorporating an attention module that will process important frames instead of
processing all the frames of a video. This strategy will boost the speed and will enable the current framework

to be applied in real-time surveillance setup. Furthermore, we will train the framework on a large dataset.
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