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Abstract: Brain tumors have been one of the most common life-threatening diseases for all mankind. There have been
huge efforts dedicated to the development of medical imaging techniques and radiomics to diagnose tumor patients quickly
and efficiently. One of the main aims is to ensure that preoperative overall survival time (OS) prediction is accurate.
Recently, deep learning (DL) algorithms, and particularly convolutional neural networks (CNNs) achieved promising
performances in almost all computer vision fields. CNNs demand large training datasets and high computational costs.
However, curating large annotated medical datasets are difficult and resource-intensive. The performances of single
learners are also unsatisfactory for small datasets. Thus, this study was conducted to improve the performance of CNN
models on small volumetric datasets through developing a DL-based ensemble method for OS classification of brain tumor
patients using multimodal magnetic resonance images (MRI). First, we proposed multiview CNNs: OS classifiers based
on representing the 3D MRI data as a set of 2D slices along all three planes (axial, sagittal, and coronal) and process
them using 2D CNNs. Subsequently, the predicted probabilities by the multiview CNN models were fused using standard
machine learning algorithms. The proposed approach was experimentally evaluated on 163 patients obtained from the
BraTS’17 training dataset. Our best model achieved an AUC and accuracy values of 0.93 and 92.9%, respectively, on
classifying patients with brain tumors into two OS groups, outperforming current state-of-the-art results. In addition,
the FLAIR MRI modality yielded the best classification accuracy compared to other MRI modalities. Similarly, axial
projections had the best classification performance compared to coronal and sagittal projections. Our findings may
provide valuable insights for physicians in advancing treatment planning via noninvasive and accurate prediction of

survival using only MRIs at the time of diagnosis.
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1. Introduction

Brain tumor is one of the most common deadly type of cancers characterized by the uncontrolled growth and
spread of abnormal cells in the brain, and the level of aggressiveness and survival time of its patients vary
widely among individuals [1]. Gliomas that originate in the glial cells are primary brain tumors, accounting
for about 80% of all malignant tumors [2]. Glioblastoma [also called high grade glioma (HGG)] is the most
rapidly progressive glioma, responsible for the majority of malignant brain tumors in adults [3] for which the
median survival time of patients is 10-15 months [4]. In the United States, five-year survival rate of patients

with glioblastoma was 5.6% for the years 20002015, and 13,310 new cases were projected for the year 2019 [5].
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Among the top leading deaths caused by cancers, glioblastoma is ranked in first and second for children under
the age of 15 and young adults ranging from 15 to 34 years of age, respectively [6]. Thus, early and accurate
preoperative survival time prediction of patients with HGG is an important factor to guide future treatment
decisions.

Due to the complex mechanical properties of the brain tumor tissues, the conventional survival time
predictions of glioma patients using clinical inspections by experienced physicians based on histological ex-
aminations following tumor resection and an invasive biopsy are often inaccurate, susceptible to interobserver
variability and time-consuming [7, 8]. This results in a necessity for medical imaging techniques, as MRI,
that depict the entire glioma region noninvasively. Images generated using MRI provide decision-making in-
formation, which supports physicians for evaluating the severity of the disease and monitoring the disease’s
progression [9, 10].

Fluid attenuation inversion recovery (FLAIR), T2-weighted, T1-weighted, diffusion tensor imaging (DTT),
and T1-weighted contrast-enhanced (T1CE) are among the most commonly used MRI modalities in the brain
tumor diagnostic field. They are capable of measuring different yet complementary information [11]. In
addition, anatomical and pathological viewing in all the three planes (axial, coronal and sagittal) using multiple
MR imaging sequences is helpful to the physicians in diagnosing glioma in patients. Therefore, combining
the information properly from different modalities and across the three planes may enhance the diagnostic
performance. However, when evaluating survival prediction of glioma patients using these multimodal images,
which modalities and projections are the most effective, and whether combinations of multiple modalities can
improve the performance are still unclear and not investigated very well [12]. MRI also comes at the cost of
generating a large number of images per patient, exceeding the capacity of available physicians, particularly
in middle- and low-income countries [13]. Consequently, the development of automatic computer assisted
diagnosis systems (CAD) for more accurate survival prediction based on the abundant multimodal brain MRI

data acquired prior to any invasive examination is currently of great interest [14].

Because of the recent advancements in computational devices and availability of large medical data,
studies have highlighted the importance of artificial intelligence (AI) algorithms such as artificial neural networks
and machine learning methods for the automatic diagnosis of diseases [15, 16]. Similarly, several AI techniques
have been proposed for prediction of overall survival time (OS) of brain tumor patients. These methods
can be coarsely classified into three categories. In the first category, handcrafted-based approach, manual or
automatic segmentation of glioma are performed in MRI images. Different features like volumetric parameters
and histogram will be extracted from the segmented regions. Thereafter, features with better prognostic values
will be selected and fused with metadata to train ML algorithms. However, optimizing feature extraction and
selection methods are a big challenge in this approach [17-19]. In the second approach, deep learning-based,
discriminative features are learned directly from the MRI images [20]. In the third category, hybrid approaches,
deep features that are extracted using DL methods, handcrafted features that are extracted from automatic
segmented tumor regions, and clinical data are combined to create a feature fusion matrix. This matrix is then

used as input to train ML algorithms [21-23].

During the past few years, various 2D and 3D CNN deep learning algorithms have been developed
for applications that range from music transcription [24] to computer vision [25]. These emergence of CNN
algorithms have fascinated researchers to employ it in medical image analysis [26]. However, this excitement

should not overrule concerns raised regarding the application of this deep learning technologies to medicine,
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including misdiagnosis and attribution of liability due to errors [27]. Numerous CNN algorithms have also been
developed for OS classification of brain tumor patients to improve the performance on multimodal MRI. Nie
et al. [28] proposed a hybrid approach using multichannel 3D CNN and SVM to distinguish between long and
short OS. Lao et al. [22] reconstructed 3D MRIs into 2D slices in the axial plane, and selected three slices
that had the largest tumor core, necrosis and whole tumor area, respectively. The selected slices were then
used to fine-tune the pretrained CNN models on ILSVRC-2012 dataset. Similarly, Li and Shen [20] developed a
CNN-based framework that takes the four whole brain and tumor segmentation images as an input. In another
study [21], authors have extracted handcrafted and DL features from MRI scans to train different ML methods.
The best stratification performance was obtained when using DL features extracted by a pretrained AlexNet
[29], and trained with a linear discriminant. In their work, tumor regions were extracted from specific axial
slices before being fed to AlexNet.

From the abovementioned studies, it can be noticed that there are at least four common issues associated
with the existing CNN architectures developed for OS prediction of glioma patients. Primarily, many existing
CNN architectures are 3D CNNs which do not consider the insufficient training available datasets. For example,
the well-known BraT$S 2017-2018 datasets contain only 163 training samples. These numbers are far from
enough to reach the full potential of 3D CNNs. Transfer learning, a DL technique that enables the use of a
model developed for one task using large-scale image datasets, can be reused as a starting point for a model on
another task in datasets with limited size. However, large annotated 3D medical image dataset does not exist,
and current transfer learning methods are tailored to 2D images [30]. When volumetric dataset sizes are small,
multiview CNN (Mv-CNNs) are designed and trained for 3D shape detection from a collection of their rendered
views on 2D images with greater accuracy compared to 3D CNN methods [31]. They can also be customized and
used for multislice 2D projection of 3D medical images in order to overcome the above mentioned limitations
[32]. However, to the best of our knowledge, no work has been done for OS prediction using Mv-CNNs.

Secondly, without considering the prognostic features on slices in coronal and sagittal projections, most
of the existing 2D CNNs are based on slices in the axial projections only. Thirdly, most of the existing CNN
networks are also based on segmented tumor regions. However, the information around the tumor region may
contain tumor cell infiltrates that contribute to poor prognosis [33]. In addition, tumor segmentation is yet
a challenging task, and requires more training times, hindering their application for time-constrained large-
scale medical imaging tasks, like preoperative OS prediction. The fourth common issue is that, most existing
approaches make predictions based on single classifiers. However, single learners sometimes present poor results
for small and imbalanced datasets. Moreover, previous studies in other medical image analysis problems have
shown that ensemble learning of multiple CNN models may yield better stratification accuracy than individual
CNN models [34-36]. Therefore, it will also be worthwhile to develop OS prediction models based on ensemble
learning of multiple CNN algorithms .

To overcome the above described shortcomings, we present a novel framework to discriminate between long
and short OS of HGG patients using preoperative multimodal MRI images via a combination of Mv-CNNs and
standard ML techniques (Figure 1). Specifically, first we reconstructed all the multimodal 3D MRI scans as a set
of 2D projections along all the three planes. We then developed novel Mv-CNN architectures that can perform
end-to-end binary classification on 2D projected images. Finally, the probability predictions of the Mv-CNN
models were fused using six ML techniques [multilayer perceptron (MLP), logistic regression, support vector
machines (SVM), Bayes Net (BN), random forest (RF), and random tree (RT)]. The individual classification

performance of each modality and 2D projections were also compared. To the best of our knowledge, this
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method is the first work that attempts to differentiate between long and short OS of patients with HGG using
an ensemble of multiple CNN models.
The rest of this article has the following structure. Section 2 describes the materials and methods.

Experimental results and discussions are reported in Section 3. Finally, Section 4 points out future works and
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Figure 1. The schematic description of the proposed deep learning based ensemble method for survival time classifi-
cation, which is achieved in three main stages. (i) Preprocessing. In this stage, 2D images were sliced from volumetric
MRIs in the axial, coronal and sagittal planes. Consequently, two consecutive coronal, and two consecutive sagittal slices
were concatenated before being fed to the CNN models. (ii) Deep learning (DL) development. In this stage, multiview
CNN (Mv-CNN) models that map multiple 2D slices to a prediction probability of the survival time were developed.
(iii) Finally, in the ensemble learning stage, the predictions by the Mv-CNN models were fused using the six standard
machine learning techniques to obtain a better classification accuracy.

2. Materials and methods

As illustrated in Figure 1, the proposed framework for OS classification consists of three core modules: (1)
“preprocessing”; (2) “DL development”, and (3) “ensemble learning”. During preprocessing, we reconstructed
the 3D MRI scans as a stack of of 2D images along all the three planes. The second module is the primary
building of our prediction system where we designed Mv-CNN architectures that take preprocessed 2D images
of volumetric MRI as input and outputs binary classification prediction. We proposed three different variants
of Mv-CNN architectures. In the third module, the probability predictions by the Mv-CNN models were fused
using various standard ML methods to obtain the final prediction result. Details of the proposed methods are

presented in the following sections.
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2.1. Dataset

The multimodal preoperative volumetric MRI scans, and OS in days for 163 HGG patients obtained from
BraTS’17 public datasets were used to train and evaluate our proposed models [37, 38]. For each patient,
four MR imaging modalities were provided: FLAIR, T1CE, T1, and T2. The images size in the dataset was
240 x 240 x 155. OS, defined in days, is calculated from the date of initial diagnosis until tumor-related
death. From radiologist reports, patients were categorized into three levels of OS: long-survivors (OS > 15
months), mid-survivors (10 months < OS < 15 months) and short-survivors (OS < 10 months).The prognosis
of patients with HGG, often measured by the OS, are generally categorized into two (long vs. short) or three
(long, medium and short) groups of survival in order to provide valuable insights in advancing surgical and
treatment plan. However, in order to simplify the analysis and due to the availability of limited training
samples, the classification task in this paper was to discriminate between short-survival and long-survival (mid-
survival or long-survival). We split the dataset into training and validation, where 122 multimodal MRI scans
for training, and the remaining 41 were used for validation. We used stratified random sampling for balancing

OS distribution between the two groups. Detailed patients’ information can be found in Table 1.

Table 1. Demographic and clinical characteristics of patients in the training and validation dataset. The entire dataset
was split into two groups: 75% for training, and 25% for validation. No significant differences were observed for
demographics and clinical characteristics between the training and validation sets.

Parameters Training dataset | Validation dataset | Overall dataset
No. of patients 122 41 163

Range 18.975 — 85.762 | 30.408 — 84.844 18.975 — 85.762
Age (year) | Mean 60.181 60.774 60.334

Std. dev. | 12.379 11.319 12.083

Range 5 — 1767 30 — 1731 5 — 1767

Mean 424.645 417.881 422.963
OS (day) Std. dev. | 346.214 363.787 349.684

Long(%) | 72(59.5) 26(61.9) 98

Short (%) | 49(40.5) 16(38.1) 65

2.2. Preprocessing

One of the key ideas of the approaches proposed in this study was converting the 3D MRI scans into 2D stacked
slices in the axial, coronal and sagittal planes. As a result, for every patient, twelve 2D stacked MRI slices
were generated from the four MRI modalities defined in Section 2.1. Hereafter, we indicate these twelve 2D
stacked slices as FLAIR-axial, FLAIR~coronal and FLAIR-sagittal for axial, coronal and sagittal projection of
FLAIR MRI modality, respectively. Similarly, T1-axial, T1-coronal and T1-sagital, T1CE-axial, T1CE-coronal
and T1CE-sagittal, and T2-axial, T2-coronal and T2-sagittal for axial, coronal, and sagittal views of T1, T1CE
and T2 modalities, respectively. Some beginning and end slices of each MRI scans which do not contain any
brain tissue were excluded to avoid processing the background and manage the GPU memory constraint. The
intensity pixel of each slice was also rescaled in the range 0 to 255, converted to PNG format, and normalized

to have zero mean and unit variance.
The 3D —to—2D reconstruction of MRI scans lead each 2D axial, coronal and sagittal projected images

to have a shape size of 240 x 240, 155 x 240 and 155 x 240 pixels, respectively. These projected images
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were then cropped centrally and resized to 224 x 224, 112 x 224 and 112 x 224 pixel sizes, respectively.
Subsequently, each two consecutive coronal slices were concatenated and reshaped to 224 x 224. Similarly,
each two consecutive sagittal slices were concatenated and reshaped to 224 x 224 pixel sizes. These allowed us
to use pretrained DL models developed for natural images. The concatenation method that we used reduced
the number of sagittal and coronal slices of each MRI scan by half. Hence, it reduces the GPU memory
requirement and processing time. In addition, we also argue that this concatenation approach enables Mv-CNN
models to benefit from the fine-grained details in each sagittal and coronal slices than enlarging them, which
usually results in loss of information. Similar concatenation approach was used in [39] where each coronal
and sagittal slices at the same position concatenated before fed to the DL model, and achieved promising
results in tuberculosis diagnosis. All the preprocessing steps were done using the python programming language
and NiBabel package'. The total number of axial, coronal and sagittal 2D projected images of the four MRI
modalities of the 163 patients after preprocessing is shown in Table 2. The example of reconstructed, cropped

and concatenated 2D projected images of a sample patient is shown in Figure 2.

Table 2. Total number of reconstructed and implemented 2D slices from each modality and projection.

Modalities
Projections | T2 T1Ce | T1 FLAIR | Total
Axial 22,820 | 25,265 | 14,670 | 22,005 | 84,760

Sagittal 22,820 | 26,080 | 19,560 | 21,190 | 89,650
Coronal 29,340 | 22,820 | 19,560 | 24,450 | 96,170
Total 74,980 | 74,165 | 53,790 | 67,645 | 270,580

2.3. Architecture and ensemble learning of the proposed CNN models

Standard CNN architectures usually consists of convolutional and pooling layers occurring in alternative fashion
to extract higher level discriminative features to represent the original 2D input images followed by dense layers
to perform classification [40]. Unlike that of the standard CNN architectures, in the Mv-CNN architectures,
multiple multiview 2D images of a 3D object can be provided as a single training example. Hence, through
customizing the original Mv-CNN architecture developed for 3D object recognition, in this paper we proposed

three CNN architectures: a single column Mv-CNN and two multicolumn Mv-CNN architectures.

2.3.1. Single column Mv-CNN

The single column Mv-CNN architecture that we proposed, inspired by [32], consists of four core parts as
shown in Figure 3. (i) The convolutional base of pretrained AlexNet for extracting features, which takes
k x 3 x 224 x 224 stacked png images as inputs and outputs k x 256 x 6 x 6 features sizes. 3 indicates
the number color channels, and k is the number slices of a 3D MRI scan in one of the three planes obtained
after the preprocessing stage. (ii) Global average pooling on top of the convolutional base of AlexNet applied
across the spatial dimensions to reduce features to k x 256. (iii) Max pooling layer on top of global average
pooling applied across slices to reduce features to 256-dimensional vector, and (iv) Dense layers with sigmoid

activation function to map from the computed hidden representation to the output probability prediction. We

IBrett M, Hanke M, Marc-Alexandre CO, McCarthy P, Cheng C et al. (2018). NiBabel-Access a cacophony of neuro-imaging
file formats [online]. Website https://nipy.org/nibabel/ [06.04.2019].
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Figure 2. Example of the concatenation procedures performed during preprocessing stage: (a) two consecutive coronal
slices having the same shape size (155 x 240) were sliced from the 3D MRI scans, center cropped and then concatenated,
(b) two consecutive sagittal slices having the same shape size (155 x 240) were sliced from 3D MRI scans, center cropped
and then concatenated. The proposed AlexNet-based multiview CNN models used these concatenated images as input
to improve the robustness of training and prediction.

used the backpropagation algorithm for training. The binary cross entropy loss function along with adaptive
moment estimation (Adam) optimizer were used for optimizing the models [41]. The models were implemented
using Python programming language and PyTorch framework [42].

The single column Mv-CNN architecture were trained twelve times using each preprocessed 2D images
of the four modalities projected in the three planes. With such trained twelve models, patient-level twelve
predicted probabilities were generated. Then, we ensemble these twelve predicted probabilities using different
ML methods. The idea is that a more accurate stratification of OS patients with glioma may be obtained
when the individual learners trained separately on 2D projected images of multimodal MRI scans are combined

together.

2.3.2. Multicolumn Mv-CNN
The proposed multicolumn Mv-CNN architectures can combine information from multiple 2D-projection images
within a single CNN architecture (Figure 4). Two multicolumn Mv-CNN architectures named Mc-Mv-CNN-1
and Mc-Mv-CNN-2 were proposed to (i) investigate performances of each modality and 2D projection images,
(ii) investigate the learning capability of variant Mv-CNNs, and (iii) verify the effectiveness of the proposed
ensemble learning approach on the evaluation of survival classification.

Mc-Mv-CNN-1: The Mc-Mv-CNN-1 architecture comprises three-column subnetworks. Each subnet-
work adopts the single column Mv-CNN architecture after discarding the dense layers. Reconstructed and

preprocessed axial, coronal and sagittal slices of the 3D MRI are fed into the three parallel Mv-CNN archi-
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Figure 3. The proposed survival prediction pipeline using the single column Mv-CNN architecture. The 3D brain MRI
scans of tumor patients were first decomposed into a stack of 2D slices. Each 2D slice was then passed to the CNN base
of AlexNet. The architecture’s input was k x 3 x 224 x 224, where k is the number of 2D stacked slices obtained
after the preprocessing stage, and 3 indicates the number of color channels. Global average and max pooling layers were
applied to reduce generated feature maps from the slices and increase compactness of the models. Finally, FC were used
on the top of max pooling layer to classify the patient to the short or long survival group.

short/long OS short/long OS
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Figure 4. Survival prediction pipelines using the proposed multicolumn Mv-CNN architectures. (a) A three-column
Mv-CNN architecture (Mc-Mv-CNN-1) operating on the three 2D projection images of each modality. The figure shows
an example for the FLAIR modality. The same architecture were applied for the other three modalities, resulting a
patient-level four different prediction probabilities of patients’ survival time. (b) A four-column Mv-CNN architecture
(Mc-Mv-CNN-2) operating on the 2D images of the four modalities projected in the same plane. The figure shows
an example for the axial projection images. The same architecture were applied for coronal and sagittal projections,
resulting a patient-level three different prediction probabilities of patients’ survival time.

tectures, respectively. Each one of the three columns outputs a 256 —dimension hidden representation for the
2D projection images. A fusion layer is then added to integrate the outputs of the three-column vectors into
a 768 —dimension vector through concatenation. The model architecture also further incorporated a fully con-
nected layer and a sigmoid activation function to map the computed hidden representations to the OS prediction
in the 0 to 1 range. We trained the architecture four times, one using each modality. The architecture depicted
in Figure 4a shows an example for FLAIR modality. The same architecture and training were used for the other

three MRI modalities, resulting in four different binary probability estimates for each patient’s survival time.
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Mc-Mv-CNN-2: 1t is a four-column Mv-CNN architecture operating on the same 2D projection images
of the four MRI modalities. Each of the four columns outputs the same 256 — dimension hidden representation for
each 2D projection images of the four modalities. Each one of the four columns outputs a 256 — dimension hidden
representation for the 2D projection images. A fusion layer is added to integrate the outputs of the four-column
vectors into a 1024 — dimension vector through concatenation. The model architecture also further incorporated
a fully connected layers and a sigmoid activation function to map the computed hidden representations to the
OS prediction in the 0 to 1 range. We trained the architecture three times, one for each projection of the
four modalities. The architecture depicted in Figure 4b shows an example for axial projection. The same
architecture and training were used for the other two projection, resulting in three different binary probability
estimates for each patient’s survival time. In the end, we fused predicted probabilities by Mc-Mv-CNN-1 and
Mc-Mv-CNN-2 models using the same six different ML methods used during fusing the probability predictions
by the single-column Mv-CNN models.

3. Results and discussions

3.1. Performance of the single column Mv-CNN models

The classification performances of each of the twelve single column Mv-CNN models have been evaluated in
terms of accuracy and area under the receiver operating characteristics curve (AUC). As shown in table 3 left-
side, it is observed that half of the twelve models obtained an AUC value greater than 0.8 on the validation
dataset. These demonstrate that the proposed single column Mv-CNN models are able to extract discriminative
features from MRI images that can distinguish between long and short OS. In addition, single column Mv-CNN
model trained solely with 2D axial projection of FLAIR modality has a better classification performance than
the other eleven models trained with the other 2D projection images. In addition, single column Mv-CNN
models trained solely with 2D axial projections of T1 and T2 modalities achieved better AUC than models
trained solely with coronal and sagittal slices of the corresponding modalities. However, the single column Mv-
CNN model trained on T1CE — sagittal projections achieved better AUC performances than the corresponding
axial and coronal projections. In summary, the results indicated that 2D axial projections of MRI modalities

have more prognostic features compared to the other 2D projections of the corresponding modalities.

3.2. Performance of the ensemble single column Mv-CNN models using the six fusion strategies

With regard to AUC and accuracy, the OS classification results obtained when the individual single column
Mv-CNN learners fused using the six ML methods are depicted in Table 3 right-side. The results show that most
of the ensemble models yielded quite an impressive stratification performances, ranging from 0.736 to 0.93 and
76.19% to 92.9%, in AUC and accuracy, respectively. All the ensemble models stratification performance, with
the exception of RT, achieved greater performance than the individual single column Mv-CNN models, with
more than 7.5%, and 4.8% improvement in accuracy and AUC measurements, respectively. Furthermore, SVM
presents the highest OS prediction performance achieving 0.93 and 92.9% in AUC and accuracy, respectively.
These results demonstrate that the developed system combining individual single column Mv-CNN models into
a single framework using classical ML methods could be considered as a promising strategy for OS stratification,
and SVM is the best fusion method to ensemble multiple DL models for OS stratification.

3.3. Performance of the multicolumn Mv-CNN models
The OS stratification performances of each of the seven multicolumn Mv-CNN models have been evaluated in

terms of accuracy and AUC as shown in Table 4 left-side. Their AUC and accuracy range from 0.68 to 0.86
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Table 3. Single column Mv-CNN models performance results on the validation dataset. Left-side: performances of
the individual single column Mv-CNN models; right-side: performances of the ensemble twelve single column Mv-CNN
models when fused using the six ML techniques. Bold values indicate our best results among 2D projections of each
modality, and ensemble models.

Models AUC | Accuracy(%)

FLAIR-axial 0.875 | 83

FLAIR-coronal | 0.84 81

FLAIR-sagittal | 0.84 76 ML methods AUC | Accuracy(%)
T1-axial 0.83 64 MLP 0.923 | 90.5
T1-coronal 0.76 67 BayesNet 0.908 | 85.7
T1-sagittal 0.82 76 SVM 0.93 | 92.9
T1CE-axial 0.77 67 RF 0.909 | 85.7
T1CE-coronal | 0.75 67 RT 0.736 | 76.19
T1CE-sagittal | 0.83 | 74 Logistic regression | 0.882 | 88.1
T2-axial 0.70 62

T2-coronal 0.68 57

T2-sagittal 0.69 60

and 61.9% to 83.3%, respectively. It is observed that when multicolumn Mv-CNN models trained on solo MRI
modalities, the best stratification performance was obtained using FLAIR modality with 0.86 and 78.6% in AUC
and accuracy, respectively. This indicates that FLAIR MRI modality has more prognostic values compared to
the other three MRI modalities. Similarly, multicolumn Mv-CNN model trained with 2D axial projections has

a reasonable better classification performance with 0.82 and 83.3% in AUC and accuracy, respectively.

3.4. Performance of the ensemble multicolumn Mv-CNN models using the six fusion strategies

With regard to AUC and accuracy, the OS classification results achieved when the individual multicolumn
Mv-CNN models combined using the six ML techniques are illustrated in Table 4 right-side. It is observed that
most of the ensemble models obtained quite an impressive performance, ranging from 0.81 to 0.873 and 73.8%
to 85.7%, in AUC and accuracy, respectively. In addition, ensemble models using RF and RT fusion methods
achieved the highest AUC (0.87) and accuracy (85.7%) than the other fusion methods. These results demonstrate
that, performances combined from multimodal MRI scans were better than any single MRI modality with
improvement rates of more than 2.4% in accuracy. However, when best results of the ensemble of single column
Mv-CNN and multicolumn Mv-CNN models were compared, ensemble of the single column Mv-CNN models
achieved better with an increment of 2.4% in accuracy. In summary, the developed ensemble learning of multiple
multiview CNN models approach achieved state-of-the-art results, and could also be considered as a promising

strategy for any other medical classification problems with limited volumetric medical image datasets.

3.5. Result comparison with some existing works

A comparison of our proposed approach with ten recently published works with state-of-the-art results for brain
tumor patients survival time classification is discussed in this section (see also Table 5). To further validate the

effectiveness of the proposed approach, we also presented a reference baseline based on limited demographic and
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Table 4. Multicolumn Mv-CNN models performance results on the validation dataset. Left-side: performances of the
seven multicolumn Mv-CNN models; right-side: performances of the multicolumn Mv-CNN models when fused using
the six ML methods. Bold values indicate our best results among modalities, 2D projections and ensemble models.

Models | AUC | Accuracy(%)
FLAIR | 0.86 | 78.6

T1 0.76 | 71.4
T1CE 0.68 | 66.7
T2 0.71 | 61.9

Axial 0.82 | 83.3
Coronal | 0.78 71.4
Sagittal | 0.69 | 61.9

ML methods AUC | Accuracy(%)
MLP 0.846 | 78.6
BayesNet 0.861 | 73.8

SVM 0.81 81

RF 0.873 | 81

RT 0.837 | 85.7
Logistic regression | 0.827 | 81

tumor volume related features, and trained with SVM. As shown in Table 5, the baseline achieved a performance
of 0.65 and 60% in AUC and accuracy, respectively.

Deep learning algorithms works well when large annotated datasets are available. However, handcrafted
based approaches have been superior than deep learning algorithms in datasets with limited sizes. Hence, the
majority of state-of-the-art results for OS stratification of brain tumor patients have been obtained based on
handcrafted features trained with traditional ML classifiers. For instance, in [19], authors extracted 74 features
from automatically segmented tumor regions and subsequently combined with age of patients to train XGBoost
classifier. Using the BraTS training dataset, they obtained an accuracy of 73% in stratifying survival into three
groups. Using the same dataset, Chato et al. [43] achieved an accuracy of 66.7% using histogram features and
SVM classifier, and Sanghani [44] achieved a 3-class classification accuracy of 87% on stratified 5-fold cross-
validation using clinical, volumetric, tumor shape, and texture features trained with ML algorithm. Similarily,
Chaddad et al. [45] used JIM, GLCM and gene expression texture features extracted from T1CE and FLAIR

MRI modalities to train RF classifier. Their method achieved a leave-one-out cross-validation AUC of 0.78. In

another work [46], using clinical information (age and sex) and more than 60 features derived from computer-
based segmented tumor regions, authors achieved an overall accuracy of 80% in classifying patients into short,
medium and long survival.

Chen [47] showed that extracted handcrafted features, such as intensity, shape, texture and wavelet, from
manually delineated tumor regions in presurgical axial T1Ce modality, and subsequently combined with clinical
data allowed stratifying patients’ survival into a low- or high-risk group with an AUC of 0.851. In [12] using
SVM classifier and 2D texture features extracted from slices with the largest tumor size that are manually
segmented by two experienced radiologists, authors compared the performance of four MRI modalities when

used individually and in combination for classifying survival into two groups. The result showed that when
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Table 5. Comparison of the classification accuracy and AUC of the proposed ensemble learning approach and the
existing models for survival time classification of brain tumor patients based on MRI data.

Experiments | Years | MRI modalities | Survival stratification Methods Accuracy | AUC
Upadhaya 2015 | T1, T1Ce, short (<14.8 months ) Handcrafted 90 -
et al. [48] T2, FLAIR vs. high (otherwise)
Macyszyn 2016 | T1, T1CE, T2, | short (<6 months) vs. Handcrafted | 80 -
et al. [46] FLAIR, DTI, medium (6—18 months)
DSC-MRI and high (>18 months)
Chato 2017 | T1, T1Ce, short (<18 months) vs. Deep learning | 90 -
et al. [21] T2, FLAIR high (otherwise)
Chato 2018 | T1, T1CE, short (<10 months) vs. Handcrafted 66.7 -
et al. [43] T2, FLAIR medium (10—15 months)
and high (>15 months)
Liu et 2018 | T1, T1CE, short (<12 months) vs. Handcrafted | 80.7 0.79
al. [12] T2, FLAIR high (otherwise)
Sanghani 2018 | T1, T1CE, short (<10 months) vs. Handcrafted | 87.1 -
et al. [44] T2, FLAIR medium (10—15 months)
and high (>15 months)
Z.A. 2019 | T1,T1CE, short (<10 months) vs. Handcrafted | 73 -
Shboul [19] T2, FLAIR medium (10—15 months)
and high (>15 months)
Chen 2019 | T1CE short (<12 months)vs. Handcrafted | - 0.85
et al. [47] high (otherwise)
Chaddad 2019 | T1CE and short (<12 months) vs. Handcrafted | - 0.78
et al. [45] FLAIR high (otherwise)
Nie 2019 | T1CE,DTI, short (<22 months) Hybrid 90.7 -
et al. [28] rs-fMRI vs. high (otherwise)
Baseline 2020 | T1, T1CE, short (<10 months) Handcrafted 60 0.65
T2, FLAIR vs. high (otherwise)
This work 2020 | T1, T1CE, short (<10 months) Deep learning | 92.9 0.93
T2, FLAIR vs. high (otherwise)

using only T1Ce and the four MRI modalities separately, both models achieved nearly equal accuracy and AUC
value of 80.7%, and 0.79, respectively. Likewise, the authors [48] achieved a classification accuracy of 90%
based on heterogeneity textural features extracted from T1Ce and T1 MRI modalities. However, considering
only one MRI modality at a time, the best classification accuracy (82.5%) was obtained using T1Ce, followed
by FLAIR. In addition, the experimental result indicated that, considering only a single MRI modality at a
time, the survival classification performance using only the T1Ce modality is comparable to that of using all
the four MRI modalities together. However, in consistent with other study [49], our proposed approach shows
that the performances combined from multimodal MRI were superior than using T1Ce alone. In addition, our
experimental results show that considering one MRI sequence at a time, the best stratification performance was
obtained using FLAIR MRI modality. This indicates that further investigation is needed on the individual and

multimodal MRI scans comparisons for glioma patients’ survival time prediction.
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Nie et al. [28] proposed a multichannel 3D CNN architecture that extract deep features from multimodal
MRI scans, and subsequently combined deep features, demographic and tumor related features to train SVM
that classified OS into two groups with an accuracy of 90.7%, and 90.5% on 3-fold and, 10-fold cross-validation,
respectively. The paper also justified the importance of using multimodal MRI in predicting OS, and rs-fMRI
resulted in the best classification performance among all the single modalities. In another study [21], using
pretrained AlexNet for extracting deep features from specific slices that clearly contained the three regions of
HGG glioma, a 91% accuracy was obtained for the linear discriminant classifier, and 86.4% for the linear SVM
classifier. In summary, the performance of our proposed ensemble learning approach regarding classification

accuracy and AUC is superior to several state-of-the-art results in brain tumor patients’ OS stratification.

4. Conclusion

In this paper, we have introduced an ensemble learning framework for preoperative survival time classification of
brain tumor patients based on fusing multiple deep learning models with different machine learning techniques.
Our best model was obtained based on an ensemble of twelve multiview CNN models that were trained using 2D
projection images of multimodal MRI images and fused using the SVM machine learning classifier. We achieved
state-of-the-art results with AUC of 0.93 on the validation dataset. We only had limited number of training
and validation samples to train and validate the classification models. However, we believe more training data
will further improve the performance of our proposed approaches. In the future, we would like to increase the
number of training samples and explore different training strategies for deep learning models. Moreover, MRI
scans may only explain patients’ survival outcome partially. In the future, we would like to modify our proposed

network architectures to incorporate not only the MRI images but also clinical information of patients.
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