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Abstract: In the nearest-convex-model type classifiers, each class in the training set is approximated with a convex
class model, and a test sample is assigned to a class based on the shortest distance from the test sample to these class
models. In this paper, we propose new methods for approximating the distances from test samples to the convex regions
spanned by training samples of classes. To this end, we approximate each class region with a polyhedral convex conic
region by utilizing polyhedral conic functions (PCFs) and its extension, extended PCFs. Then, we derive the necessary
formulations for computing the distances from test samples to these new models. We tested the proposed methods
on different high-dimensional classification tasks including face, digit, and generic object classification as well as on
some lower-dimensional classification problems. The experimental results on different datasets show that the proposed
classifiers achieve either the best or comparable results on high-dimensional classification problems compared to other

nearest-convex-model classifiers, which shows the superiority of the proposed methods.
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1. Introduction

The nearest subspace-based methods [1, 2] and their generalized extensions using other convex class models [3-7]
have been widely used for improving the classification accuracy of the k-nearest neighbor classifiers especially in
high-dimensional pattern classification problems. In these methods, each class is approximated with a particular
convex class model such as linear/affine subspaces, convex hulls, and convex cones, and then a test sample is
assigned to a class based on the shortest distance from the test feature vector to the class models. These
nearest-class-model type classifiers significantly improve the classification accuracies of the k-nearest neighbor
classifiers that suffer from “hole artifacts” encountered in high-dimensional classification problems with limited
number of training samples [4, §].

Early methods used linear/affine subspaces for approximating classes and very successful classification
accuracies were achieved especially for face and hand-written digit recognition problems [1, 9, 10]. In fact, it
has been theoretically proved that the set of all images of a Lambertian object as in face images captured under
various illumination conditions can be approximated by a low-dimensional linear subspace [11]. Similarly, the
coordinate vectors of feature points from a moving rigid object lie in an affine subspace of dimension 3 under

affine camera models [12]. More recently, affine hull models are also successfuly used for activity recognition
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[13]. Among the subspace methods, class featuring information compression (CLAFIC) [1, 10] (also known
as the nearest subspace classifier proposed in [2]) uses linear subspaces to approximate each class and a test
sample is assigned to the class yielding the nearest linear subspace distance. The common vector method in
[14], on the other hand, uses affine hulls (affine subspaces) to model classes and yields better accuracies than
CLAFIC in most applications since affine hull models better localize the class regions compared to the linear
subspaces [14-16]. However, both linear and affine subspaces are very loose approximations in the sense that
they do not specify where the class is within the linear/affine subspaces. However, they are computationally very
efficient (since linear/affine subspace parameters can be computed offline) despite their lack of selectivity and
they surprisingly work well in high-dimensional classification problems. In fact, the most of the state-of-the-art
classifiers are obtained by introducing additional constraints on linear/affine subspace combination coefficients.
For example, both [17] and [18] enforced sparsity on the samples used for creating subspaces in face recognition.
Same sparse linear/affine models were also successfully used in bag of words models in the context of visual
object classification [19, 20]. In a similar manner, the authors in [21] used regularized affine hull models to
represent image sets where L2-norms of affine hull combination coefficients are minimized when computing the
smallest distances between affine hulls.

The authors in [5, 22] used a tighter convex hull modeling for approximating classes. It should be noted
that the convex hulls are the smallest convex regions containing samples of a particular class and the popular
support vector machine (SVM) classifier also uses convex hulls to approximate the regions of positive and
negative classes. Although convex hulls tend to produce overtight approximations, they outperform linear/affine
subspace models for more general classification problems cast in low-dimensional spaces [23, 24]. However, unlike
linear/affine subspaces, their parameters cannot be computed in advance, which makes them computationally
inefficient for real-time applications. The nearest convex hull classifier is extended for classification problems
where data are represented with tensors in [25].

More recently, new methods have used moderate models that are between affine and convex hulls in terms
of tightness. For example, the compact hypersphere model is the basis of the 1-class SVM [7] and it is used
for outlier detection. The authors in [4, 26] introduced hyperdisks which are disk-shaped regions formed by the
intersection of the affine hull and the bounding hyperspheres. The hyperdisk approximation is still somewhat
loose but it encodes both the relevant variables and the region occupied by the class within their subspace. The
authors in [6] used convex cone models which are constructed by using conic combinations of class samples for
face and pedestrian detection. Convex cones are also used in [27] for image set-based recognition. Zhao et al.
[28] used symmetric positive definite models for the nearest-convex class classification.

It should be noted that all methods described above are global methods that use a single convex model
for approximating a particular class. However, convex class models can also be used locally by approximating a
few samples returned by a selective algorithm (e.g., k-nearest neighbor) as in [3, 8]. Also, we would like to point
out that convex class models are widely used for image set classification where the user supplies a set of image
feature vectors as query rather than supplying a single query feature sample [16-18, 21] and for improving the
clustering accuracy in high-dimensional spaces [29].

In addition, the large-margin-based classifiers also use convex class models to find linear separating
hyperplanes [15, 26, 30-32]. The prototypical method of this kind, SVM, finds a linear hyperplane in feature
space that maximizes the “margin” between convex hulls of positive and negative classes [30]. Similarly, the

authors in [15] find the separating hyperplane that best separates affine hulls of positive and negative classes,
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whereas the authors in [26] find the margin classifier that best separates the binary classes approximated with
the hyperdisks. These large-margin-based classifiers are different from the nearest-class-model type classifiers
since they return linear pairwise decision boundaries. On the other hand, the pairwise decision boundaries
returned by the nearest-class-model type classifiers are not linear; they are generically at least quadratic or
piecewise quadratic. For example, for affine hulls they are generally hyperboloids and they are typically more
flexible than linear decision boundaries returned by the large margin classifiers.

In this paper, we introduce new convex class models for the nearest convex model type classification. To
this end, we approximate each class with a polyhedral convex cone (PCC) or extended PCC (EPCC) by utilizing
polyhedral conic functions and their extensions. The proposed PCC and EPCC models are very different than
the convex cones and they can be seen as a crude approximation of the convex hulls. We first derive the
formulations needed to compute the distances from the test samples to the PCC and EPCC models and then
compare these models with the existing convex class models in terms of accuracy. The proposed models typically
achieve the best accuracies among all tested methods for high-dimensional classification problems showing that

the proposed models successfully approximate the true class regions in high-dimensional feature spaces.

2. Related methods

In the nearest-class-model type classifiers, each class in the training set is approximated with a convex class
model and the distances from the test sample to each class model are computed. Then, the test sample is
assigned to the class with the closest distance. In this section, we first briefly describe the related convex class
models and discuss their advantages and limitations. Characteristic properties of the convex class models are

briefly summarized in Table 1.

Table 1. Convex class models (SVD, singular value decomposition; QP, quadratic programming; LP, linear program-
ming).

Convex class models Model parameters Solver type
Linear subspace U¢ (computed offline) SVD
Affine subspace U¢, p. (computed offline) SVD
Convex hull o (computed online during testing time) QP
Convex cone o (computed online during testing time) QP
Polyhedral convex cone | W, = (%), b, (computed online during testing time) | LP

2.1. Linear subspace models

Let us suppose there are C' classes in the training set and x§ denotes the i-th sample of class ¢. A linear

subspace class model of a particular class ¢ is the linear subspace spanned by its training samples, i.e.,

LS. = {xx = aixy, af € R} : (1)
1=1

To find the minimum distance from a test sample to a linear subspace, one has to solve the following uncon-
strained optimization problem:

argmin ||Xeest — Xac|| , (2)
Qo
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where X¢ denotes the matrix whose columns are the samples of the c-th class. By taking derivative of the
objective function and equating it to zero, it can be shown that minimizing this distance becomes the maximizing
U X¢ese|| where U€ is the matrix whose columns are the orthonormal basis vectors spanning the linear subspace
of class ¢ [9, 10]. Numerically, U¢ can be found by applying an eigen-decomposition on correlation matrix
X¢(Xe) T or it can be found as the U-matrix of the “thin” singular value decomposition (SVD) of X¢. Here,
“thin” indicates that we take only the columns of U corresponding to “significantly nonzero” singular values.
This subspace estimation process is essentially orthogonal least squares fitting. Discarding near-zero singular
values corresponds to discarding directions that appear to be predominantly “noise”. It should be noted that
the length of the test vector does not contribute to the classifier decision, i.e. classifier using linear subspace
models is invariant to the test vector length and makes the decision based on the angle between the test vector
and the subspace.

Linear subspace modeling is a very loose approximation to a class region and it does not specify where
the class samples lie within the linear subspace. Also, linear subspaces can only be used for pattern classification
problems where the dimensionality is larger than the number of samples in each class (otherwise the distances
from test samples to linear subspaces become zero, which makes the method useless). However, they are very
efficient in terms of real-time performance since linear subspace parameters (orthonormal basis vector matrix
— U°) can be computed offline and one has to make simple matrix multiplications to compute the distance,
lUX¢est||, during testing. State-of-the-art face recognition methods such as [17] are obtained by enforcing

sparsity on linear combination coefficients «. via L1 norm.

2.2. Affine subspace models

Affine subspace (or affine hull) of a particular class is affine span of its training samples:

AS. = {X|X—Zafxf, aj € R, Zaf—l}. (3)
i=1 i=1

Affine subspaces can be seen as shifted linear subspaces and they can better localize the class samples compared
to the linear subspaces. To get rid of the equality constraint, we can choose any reference point from the class

samples, e.g., the mean p. = (1/n¢) Y i<, x¢, and rewrite (3) as:
AS: = {x]x = p.+ U’ af¢€ Rl} , (4)

where U€ is an orthonormal basis for the directions spanned by the {xfj —fhes ey Xy — uc}, and [ is the
number of basis vectors. Numerically, U¢ can be found by applying an eigen-decomposition on covariance
matrix or by applying SVD to the mean subtracted examples. By following similar steps as in linear subspaces,

the distance from a test sample to an affine subspace can be computed by:
d(xtesta ASC) = ||Xtest — He — Pc(XteSt - UC)H ) (5)

where P, = UC(UC)—r is the orthogonal projection operator onto the affine subspace of class c¢. In contrast
to the linear subspaces, the distance from a test sample to an affine subspace depends on the length of the test
sample. Therefore, affine subspaces distances are not invariant to the scaling of the test feature sample.

As in linear subspaces, affine hulls are only suitable when the dimensionality of the sample space is

larger than the number of samples of classes, and the affine subspace parameters can be computed offline so
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the distances can be computed in real-time during testing. Affine subspaces surprisingly work well especially in
high-dimensional classification problems, e.g., the state-of-the-art common vector and discriminative common

vectors [14] use affine subspace distances for classification.

2.3. Convex hull models

The convex hull of a class is the smallest convex set containing its samples and it requires adding additional
constraints, af >0, i = 1,...,n., to (3). Therefore, finding the distance between a test sample and a convex

hull requires the solution of the following quadratic programming (QP) problem:

argmin 1 [|x¢est — Xac||

O
ne (6)
s.t Zale, o >0, i=1,...,n
i=1

Once the optimal coefficient vector o} is found, ||xsest — Xa|| determines the distance from the test sample
to the convex hull of the class c.

This model makes few assumptions but tends to produce “overtight” approximations for high-dimensional
spaces since for convex classes in high dimensions with practical numbers of training examples, almost all
of the class volume typically lies outside the convex hull of the samples but they significantly outperform
linear/affine spaces for classification problems cast in lower dimensional spaces. However, finding distances
is computationally very expensive, which is the major limitation of the convex hulls because the convex hull
typically has exponentially many facets so it cannot be stored explicitly as in linear/affine subspaces, instead,

we need to solve QP problem of (6) for each test point at run-time.

2.4. Convex cone models

Convex cone of a class ¢ includes conic combinations of its samples, i.e.,

cC, = {x|x =Y agxt, aof > 0} : (7
=1

The only difference between a convex cone and a convex hull is that the convex cone does not have the equality
constraint, Z:ﬁl of = 1. Thus, convex cones are looser models compared to convex hulls. The distance from

a test sample to a convex cone can be found by solving the following quadratic programming (QP) problem:

arg min % Ixtest — XCal|
o Q
st.af >0, i=1,...,n.

Once the optimal convex cone combination parameters are found, the distance can be computed as ||X¢est — X°atk|| .
As in convex hulls, computing distances is computationally expensive since we need to solve QP problem of (8)
for each test point at run-time. It should be noted that the distances to the convex cone models are sensitive

to the test vector length, but they are invariant to the scaling of the training class samples.
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3. Polyhedral conic functions and polyhedral convex cones

3.1. Preliminaries

In the proposed method, we approximate each class with a polyhedral conic region constructed by using
polyhedral conic functions (PCFs). PCFs were first introduced in [33] to separate two arbitrary finite disjoint
sets, and its extended version, EPCFs, were proposed in [34, 35] for visual object detection and classification.

A graph of a PCF is a polyhedral cone with a sublevel set including an intersection of at most 2¢ half spaces
as seen in Figure 1. PCFs and EPCFs can be defined as follows:

Fuasp(x) =w(x =) +7yllx s —b (PCF) (9)

Jwysb(X) = WT(X —s8)+ '\/T\X —s|—b, (EPCF) (10)

where x € R? is a test point, s € R? is the cone vertex, w € R? is a weight vector, and b is an offset.

For PCF, |lu, = Z?Zl |u;| denotes the vector L1 norm and v is a corresponding weight, while for EPCF,

lu| = (Jua|,- .., |ug|)" denotes the component-wise modulus and 4 is a corresponding weight vector. The fact

that such functions define a polyhedral cone follows from the following lemma [33].

Lemma 1 A graph of the function f(x) defined in (9) is a polyhedral cone with a vertex at (s,—b).

w.s.7,b

The authors in [33, 34, 36, 37] introduced polyhedral conic classifiers that use PCFs and EPCFs with
decision regions f(x) < 0 for positives and f(x) > 0 for negatives (opposite of the well-known support vector
machine classifier decision rule). For PCF with b > 0, v > 0, ||[W||cc < v (where [|ul| = max(|u;|)i=1,....a 18
the oo norm) and any 7, the region f(x) < 7 is convex and compact in R? and it contains s. Similarly, for
EPCF, b >0, v > 0, |w;| < ; forall i =1,...,d, and any 7, the region f(x) < 7 is convex and compact
in R? and it again contains s. It should be noted that polyhedral conic regions are looser models compared to

convex hulls, but very tight models compared to affine subspaces and convex cones.

3.2. Finding distances from test samples to polyhedral convex conic regions

We need to compute the distances from the test samples to the polyhedral conic models to classify test samples
during online testing stage as seen in Figure 2. In this section, we derive the necessary formulations needed
to compute such distances. To find the distance from a test sample to the polyhedral conic region spanned by

X—S.
Ix—scll,

samples of class ¢, we first augment a feature vector x as x = ( ) € R and the weight vector to

we = (%) € R for PCF. Similarly, for EPCF we augment the feature vector as X = ( x750|> € R?? and

|x—sc
the weight vector to w. = (5°) € R??. We set the cone vertex, s, to the class mean as in [34]. Then, the

distance from the augmented test sample X;.s; to the polyhedral convex region spanned by samples of class ¢

918



CEVIKALP et al./Turk J Elec Eng & Comp Sci

(© (d)

Figure 1. Visualization of PCC classifiers for 2D synthetic data: The positive acceptance regions are “kite-like”
octahedroids containing the points for which a linear hyperplane lies above an L; cone. (a): 2D positive (yellow) and
negative (blue) samples; (b) and (c): view of positive-class acceptance region in 3D; (d): Resulting “kite-like” acceptance
region in 2D space.

can be computed by solving the following linear optimization problem:

~T~
argmax (W, Xyest — be)
ch’Yc(’Yc)vbc

s.t. vﬁ(/;ritest - bc > 0,
~T~C < .
w,.X; —b.<0, i=1,...,n.

b. >0, 7. > 0(PCF), ~.> O0(EPCF).
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—_

Class 1 LP @b, distance (D)
[ samples solver computation >
x _ . : : L Vet :.argmin (D)
test . . . i=1,...c
Class ¢ LpP @b, distance D,
—* samples solver computation [

—

Figure 2. Ilustration of the proposed method: The distances from a test sample to the polyhedral conic regions of
classes are computed by using a linear programming (LP) solver. Then, the label of the test sample, yiest, is assigned
to the class giving the smallest distance.

This optimization problem formulates the problem as finding the maximum distance from the test sample
to a closed polyhedral conic region that inscribes all samples of class ¢. The distance is maximized when the
parameters w., b, of PCF/EPCF return the smallest compact polyhedral region including c—th class samples.
As a result, we compute the shortest distances from test samples to the most compact PCC and EPCC class
models. Note that this is a standard linear optimization problem with inequality constraints and some bounds,
so any LP solver can be used to solve this simple problem. Once the optimal PCF and EPCF parameters

(W, b.) are found, the distance to polyhedral convex conic regions (PCCR) can be computed as:

(Wzitest - bc)
[Well

d(Xtest,PCCRC(EPCCRC)) (12)

Then the test samples are assigned to the class yielding the smallest distance. We call the resulting methods

using the polyhedral and extended polyhedral conic regions as PCCR and EPCCR, respectively.

3.3. Comparison to other nearest-convex-model classifiers

The proposed method uses PCC and EPCC models for approximating class regions. These models are slightly
looser than the convex hulls, but they are tighter compared to remaining convex class models including
linear/affine subspaces and convex cones. Regarding testing time efficiency, the distance computation from
test samples to polyhedral conic regions needs to solve an optimization problem during online testing time as in
computing convex hull and convex cone distances. Therefore, this procedure is slower compared to the methods
using linear/affine subspaces, but it is faster compared to the method using convex hull since it solves a simple

LP problem instead of a computationally more expensive QP problem.

4. Experiments

We tested the proposed methods on various datasets with different dimensionalities and training set sizes. The
proposed PCCR and EPCCR methods solve the LP problem given (11) for each test sample at run time. We
compared our proposed methods to the ones using linear subspaces (LS), affine subspaces (AS), convex hulls

(CH), convex cones (CC), and linear hyperspheres (LHS).
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4.1. Face recognition

We used the AR Face dataset! for face recognition experiments. The AR Face dataset includes frontal views
of 126 subjects, with two groups of 13 images per subject recorded in two sessions spaced by 14 days. In our
experiments, we randomly selected 20 male and 20 female subjects, aligning, down-scaling, and cropping the
images to 105 x 78 pixels. Raw pixel values are used as features; thus, the dimensionality of the input space,
8190, is much higher than the total number of samples in each class. We randomly selected 13 images of each
person for training and the remaining 13 images are used for testing. This is repeated 10 times and the final
accuracies are averages of accuracies obtained in 10 trials.

Table 2 reports the classification accuracies and testing times of the classifiers. The best accuracies are
obtained by the proposed PCCR and EPCCR methods, and they significantly outperform other methods with
exception of AS classifier. Since the dimensionality of the input space is much larger than the number of samples
in each class, affine subspace models significantly outperform convex hull and convex cone models as expected.
However, it was surprising to see that EPCCR and PCCR methods which compute distances from test samples
to polyhedral convex conic regions at run time even outperform affine subspace models. Linear subspaces
perform poorly compared to other convex class models except for hypersphere ones. The worst accuracies are
obtained by method using linear hyperspheres.

In terms of the speed, linear hypersphere is the fastest one followed by linear/affine subspace classifiers.
These classifiers are fast since their parameters are precomputed before testing time. Our proposed classifiers
are faster than both CH and CC methods using QP solvers, but slower compared to the methods using linear

hypersphere and linear subspaces.

Table 2. Classification Rates (%) on the AR Face Dataset.

Method | Accuracy | Run time (s)

LS 773+26 | 4x1073

AS 949+1.5 | 11 x 1073
CH 83.04+2.4 | 33 x 1072
CcC 85.1+1.8 | 14 x 1072
LHS 45.6+2.7 | 16 x 10~*

PCCR | 95.5+1.6 | 10 x 1073
EPCCR | 954+ 1.5 | 15 x 1073

4.2. Visual object recognition

We tested the proposed methods on two visual object recognition datasets, Cifar10? and Coil100? datasets.
Cifar10 dataset includes 60K 32 x 32 small images of 10 objects: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck as shown in Figure 3. 50K samples are used as training and they are split into 5
batches whereas the remaining 10K samples are used for testing. We used 4096-dimensional CNN features for
Cifar10 dataset experiments. To extract CNN features, all images are first resized to 256 x 256 and then we

used Caffe implementation of the AlexNet architecture described in [38] by using the identical setting used for

Thttp://www2.ece.ohio-state.edu/ ~ aleix/ ARdata-base.html
2https:/ /www.cs.toronto.edu/ ~kriz/cifar.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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ILSVRC 2012 classification with the exception that the base learning rate was set to 0.001. AlexNet includes 8
layers, 5 of which are convolutional layers and the remaining 3 are the fully connected layers. ReLLU activation
functions are used in the network, and soft-max classification loss is used for classification. We used 80% of the
full training data for training and the remaining 20% as validation to train the CNN classifier. We used data
augmentation for training. The number of iterations is set to 120K.

Figure 3. Some selected images from Cifarl0 dataset. Cifarl0 has 32 x 32 small images of 10 objects: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each row corresponds to a class in the figure.
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The classification accuracies and testing times are given in Table 3. All methods achieve similar results
except for the method using linear hypersphere which yields the worst classification accuracy. The best
classification accuracy is obtained by the method using convex cones, and it is closely followed by the proposed
EPCCR method. It should be noted that the number of samples per class is slightly larger than the feature
dimensionality (feature dimension is 4096, and the number of samples per class is around 5000) for Cifar-10
dataset. As a result, all methods yielded similar accuracies with the exception of linear hypersphere since a
linear bounding hypersphere is not a very accurate model for approximating class regions. The AlexNet which is
initialized with random weights yielded an accuracy of 79.17%, which is significantly worse than the accuracies
of the proposed methods. In terms of testing time, the methods whose parameters are computed offline are
again the fastest classifiers. In contrast to the face recognition experiments, CC method is faster compared
to the proposed methods despite it solves a QP problem. However, our proposed methods are faster than CH
method as before.

The Coill00 dataset includes 100 different objects and 72 views of each object taken at 5-degree-apart
orientations. We used gray-scale values of images down-sampled to 64 x 64, which in turns yields a 4096
dimensional feature space. In our experiments we used 40 classes. We randomly selected 36 samples from each
class for training and the remaining 36 samples are used for testing. This is repeated 10 times and the final
accuracies given in Table 4 are averages of results obtained in each trial. As in face recognition experiments, the
dimensionality of the input space is much higher than the training samples of each class. The best classification
accuracies are obtained by the proposed PCCR and EPCCR methods and the CH method using convex hulls.
The worst accuracy is again obtained by linear hyperspheres. The number of samples per class is very low
compared to the dimensionality and the looser models such as affine and linear subspaces are expected to work
better than the tight models. However, since the image samples belong to the same identity for each object
class, there is a very little intraclass variation; therefore, the tighter models such as convex hulls and convex
cones also worked well for this particular dataset. The testing times are similar to the ones computed for Cifar10
dataset, and the proposed methods are faster than only CH method.

Table 3. Classification rates (%) on the CIFAR10 dataset. = Table 4. Classification rates (%) on the Coil-40 dataset.

Method | Accuracy | Run time (s) Method | Accuracy | Run time (s)
LS 84.04+02 | 45 x 1074 LS 98.8+0.6 | 28 x 1074
AS 83.84+0.2 | 18 x 1073 AS 99.14+0.6 | 68 x 10~*
CH 83.94+1.1 | 60.88 CH 99.2+0.5 | 64.62

CC 84.3+0.3 | 41 x 1072 CC 99.0£0.5 | 0.37

LHS 80.7+3.6 | 2x107* LHS 76.2+0.9 | 9x 1074
PCCR 83.9+0.5 | 10.80 PCCR 99.2+0.6 | 17.53
EPCCR | 84.24+0.4 | 11.46 EPCCR | 99.2+ 0.6 | 43.07

4.3. Hand-written digit recognition

We used USPS dataset for digit recognition. It contains 9298 16 x 16 gray-scale images of hand-written digits,
with 7291 reserved for training and validation and the remaining 2007 for testing. In our experiments, we used
raw gray-scale pixel values as features without any preprocessing. It should be noted that unlike other tested

datasets, the training set size is larger than the dimensionality of the input space for this dataset.
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The classification results are given in Table 5. The best accuracies are obtained by the proposed PCCR
and EPCCR methods and they significantly outperform the other tested methods, which shows the superiority
of the proposed classifiers. As expected, both methods using linear and affine subspace models perform rather
poorly since the dimensionality is much smaller than the samples of each class. The method using linear
hypersphere model again produces the worst accuracy. We also tested AlexNet on this dataset. The network
is started from random weights as before. It yielded an accuracy of 95.47% which is slightly higher than the
accuracies of the proposed methods. In terms of testing time, the proposed methods are faster than only CH

method as in visual object classification experiments.

Table 5. Classification rates (%) on the USPS digit dataset.

Method | Accuracy | Run time (s)
LS 41.5 12 x 1074
AS 51.7 16 x 1074
CH 87.5 37.28

CcC 91.7 27 x 1073
LHS 19.7 3x107°
PCCR | 94.5 16.68
EPCCR | 94.4 30.82

4.4. Experiments on UCI repository datasets

We tested the proposed methods on 5 binary and multiclass datasets chosen from UCI repository: Ionosphere,
Iris, Multiple Features (MF) - pixel averages, Pima Indian Diabetes (PID), and Wisconsin Diagnostic Breast
Cancer (WDBC) datasets. The sizes of the UCI problems are summarized in Table 6. As opposed to previous
datasets, the dimensionality of the sample space is very low for these datasets.

We used 5-fold cross-validation to test the classifiers. The results are given in Table 7. The proposed
EPCCR classifier achieves the best accuracy on Ionosphere dataset and significantly outperforms the other
classifiers. For the remaining 4 classes, the proposed methods achieve the third best accuracy. CH method is
the winner for MF and WDBC datasets, but the difference is not very significant. CC method achieves the best
accuracy on Iris dataset, and AS method wins for the PID dataset, and again the performance difference is not
very significant. Overall, the results are quite mixed, and there is not a clear winner on these low-dimensional

classification problems.

Table 6. Datasets from the UCI Repository
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Dataset # classes | # examples | Dimension
Tonosphere | 2 351 34

Iris 3 150 4

MF 10 2000 240

PID 768 8

WDBC 569 30
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Table 7. Classification rates (%) on the UCI datasets.

Method | Ionosphere | Iris MF PID WDBC

LS 704+88 | 97.3+£28 | 97.0+0.5 | 65.84+4.8 | 88.8+1.4
AS 84.6+42 | 953£38 | 9414+05 | 73.3+£2.9 | 84.5£5.7
CH 85.2+5.7 | 96.0£54 | 9854+0.6 | 73.1+4.7 | 95.3£1.3
CcC 75.54+26 | 98.0+£3.0 | 984+0.8|644+58|946+2.1
PCCR 929+36 | 940£49 | 98.1+0.8 | 69.3+3.4 | 93.8£2.9
EPCCR | 946+3.6 | 96.0+28 | 97.44+0.6 | 70.7+3.4 | 93.7+2.5

4.5. Open set recognition

Here, we tested the proposed classifiers on the open set recognition task to assess the proposed models’ rejection
To this end, we used Cifarl0 dataset. For

the open set recognition setup, we randomly select 3 classes from training data and use the training samples

performance of the samples coming from other unseen classes.

coming from these classes alone during distance computation. During testing, we use all test samples coming
from 10 classes of Cifarl0. For accuracy, we compute AP (averege precision) scores from the precision-recall
curves for the 3 classes and the take the mean of these. The precision-recall curves are plotted in Figure 4
and computed mAP scores are given in Table 8. As seen in the table, the proposed models achieve the best
accuracies and significantly outperform all the other methods. This clearly shows that the proposed models
successfully approximate class regions and reject the samples coming from the unknown classes with a high

precision.

Precision

CH — LS — LHS —- EPCCR
02 CcC — AS PCCR
0.1 \ 1 , . . . \ . :
0 01 02 03 04 05 06 07 08 09 1
Recall

Figure 4. Precision-recall curves of the tested classifiers on open set recognition task.

5. Conclusions

This paper introduces polyhedral convex conic regions (PCCRs) to approximate classes for the nearest-class-
model type classification. To this end, we approximated each class region with a polyhedral convex cone and
proposed a linear programming (LP)-based method to find the distances from test samples to the polyhedral
convex conic regions. The polyhedral conic region models which are used to approximate the class regions

are looser than convex hulls, but they are tighter compared to other convex models such as linear/affine
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Table 8. AP scores of the tested classifiers.

Convex class models | AUC

LS 0.5189
AS 0.5241
CH 0.6127
ccC 0.6902
LHS 0.3576
PCCR 0.7686
EPCCR 0.8370

subspaces and convex cones. We tested the proposed methods on various high-dimensional classification tasks
including face, digit, and general object classification as well as on some lower-dimensional datasets. In addition,
the proposed methods are tested on open set recognition setting to assess the rejection performance for the
test samples coming from unknown classes. The proposed methods typically achieve the best accuracies on
high-dimensional problems and significantly outperform the other rival classifiers especially on digit and face
recognition problems. The proposed models also yielded the best accuracies for open set recognition. All
these results demonstrate that the polyhedral conic regions can successfully estimate the true class regions on
classification problems cast in high-dimensional spaces compared to other loose and tight models and they can

easily reject the test samples coming from unknown classes that are not seen in the training (gallery) data.
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