
Turk J Elec Eng & Comp Sci
(2020) 28: 3352 – 3367
© TÜBİTAK
doi:10.3906/elk-1912-107

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Improving coverage method of autonomous drones for environmental
monitoring

Ömür YILDIRIM1,2, Revna ACAR VURAL1,∗, Klaus DIEPOLD2
1Department of Electronics and Communication Engineering, Faculty of Electrical and Electronics Engineering,

Yıldız Technical University, İstanbul, Turkey
2Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

Received: 23.12.2019 • Accepted/Published Online: 10.08.2020 • Final Version: 30.11.2020

Abstract: With the rapid developments of unmanned aerial vehicles (UAVs), usage of UAVs is increasing to bring
autonomy for complicated processes such as environmental monitoring. Because of the complexity of the problem,
environmental monitoring tasks are highly demanding in terms of time and resources. To reduce expensive costs
of operations, improvements on autonomous observation capabilities has a key role. In this work, we offer coverage
improvements for our autonomous environmental monitoring system. We compared different path planning approaches
to find out the optimum path planning solution. Simulation results showed that required task execution time and
required resources are decreased by usage of improved decomposition of the coverage field.
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1. Introduction
Nowadays, unmanned aerial vehicles (UAV) are increasingly being preferred for applications such as path
planning, search and rescue operations and environmental monitoring for wildlife and precision agriculture.
Introducing autonomy to these vehicles provides abilities such as instantaneous decision making, perceiving the
environment and reacting to events without human invention. Moreover, autonomous vehicles are also capable
of analyzing the collected information, communicating with each other or a ground terminal and decision making
using algorithms, sensors and actuators [1–4].

Robust environmental monitoring is a demanding task that can require long periods of observation,
periodical or continuous tracking several data collected from a number of sensors and access to protected,
private or uncivilized areas with various sizes. In order to overcome the challenges of this task, aerial imaging
techniques through the use of unmanned autonomous aerial vehicles, systems and platforms (UAVs, UASs,
UAPs) are employed [5–8].

In the literature, promising tracking and observation performances of autonomous environmental moni-
toring approaches are reported. One of them utilized sensor networks where each sensor collects different type
of measurements and exchanged them in order to track the environment and estimate the location of the event
[9, 10]. The usage of reference locations in this approach leads to inhibitive deployment and time-consuming
standardization. Another approach investigates aerial vehicles equipped with various sensor that can move
towards the prespecified area. Robotic systems are more suitable for localization because of their dynamic and
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flexible aspects [7, 11, 12]. Yet, in wild or urban environments performing consistent operations with robotic
systems may be challenging due to many crucial issues such as planning, navigation and endurance. Therefore,
autonomous and robust monitoring systems including artificial intelligence, obstacle detection and avoidance
technology, control and communications, image processing and battery capacity measurement need to be devel-
oped [11–15]. In urban environment, maintaining persistent operation of robotic systems is troublesome even
with low level of human intervention [16] where stable broadband radio link cannot be guaranteed in those
environments. Limited availability of computing resources and low weight sensor usage in harsh environments
for mobile systems introduces some challenges for autonomous environment monitoring. Recently, similar re-
searches have been released for the execution of various monitoring missions. In [17, 18], researchers have
concentrated to high altitude imagery with autonomous UAVs to map environments using thermal imaging
and multi spectral imaging, respectively. Since, big sized data is collected and needed to be processed, huge
computational power is required which is not available on-board. A possible solution is to transmit the col-
lected data to a base station and process it after monitoring is completed. However network security should be
provided during transmission and time delay should be minimized. Moreover, the ability to plan collision-free
paths in complex urban environments is another task of UAV autonomy. In [3], 3D path planning of UAVs
using adaptive discrete mesh is proposed and a brief bibliographic review focused on 3D trajectory planning is
presented. However, planning a three-dimensional (3D) path can be impractical for some applications where
the task is to sweep the surface. Yet, in 3D planning, task is usually travelling. In [19], a static 2D approach
based on vertical cell decomposition is presented for path planning and identifying ground objects. This method
explores and decomposes the 2D environment by constructing a finite data structure that completely encodes
a solution for a given path including obstacles, such as buildings, resulting in an efficient and simple 2D path
detection. Recently, in [20] a wind prediction method is used with a boustrophedon coverage path. Researchers
tried to minimize the flight times by using a certain sweep angle that can benefit from the wind. In [21], a
method that uses boustrophedon coverage with heuristic algorithm to find an optimal path for a vehicle with
Dubins motion constraints is suggested. Researchers stated that experiments showed a promising improvement
to find optimal path in less time. In[22], an improved boustrophedon coverage planning method is offered for
low-altitude environment coverage in known environments with UAVs. Suggested method optimizes boustro-
phedon coverage by using several sweep approaches and combining them according to obstacles and required
transition movements between cells.

This study is initiated with the development of a modular framework for autonomous drones in envi-
ronmental monitoring. Within this framework, modules are developed asynchronous. A static path planning
leads to robust navigation and environmental monitoring. The aim of this platform is to track the targets in
ground (in our scenario, targets are the left-over bottles in university campus ground) and to ensure a safe flight.
We presented preliminary results about vertical cell decomposition based a decision process for an unmanned
aerial vehicle and discussed about the requirements that autonomy weights on the system [23]. One of the
main differences of our work and previous studies is the processing aerial view of small-sized individual targets
rather a group of targets. In order to perform this mission low altitude flight simulations with target and ob-
stacle oriented maneuvers are performed and this enables target specific data gathering. Secondly, we process
real-time data with on-board sensors and processors. This brings a reaction capability for complete autonomy.
In this study, we offer an improved cell decomposition algorithm to increase complete coverage efficiency of
our autonomous environmental monitoring system. Simulations were performed to test performances of two
decomposition methods (boustrophedon decomposition and trapezoidal decomposition) for both the simple ob-
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stacle map and Technische Universität München (TUM) campus map. Improvements on autonomous inspection
capability of the system are validated and verified by simulation results.

Following introduction, environmental monitoring framework is presented in detail in Section 2. Layers of
the proposed framework include coverage, investigation and safety modules. Experimental setup and results are
provided in Sections 3 and 4, respectively. Finally, concluding remarks are discussed and possible improvements
are suggested as future work.

2. Environmental monitoring framework

In this work, we tested our proposed autonomous monitoring system for two different cell decomposition
algorithms in a scenario where the task is identifying left-over beer bottles inside a university campus. To
create a general structure which can be adaptable for different environmental monitoring tasks, we divided our
system into modules, each of which is in charge of certain tasks and contains a specific algorithm. In this work,
we will focus on the performance of decision-making module of our system with comparison of two different cell
decomposition algorithms.

2.1. Autonomous system for environmental monitoring

An environmental monitoring system can be separated to two parts to identify tasks of mission clearly. In
the first part, the monitoring system examines the environment and creates a coverage part and orchestrates
the mission. In the second part, the system tracks the field for a potential target and tries to identify the
target. Hence, for our environmental monitoring mission where the system needs to track several bottles with
processing visual data, we designed our system with two connected layers, cognition and vision. The system
contains a camera which feeds the vision layer. The vision layer process the raw data and estimates a possible
target or identifies a detected target. The vision layer outputs the target estimation and identification to feed
the cognition layer. Subsequently, the cognition layer process the output of the vision layer with other sensor
data to take real time decisions and actions. The cognition layer controls movements of the UAV to achieve the
complete coverage of field by considering target estimations of vision layer and events in the environment such
as collision.

Environmental monitoring missions has a sectional structure in terms of the definition of subtasks.
Monitoring systems are required to track and observe the field. To use the resources efficiently, systems
constructs a path which ensures complete coverage. This task is often called path planning and path tracking.
Further, systems are required to identify monitored targets in respect to definition of targets and environment.
This task is often called observation. For the autonomy of environmental monitoring, systems required to
ensure the safety of itself and the environment to ensure the continuity of mission. Safety tasks comprise
resources controls to potential harm precaution. Hence, in regards to defined structure of environmental
monitoring missions, proposed autonomous system is structured to fulfill environmental monitoring missions
in three decision states; path tracking, target acquisition and emergency. Cognition layer is divided into three
modules to conduct each decision state; coverage module, investigation module and safety module. While each
module has its own action and decision logic, each module intercommunicates with other modules for their
future actions-decisions as in Figure 1.

2.2. Complete coverage path planning

In order to cover the field complete, the vehicle is required to have a path which ensures the sweeping of the
empty space of the field. A complete coverage planning algorithm constructs the complete coverage path. Path
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Figure 1. Framework of the proposed system.

planning algorithms can be characterized by the prior knowledge that they require. As in [19, 24, 25], algorithms
require prior knowledge of the accessible space of the field to calculate the path. Due to static path calculation,
the environment should not have any moving obstacles so that free space of the field is not change over time.
As in [26, 27], algorithms use a dynamic approach to resolve an unknown environment in real-time. With
real-time approaches, it is not absolute to measure optimality of produced path(s). Yet, avoiding overlook and
overlapping coverage is as important as for static approaches.

Moreover, path planning algorithms can be separated by the number of dimensions of vehicle movement.
Many autonomous applications have a special type of path planning in a two-dimensional (2D) environment
for tasks like sweet pepper harvesting [28], mobile cleaning [29], underwater exploration [30], lawn mowing [31].
Three-dimensional (3D) path planning is not necessary for such specific tasks since the main goal of tasks is
complete coverage of a 2D field. However, 3D planning is often used for tasks which requires travelling [32].

In this work, we implement a static 2D approach for path planning. As in [33–35], we use an algorithm
based on vertical cell decomposition. Further, we implemented and compared the performance of two different
cell calculation approaches, boustrophedon decomposition and trapezoidal decomposition.

Algorithm 1 searches for vertical lines where obstacles has a corner and detects the cells by separating
empty areas between vertical lines and constructs a graph throughout the cells and creates a path based on the
graph.

System tracks the total coverage as displayed in Figures 2a and 2b. It uses the target detection area
Adetection which is a complete circle around the UAV as in equation (1):

Adetection = πtan2(α)r2detectionεaltitude (1)

where rdetection is target detection range, α is the angle of view, εaltitude is error rate of altitude sensor.
After, UAV calculates complete coverage Ccoverage as in equation (2):

Ccoverage = πtan2(α)r2detectionεaltitude +∆tVεacclrm (2)

where ∆t is travel time, V is the velocity of vehicle and εacclrm is error rate of the accelerometer. Yet,
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movement during the inspection is not included complete coverage calculation. Because UAV can return to a
position that is already covered.

Algorithm 1 Extended vertical cellular decomposition
Input: vertices V
Output: cells C, graph G, decomposition of cells DC

Vlines ← calculate_vertical_lines(V)
Ladaptive ← []
for line in Vlines do

Ladaptive ← find_adaptive_lines(line,V)
end for
Vlines ← merge_lines(Vlines,Ladaptive)
for line in Vlines do

C← find_cell(line,V)
end for
G← find_graph(C)
DC← decompose(C)

(a) Coverage calculation during simulation, green area

exhibits the coverage o�he UAV

(b) Target detection circle of UAV

Figure 2. Captures of simulation.

Trapezoidal decomposition: Trapezoidal decomposition is a form of exact cellular decomposition,
which is the aggregation of not intersecting adjacent zones forming the field. Each zone is termed a cell and
the aggregation of cells fills the empty space of the field. Coverage of each cell can be achieved simply by
back-and-forth motions. Trapezoidal cells are convex empty spaces between two successive polygon vertices.
Successive vertices are generally closest neighbour vertices and an imaginary line from one vertex to another
should have no intersection with given obstacles of the map. As in Figure 3a where the blue part is the obstacle,
vertex A and vertex B are neighbours. An imaginary line between vertices A and B has no intersection with
the obstacle. Thus, the empty space between vertex A and B is the cell 1. But vertex A and vertex C are not
closest neighbours. Further, an imaginary line from vertex A to vertex C has an intersection with the obstacle.

Boustrophedon decomposition: Boustrophedon decomposition optimizes coverage path in order to
reduce lengthwise transition movements between cells. Thus, boustrophedon decomposition reduces total cell
count which increases simplicity and efficiency of cell transitions. Cells are covered with simple back-and-forth
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motions as trapezoidal decomposition. Boustrophedon cells [35] merges trapezoidal cells and creates non-concex
cells. In both decomposition methods, cells are created between two vertices. The difference between these two
approaches is with the middle events [35]. The trapezoidal decomposition closes or opens a cell when a middle
event occurs. But, the boustrophedon decomposition simply updates the current cell with new border points
during the middle events.

As in Figure 3a where the blue part is the obstacle, cell 1 is defined between vertices A and B and cell
2 is defined between vertices B and C by the trapezoidal decomposition algorithm. But for the boustrophedon
decomposition intersection point for vertex B is a middle event and causes the extension of the cell 1 until the
vertex C. Simply, this method merges trapezoidal cells 1 and 3 and produces cell 1 as in Figure 3b.

Difference of the boustrophedon decomposition and trapezoidal decomposition can be seen better with
Figure 4. For TUM map, the trapezoidal decomposition resolves map to fourteen cells where the boustrophedon
decomposition resolves nine cells.
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Figure 3. Cell decompositions of sample map.
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(b) Calculated boustrophedon cells

Figure 4. Cell decompositions of TUM map.
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2.3. Autonomous inspection

An inspection task requires high-level observation skills and a robust decision making mechanism. To make the
observation, systems can depend on human labor and/or machines. Yet, due to complexity and repetitiveness,
execution of inspection tasks demands intensive labor and high concentration. One of the reasons for complexity
of inspection systems comes from the fact that processing periodic or continuous data which needed to monitor
the status of environment/targets. Moreover, the field that needs to be monitored can be in a position which is
difficult to attain even with a vehicle. In respect to the dependencies and required skill set of inspection tasks,
autonomous executions are advantageous compared to manual executions. In [36], autonomous aerial robots
were used for transportation and deployment for search and rescue missions. UAVs contained different sensors
to detect the targets and move cooperatively to tasks such as deployment of small objects. In another study
[37], an autonomous monitoring application was presented to identify emergencies. They proposed a technique
which combines and processes visual and infrared cameras for segmentation of fires.

In general, the requirement for the autonomous inspection task is collecting rich and reliable information
of targets. Based to the target and monitoring environment, optimum circumstances for data quality differs,
for example, while identifying bark beetle damage on trees [7], vehicle required high altitude flight and for
chemical source localization in a small controlled aquatic environment [38], vehicle required a direct approach
to the source. For our monitoring task where the system needs to identify beer bottles, we required to collect
information from visual data. To gather better information, system needed to have optimum conditions for
the best image quality. Thus, we implemented a policy-based approach to satisfy image quality needs with a
supplying optimum perspective of the bottle as in Figure 2b. System decides for a certain movement policy
after processing target position and image processing output. As explained in Section 3, the UAV assures the
optimum distance between the detected bottle and itself. If observation from optimum distance does not satisfy
the required image quality, UAV decides for a policy where it makes a circular movement around the target.

2.4. Emergencies and safety

Governments and institutions determine many flight regulations and safety standards for autonomous vehicles
to ensure the safety by avoiding/reducing potential damage to UAVs and environment. Moreover, safety has a
key role for systems with expensive components to ensure the continuous progress of mission. In our approach,
we used a set of rules to determine and identify potential harms. Each emergency detection is engaged to a
sensor measurement and a rule which sets a certain threshold. In general, our rules are fusion of the collection
of previous experiences, regulations of autonomous flights and health rate of mechanical parts of the UAV.

Our system tracks and detects collision, power need to finish task, damage on mechanics (e.g., stopped
engine), loss of localization, optimal daylight, adverse weather conditions. To detect emergencies, we use several
data sources; Laser Imaging, Detection And Ranging (LIDAR) to calculate possible collision, forecast tracking
to detect potential instabilities for flight such as instant change on wind, a photo-diode to track the daylight.
Further, if we detect a violation of one of our safety merits, our system determines on a policy that ensures the
safety of system. If the detected emergency violation is a collision, UAV avoids the collision by changing its
route. In case of more fragile emergencies where system can not resolve without human intervention, it breaks
the execution of tasks and tries to move a safe and reachable position (e.g., safety landing or returning to the
base).
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3. Experimental setup
3.1. Implementation
To run the simulation, we determined certain target features. For the target features, we selected certain
parameters for target detection. These parameters are used for cell decomposition algorithms and target
inspection. In this section, we present details of target features and algorithms.

3.1.1. Target details
The mission of simulation is to collect locations and features of beer bottles inside certain area. Beer bottles
differ on size but roughly they have 0.25 m height, 0.07 m diameter.

3.1.2. Target detection details
During coverage of the field, UAV is cruising in certain altitude and it captures the field from aerial perspective.
In respect to defined target size, optimum cruise altitude of the UAV has set to 2.5 m . One a target detected,
UAV gets closer to target to be able to identify bottle type and brand. This optimum identification distance
has set 0.75 m .

3.1.3. Path planning details
To determine the path, system has used two different algorithms based on vertical cell decomposition principal,
trapezoidal decomposition and boustrophedon decomposition. Outcome if these two algorithms constructed
cells C converted to road-maps DC. We have used back and forth motion lines to extract road-maps. Distance
between motion lines is set to optimum cruise altitude which is also the optimum detection range of targets
during complete coverage.

We extended vertical cell decomposition algorithms, to solve the position issues of obstacles. We improved
the algorithm with the adaptive line concept to divide spaces with special obstacle types.

3.1.4. Target identification details
When the system detects a target during complete coverage of the field, UAV tries to make certain movements
to increase the accuracy of identification. For successful identification, UAV approaches through the target until
it’s as close as the optimum identification range. At the optimum identification range, if the target identification
accuracy is under the threshold, UAV keeps the optimum distance and does a circular movement around the
target.

In simulation, the target detection precision is calculated Ptarget with Gaussian distribution as in equation
(3);

P (x) =
100

σ
√
2π

e−(x−µ)2/2σ2

(3)

where µ is 0.75 m , x is the parametric distance between UAV and target, σ is 1 m . Further, we applied
a random function using python’s random uniform function which returns a value between 0 and 100. This
random number is compared with complementary of target detection precision to 100.

Algorithm 2 describes the method, which estimates the possibility of target detection and determines
target detection by using a threshold. Calculation of target detection precision is based on the Gaussian
probability of target distance. Complementary of detection precision is being compared with a randomly
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generated number which is between 0 and 100. If the random number is bigger than complementary of detection
precision then the target is marked as detected.

Algorithm 2 Determination of target detection
Input: target precision Ptarget

Output: detection D
possibility← random.uniform(0, 100)
compP ← 100− Ptarget

if possibility >compP then
D← True

else
D← False

end if

Simulations were performed for the simple obstacle map and TUM map to measure the effectiveness
of the purposed system in the environments with different complexity. Further, to compare performance of
trapezoidal decomposition and boustrophedon decomposition algorithms, two simulations were performed for
each map. Tables 1 and 2 show the results for trapezoidal and boustrophedon decomposition algorithm on
the simple obstacle map, respectively while Tables 3 and 4 show the results for trapezoidal and boustrophedon
decomposition algorithm on the TUM map, respectively. For all the tables, travel distance and mission time
are provided by means of meter and minute, respectively.

Table 1. Results of the simple obstacle map simulation for trapezoidal decomposition.

Run Detected targets Labeled targets Location precision Travel distance Mission time
1 8 8 92.4% 1808 7.1
2 8 8 93.4% 1821 7.37
3 9 7 92.6% 1903 7.9
4 6 5 93.8% 1783 7.11
5 9 9 92.3% 1813 7.27
6 7 7 92.9% 1788 6.99
7 9 8 93.7% 1823 7.35
8 8 8 93.4% 1853 7.88
9 10 10 92.7% 1855 7.18
10 10 10 92.4% 1863 7.31

For each simulation, random placement of 10 bottles which stand vertically placed was done. Further, a
quad-rotor rotary wing UAV with a 4500 milliampere hour battery and a LIDAR sensor with 10 m sensitivity
was used as the task executer vehicle. UAV had limit speed as 10 m/s and constant acceleration as 5 m/s

2.
In the simple obstacle map as in Figure 5a, a square shaped obstacle was placed to the center of field.

The TUM campus has 4 buildings and they represented with obstacles as in Figure 5b.

4. Experimental results
The system was tested for two different maps. For simulation of both maps, ten bottles were placed to the
environment. In simulations, following data were recorded to measure monitoring capability of proposed system;
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Table 2. Results of the simple obstacle map simulation for boustrophedon decomposition.

Run Detected targets Labeled targets Location precision Travel distance Mission time
1 9 9 92.9% 1849 7.20
2 9 9 93.6% 1822 7.31
3 9 8 92.4% 1887 7.4
4 7 7 93.5% 1771 7.21
5 10 10 92.7% 1863 7.32
6 8 8 92.4% 1794 7.03
7 8 8 93.1% 1812 7.16
8 10 10 92.9% 1893 7.82
9 9 9 93.9% 1837 7.61
10 6 6 93.8% 1749 6.91

Table 3. Results of TUM campus map simulation for trapezoidal decomposition.

Run Detected targets Labeled targets Location precision Travel distance Mission time
1 10 9 93.5% 36608 82.79
2 8 8 92.4% 36253 78.84
3 10 9 92.7% 36547 80.33
4 8 7 92.5% 36276 80.82
5 10 10 94.0% 36353 79.67
6 10 10 93.5% 36304 82.76
7 9 9 93.7% 36126 79.61
8 10 10 93.8% 36226 79.71
9 10 10 92.7% 36280 78.78
10 9 8 93.7% 36380 80.20
11 10 10 92.7% 36289 78.75
12 9 9 92.1% 35932 79.29
13 8 8 92.8% 35697 78.89
14 9 9 93.5% 36493 79.69
15 9 7 93.9% 36235 80.27

detected target count, labeled target count, location precision, total travel distance, total mission execution time
and total interruption due to emergencies.

4.1. The simulation of the simple map

A simple map as in Figure 5a was used as the first environment for simulations. The map consists one square
shaped obstacle. The map has 100 m width to 100 m length. The obstacle in the middle of the field is 50 m
wide and 50 m long. Total coverage space is 7500 m2 . We randomly placed 10 bottles to the empty spaces
around the obstacle.

The approximated minimum travel distance for complete coverage of the simple map was calculated as
1500 m from Figure 2. The cruise speed of the drone is 10 m/s . To travel 1500 m, the drone needs to fly at
least 150 s (2.5 min).
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Table 4. Results of TUM campus map simulation for boustrophedon decomposition.

Simulation run Detected targets Labeled targets Location precision Travel distance Mission time
1 10 10 92.8% 35974 80.03
2 10 9 94.0% 35571 82.58
3 9 9 93.3% 36128 79.36
4 7 7 92.5% 35910 78.58
5 9 8 92.3% 35483 79.46
6 9 9 92.6% 36081 79.51
7 10 10 93.0% 35896 79.81
8 8 8 92.4% 36143 79.73
9 9 9 93.8% 35724 79.00
10 6 6 92.5% 35502 78.67
11 9 9 93.9% 35859 80.08
12 10 8 94.0% 36150 80.61
13 9 9 93.6% 36127 79.14
14 6 5 92.2% 35743 78.66
15 9 7 93.3% 36235 80.27
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(a) !e simple obstacle map (b) TUM campus from aerial view

Figure 5. Simulation maps.

Simulations of the simple map were performed for two decomposition methods the boustrophedon de-
composition and trapezoidal decomposition as described in Section 2.2. For the simple map, the boustrophedon
decomposition method calculated same cells as trapezoidal decomposition. Hence, they should produce similar
results. For each method, ten simulations were carried out.

Results of the simple obstacle map simulation for trapezoidal decomposition method were gathered in
Table 1. Following averages derived from ten simulation executions: 84% target detection rate, 80% target
labelling rate, 92.96% location precision, 1831 total travel distance and 7.34 min of mission execution time.
These findings suggest that the drone travelled 331 m more than minimum travel distance for complete coverage
1500 m. Thus, the drone needs 22% more power for travelling than expected. The drone spent 4.86 more minutes
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for entire mission execution where minimum time was 2.5 min. Hence, the drone needs 193% more time than
expected. Through the runs, no interruption is observed.

Results of the simple obstacle map simulation for boustrophedon decomposition method were gathered
in Table 2. Following averages derived from ten simulation executions: 85% target detection rate, 84% target
labelling rate, 93.12% location precision, 1827.7 m total travel distance and 7.29 min of mission execution
time. These findings suggest that the drone travelled 327.7 m more than minimum travel distance for complete
coverage 1500 m. Thus, the drone needs 21.8% more power for travelling than expected. The drone spent 4.79
min more for entire mission execution where minimum time was 2.5 min. Hence, the drone needs 191% more
time than expected. Through the runs, no interruption is observed.

Results of both methods do not suggest conspicuous differences. Hence, results prove that usage of
boustrophedon decomposition method for simple maps is not efficient, since it demands more computational
power than trapezoidal decomposition. Further, it is observed that the suggested system is highly successful
for identification and labelling of targets and their positions.

4.2. The simulation of the TUM map
TUM’s main campus as in Figure 5b were used as the second environment for simulations. The TUM campus
map has 575 m width and 678 m length. The map contains four obstacles which represent buildings of TUM
campus. The first obstacle is on the west part of the campus, and it has 104 995 m2 surface. The second
obstacle is on the south part of the campus, and it has 3536 m2 surface. The third obstacle is on the east part
of the campus, and it has 107 632 m2 surface. The fourth obstacle is on the north part of campus, and it has
11 664 m2 surface. Total surface of obstacles covers 227 827 m2 space of the map. Thus, available free space
of the TUM map is 162 023 m2 . Ten beer bottles were randomly placed to free space of the TUM campus.

The approximated minimum travel distance for complete coverage of the TUM campus map was calculated
as 32 404.6 m from equation 2. The cruise speed of the drone is 10 m/s . To travel 32 404.6 m , the drone needs
to fly at least 3241 s (54.01 min).

Results of the TUM campus map simulation for trapezoidal decomposition method were gathered in Table
3. Following averages derived from fifteen simulation executions: 92.66% target detection rate, 88.66% target
labelling rate, 93.17% location precision rate, 36 266.6 m total travel distance, 80.02 min of mission execution
time. These findings suggest that the drone travelled 3862 m more than minimum travel distance for complete
coverage 32 404.6 m . Thus, the drone needs 11.9% more power for travelling than expected. The drone spent
26.01 more minutes for entire mission execution where minimum time was 54.01 min. Hence, the drone needs
48.15% more time than expected. Further, the drone faced three emergency interruptions due to battery outage
in each simulation run. For each emergency interruption, the drone returned to base station and recharged its
battery to continue to the mission. The complete recharge of the battery takes approximately 4 h. Hence, three
complete recharge of the battery caused 12 h delay for completion of the mission.

Results of the TUM campus map simulation for boustrophedon decomposition method were gathered in
Table 4. Following averages derived from fifteen simulation executions: 86.66% target detection rate, 82% target
labelling rate, 93.08% location precision rate, 35901.7 m total travel distance, 79.69 min of mission execution
time. These findings suggest that the drone travelled 3497.1 m more than the minimum travel distance for
complete coverage 32404.6 m. Thus, the drone needs 10.79% more power for travelling than expected. The
drone spent 25.68 more minutes for entire mission execution where minimum time was 54.01 min. Hence, the
drone needs 47.54% more time than expected. Further, the drone faced three emergency interruptions due to
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battery outage in each simulation run. As explained before, three complete recharge of the battery caused 12
h delay for completion of mission.

Simulation results in TUM campus map shows that boustrophedon decomposition reduces the travel
distance and travel time compared to trapezoidal decomposition as in Figure 6. The main reason for increased
travel efficiency is reduced transition movements due to reduced cell count in boustrophedon decomposition.
Further, target detection and target labelling percentage is lower in boustrophedon decomposition compared to
trapezoidal decomposition. A reduce in target detection and labelling performance is expected due to fact that
total investigation time is reducing with boustrophedon decomposition. However, loss in target detection and
labelling performance is greater compared to gain in travel time. Randomness of bottle placements can cause
such a fact if bottles are placed in cell transition paths. Yet, we expect performance gain in travel time should
converge with performance loss in target detection and labelling.
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Figure 6. Efficiency comparison of two decomposition methods in TUM map.

5. Conclusion
In this paper, two cell decomposition approaches were implemented to a modular software framework of an
UAV for autonomous environmental monitoring missions. The performance of the system is measured in
different environments with simulations for each decomposition approaches. Simulations were performed to
test performance of two decomposition methods (boustrophedon decomposition and trapezoidal decomposition)
for two environments (simple obstacle map and TUM campus map).

Results of the simple obstacle map simulations provided that the system collected truthful information
for 8.2 bottles of every 10 bottles. Further, results provided that system travelled 21.9% more compared to the
minimum travel distance for complete coverage of the simple map.

Results of the TUM campus map simulations provided that the system collected truthful information for
8.5 bottles of every 10 bottles. Further, results provided that system travelled 11.3% more compared to the
minimum travel distance for complete coverage of the simple map.

Simulations results of both environments proved robust monitoring capability of the proposed system.
However, the proposed system performed the simple obstacle map simulation with 78.1% efficiency and the
TUM campus map simulation with 88.7% efficiency. Main reason behind efficiency loss is the investigation of
targets. In each simulation, ten targets were placed to the field. After detection of targets, the drone reduces
its speed and investigates the detected target for detailed information which is causing time loss and additional
power usage. Another reason was the coverage path. Transition between cells caused unwanted resources usage.
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In TUM campus map simulation, due to large size of the field, the drone returned to the base station
to recharge itself for three times. In regards to approximate 4 h recharge time of the battery, the completion
of mission is delayed for 12 h. These findings show that the proposed system needs a better capacity for flight
time to cut interruptions, and multirotor drones for environmental monitoring in large fields are inefficient due
to power capacity of multirotor drones.

This study used two offline path planning algorithms to calculate coverage path. Results showed that
both approaches calculated paths that are suitable for complete coverage of the field. However, for complicated
maps, boustrophedon decomposition method improves the efficiency of the system due to reduced cell number.
It reduces the total execution time of the mission.

At present, the implementation of boustrophedon decomposition and trapezoidal decomposition to the
suggested autonomous monitoring system is tested and compared with simulations. To reinforce our simulation
results, we will focus on the hardware integration of our system. Further, to monitor the environments with
dynamic obstacles, a dynamic path planning approach may be used, such as reinforcement learning based
dynamic path planning.
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