
Turk J Elec Eng & Comp Sci
(2020) 28: 3368 – 3388
© TÜBİTAK
doi:10.3906/elk-2002-68

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A new smart networking architecture for container network functions

Gülsüm ATICI1,∗, Pınar BÖLÜK1,2
1Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bahçeşehir University,

İstanbul, Turkey
2Department of Software Engineering, Faculty of Engineering and Natural Sciences, Bahçeşehir University,

İstanbul, Turkey

Received: 11.02.2020 • Accepted/Published Online: 10.09.2020 • Final Version: 30.11.2020

Abstract: 5G slices have challenging application demands from a wide variety of fields including high bandwidth, low
latency and reliability. The requirements of the container network functions which are used in telecommunications are
different from any other cloud native IT applications as they are used for data plane packet processing functions, together
with control, signalling and media processing which have critical processing requirements. This study aims to discover
high performing container networking solution by considering traffic loads and application types. The behaviour of several
container cluster networking solutions – Flannel, Weave, Libnetwork, Open Virtual Networking for Open vSwitch and
Calico – are explored with regard to the most commonly used container network functions in the form of MongoDB
and web access. Evaluations show that none of the solutions provide a high throughput for all types of workload
under optimum or heavy load situations. Hence, this research presents the view that traditional container networking
implementation methods may not fulfill the container network functions’ networking performance requirements. This
is because container networking performance changes dynamically, depending on traffic load and application types. To
overcome this problem, a new smart container networking architecture is proposed which allows containers to use several
container networking solutions dynamically in conjunction with container monitoring tools. Eventually, the primary
implementation of proposed architecture has been performed and evaluated. This research shows that proposed smart
architecture delivers promising results compared to traditional implementation methods, in case appropriate decision is
made during dynamic interface selection process.

Key words: CNF, container, performance, smart networking, traffic load, dynamic interface selection

1. Introduction
Network function virtualization (NVF) is of great importance in the development of 5G networks. NFV will
eventually mature by overcoming automated deployment, virtual network functions (VNF) onboarding, scaling,
configuration and updating [1]. Traditional VNFs (virtual machines) have some deficiencies including the
excessive consumption of hardware resources in high traffic situations, and difficulty in operating such resources
dynamically pursuant to traffic load by causing inadequate user experience or even service interruptions [2].
Building cloud-native VNFs (containers) which are referred to as container network functions (CNFs) overcome
these limitations of traditional VNFs [3].

CNFs have APIs which facilitate automated scaling depending on dynamic traffic requirements, self-
healing or fault tolerance, together with automated capacity, fault and performance management. They do
∗Correspondence: gulsumatici@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
3368

https://orcid.org/0000-0002-7637-5795
https://orcid.org/0000-0001-8274-8423


ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

this with the help of container orchestrator platforms such as Docker Swarm, Kubernetes, Amazon EKS etc.
[1]. Simplified management with the reduction of unnecessary allocated resources, reusability, together with
the sharing of processes by reducing power consumption and hardware resources, are crucial benefits of CNFs
in throttled situations [2]. Although providing several benefits, there are certain apprehensions with regard
to using container technology in NFV, especially for network domains. The reasons why diversified 5G slices
have challenging application demands with regard to a wide variety of fields are given in Figure 1; The CNFs
requirements which are used in telecommunications are different from those relating to any cloud native IT
applications.

CNFs in telecommunications are used for data plane packet processing functions, together with control-
ling, signalling and media processing with critical processing requirements such as less than 1 ms end-to-end
over-the-air latency. CNFs’ availability and coverage rise to 100 percent, and 99.99 percent respectively [4]. In
addition, high traffic handling is expected from CNFs with a 1000 times larger throughput than that found in
ordinary IT applications [4]. Due to the fact that any error or insufficiency impacts the number of subscribers
using the network, containers networking performance becomes the biggest challenge facing the fulfillment of
the 5G high performance targeted applications. In terms of 5G NFV implementation operational requirements
with regard to every type of application and every level of traffic situation, a high performing and adaptive
container networking architecture is required.

Communication

Entertainment

Internet 

Other Applications

Automative

Medical

Infrastructure

Retail

Shipping

Manufacturing

High Speed 

Bandwidth

Mission critical Slice

Massive IOT Slice

Other Slices

CSP networks

Broadband Slice

Reliable low 

latency

Machine-to-

Machine

Others

Figure 1. 5G Telecommunications applications challenging requirements.

Most studies have examined the performance of popular container cluster networking solutions in terms
of different performance indicators such as throughput, latency, response times, bandwidth within different
applications on local environments or public cloud infrastructures [2–5] However, few studies have focused
on performance under load. The studies which have been carried out have generally been executed on high
performance computing (HPC) platforms with applications which have different resource intensities [6–9].
Nevertheless, a few study have been actualized on public cloud environments within workloads which are similar
to those found in common CNF applications [10].

3369



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

Buzachis et al. investigated the performance of four network overlays – Open Virtual Networking for
Open vSwitch (OVN) [11], Calico [12], Weave [13] and Flannel [14] – by using Kubernetes in a clustered
environment designed for cloud, edge and fog [10]. They deployed distributed microservices based on FTP and
constrained application protocol (CoAP) and executed the benchmarks by considering the transfer times of each
microservice [10]. They compared the overhead of overlays according to container running in the host within
five different configurations and increasing payloads. Their study presented that best solution is the OVN, with
better time performances in all configurations, both for CoAP and FTP scenarios [10].

Ruan et al. researched the most suitable way to use containers in terms of different aspects, and performed
a series of experiments to measure performance differences between application containers and system containers.
They did this by observing the overheads of extra virtual machine layers between the bare metal and the
containers [6]. They found that system containers are more suitable for sustaining I/O bound workloads than
application containers. This was because the application containers suffered from high I/O latency because of
the layered file system used [6].

Martin et al. investigated the interoperability of Rkt containers in high performance applications by
running the HPL and Graph500 applications, then simulated the performance with commonly used container
technologies such as Docker and LXC containers [7]. They analyzed the performance results of data intensive
and compute intensive practical applications in several scenarios [7]. Casalicchio and Perciballi explored the
measurement of the Docker performance from the perspective of the host operating system and the virtualization
environment by outputting a characterization of the CPU and the disk I/O overhead generated by containers
[8]. They studied this with two use cases – a CPU intensive workload and a disk I/O intensive workload –
doing sequential or random reads and writes. However, they could not find a correlation between quotas and
overheads, an aspect which requires further investigation [8].

Herbein et al. studied resource management problems in containerized HPC environments from three
perspectives in the form of CPU allocation for CPU-intensive applications, disk I/O contention, and disk I/O
load unbalance [9]. They considered network bandwidth throttling and prioritization by aiming to achieve
better application performance and system utilization. They proposed a mechanism that enables bandwidth
limits and privileged delivery service for critical applications in containers which control latency and delay, while
providing a way to reduce data losses [9].

All the abovementioned former studies evaluated multihost container networking solutions in terms of
specific application requirements. As far as we know, there have not been any studies that investigate traffic
load effects for common CNF workloads on widely applicable container networking solutions. This study aims
to determine the high performing container networking solutions in terms of traffic load, which is given in
Figure 2. We do this by exploring the behaviour of several container cluster networking solutions over most
commonly used CNF operations in the form of MongoDB and web access. Docker cluster networking solution’s
behaviours under high traffic conditions are simulated by using multithreading in order to imitate real world
cases. Container cluster networking solutions such as Flannel, Weave, Libnetwork [15], OVN and Calico are
deployed as separate use cases on top of bare-metal hosts. The high traffic situations’ attitudes with regard to
tested solutions are evaluated in terms of performance and reliability. The evaluations indicate that the tested
container cluster networking solutions performances fluctuate, depending on traffic load and application types.
In order to fulfill the CNF application requirements in terms of latency, bandwidth, etc. for dynamic traffic
load situations, a high performing smart networking architecture is proposed and preliminary implementation

3370



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

has been accomplished.

CNF CNF

CNFCNF

CNFCNF

Workload A

Workload B

Workload C Dynamic traffic Loads

Figure 2. Dynamic traffic loads with different workloads on CNFs.

Our work is organized in 6 sections. Section 1 introduces the importance of containers usage and exigence
for the analysis of CNF workloads under high traffic conditions. In addition, related works investigated in terms
of load-based performance, and an outline of the research are given in this section. Section 2 presents the cluster
networking solutions such as Libnetwork with Etcd, Weave, Flannel, OVN and Calico. Section 3 describes the
test environment, the test scenarios, measurement tools, performance metrics and analysis techniques, together
with the case studies which are implemented. Section 4 presents the results of the experimentation according
to different traffic situations, by considering metrics such as throughput, retransmitted TCP segments, lost
datagrams and jitter. The figures illustrating the results, together with a discussion of the results in terms of
application type, traffic load and robustness, are presented. Additionally, our proposed architecture is introduced
and the preliminary performance results of the architecture are given in Section 5. Eventually, Section 6 presents
a conclusion, together with recommendations for future investigations.

2. Container cluster networking solutions
Containers are lightweight software constituents which are dependent on an image with the configuration running
on traditional operating systems in isolated user environments [16]. Docker is the most commonly used container
and makes up 83 percent of all containers in 2018, a number which is down from 99 percent in 2017 [17]. There are
two common container networking models: container network model (CNM) and container network interface
(CNI). The Docker default overlay network is called swarm services which provide the traffic flows between
swarm managers and workers [15].

Kubernetes, which is created and open sourced by Google is one of the important Docker container
orchestration system. It uses the labels and pods in order to manage applications easily by grouping them as
logical units. However, Kubernetes does not manage the network directly by itself. It uses network plugins
which are called CNI’s which provide the networking of Kubernetes cluster’s several components [18].

The Libnetwork overlay uses native virtual extensible local area network (VXLAN) features to build the
overlay network together with iptables, Linux bridges and veth. The overlay datapath exists in the kernel space,
and brings the benefits of less CPU usage, low latency, fewer context switches, and direct traffic between the
network interface controller (NIC) and the application. Layer 2 Ethernet frames are encapsulated in Layer 3

3371



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

UDP packets. By identifying each layer 2 subnets with a VXLAN header, the container traffic is traversed
between hosts. This process requires VTEP (VXLAN tunnel endpoints) to encapsulate and decapsulate the
packets that brings about significant performance overheads [5].

Flannel offers a layer 3 IPv4 network between the overlay host by controlling the traffic put across between
hosts. Flannel has several backend modes such as UDP, VXLAN, AWS VPC and GCE [5]. Although Flannel’s
default backend is UDP, the VXLAN mode is commonly prefered in production, as VXLAN forwarding increases
the performance of the overlay solution according to UDP. The VXLAN backend is similar to the Docker
Libnetwork overlay solution. In the VXLAN backend, Linux kernel VXLAN tunnel devices are constituted, and
user space process flanneld has been executed. Flannel assigns each Docker daemon an IP segment by solving
the IP conflict in the Docker default configuration. However, it has the drawback that it is not possible to assign
fixed IP addresses to containers and brings about a deficiency of multi subnet isolation [5]. Flannel stores the
assigned subnets, routing table and hosts information in a distributed key-value store such as Etcd.

OVN, which is a system that provides virtual network partition, supplements the capabilities of Open
Virtual Switch (OVS). OVS consists of three main components entitled vswitchd, ovsdb-server and kernel
module (datapath). OVS utilizes the virtual bridges and forwards the packets through the flow rules between
hosts, by connecting the tap interfaces and namespaces. Datapath forwards the packet by caching the flows and
executing the actions on the received packets according to matched flows. This is referred to as a fast datapath.
If the received packet does not match any flows, this packet is sent to ovs-vswitchd in userspace. Every packet
which goes to the userspace decreases the performance of OVS and this is referred to as a slow datapath.

Weave is a widely deployed overlay networking solution developed by the Weaveworks company. It has
two working modes entitled fastdp which is default mode, added to the Weave version 1.2 and sleeve (pcap).
Weave starts with the fastdp mode except that it uses untrusted networks and encryption. Fastdp mode is
quite similar to Libnetwork which uses encapsulation with VXLAN and encryption via IPSec. However, there
is a prominent difference with Weave in that it uses an Open vSwitch datapath module in a Linux kernel to
accelerate the traffic flows by reducing the number of context switches [13]. Running this module in a kernel
space throughout the known flows boosts performance. In addition, Weave also deploys a Linux bridge for
traffic broadcasting then learns and updates the flows. Weave comes with two different plugins: Weavemesh
and Weave. Weavemesh, which is deployed by default, works without a key-value store by using the conflict-free
replicated data type (CRDT) to store all the clusterwise information.

Calico is a solution which does not apply any encapsulation methods. Consequently, it is not an overlay
solution. It is a pure layer 3 network by establishing a cluster container networking through the IP forwarding
functionality in a Linux kernel. Calico uses the border gateway protocol (BGP) client entitled bird internet
routing daemon (BIRD) together with a vRouter to manage the end to end layer three networking. Calico utilizes
the distributed key-value store to keep information in terms of clusterwise hosts, subnet and IP addresses. Calico
has a weakness in that it has very large routing tables, as every container has an IP address [5]. Although Calico
has to perform a complex routing task, it is not affected by any overlay overheads such as NAT and tunnelling.

3. Experimental setup

3.1. Test environment
A multihost container networking environment consists of two bare-metal hosts, one Gigabit Ethernet switch,
and one gateway as shown in Figure 3a. Computer Dell Latitude E7440 with a 4 CPUs Intel(R) Core(TM)

3372



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

i7-4600U CPU@2.10GHz, 16 GB memory, SATA 6 Gbps I/O interface and a 1Gbit/s Intel Corporation I218-LM
network adaptor is used as host1. Host2 is a Dell Inspiron 15 7000 Gaming computer with 8 CPUs Intel(R)
Core(TM) i7-7700HQ CPU@2.80GHz, 16 GB memory, SATA 6 Gbps I/O interface and a 1Gbit/s Realtek 8169
network adaptor. Each host uses the Ubuntu 16.04.5 LTS operating system with a kernel version 4.15.0-66-
generic x8664. In performance investigation scenarios, the two hosts are connected through the CNet CGS-800
8 port Gigabit Ethernet switch by CAT6 cables. Except for experiments with an Apache jmeter, the gateway
device is not utilized. During the external Web access benchmark tests executed with the Apache Jmeter, a 4
ports 100 Mbit/s ADSL2 VDSL2 Huawei HG658 V2 gateway device is added to the environment in order to
improvise it to a real world scenario as is demonstrated in Figure 3b. In preliminary implementation of the
proposed architecture, only host2 is used in order to constitute single node Kubernetes environment, which is
shown in Figure 4.

Switch

Host1 Host2

(a) Iperf3 and Mongo-Per est environ-ment

Switch

Host1 Host2

Gateway

(b) Jmeter tests environment

Figure 3. Experimental setup for performance investigation in Docker cluster.

Host2

Kubernetes Master Kube API Server

MongoDB Pod Tester & SIMPod

CNI (Default) CNI

Clusternetwork
/Master Plugin

CRDs/
NetworkAttachments

CRDs/
NetworkAttachments

Clusternetwork
/Master Plugin

eth0

eth1eth0

eth1
Container Container

Figure 4. Experimental setup of the proposed architecture.

3.2. Use cases
Container multihost networking has been investigated within five different use cases in the form of a Docker
default overlay driver with Etcd, Flannel, Weave, OVN and Calico. Each overlay scenario has been deployed
in the same environment, and tested separately. The configuration of container networking solutions are kept

3373



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

as the default as much as possible. Interfaces in the implementations are used with their default MTU sizes.
Regarding the key value stores, Etcd and Consul are utilized, depending on the scenario. Etcd is used with
Libnetwork, Flannel and Calico, while OVN is deployed with Consul. Weave does not require any key value
store) (KVS) as it utilizes the consistent distributed configuration model. A consul global cluster store with
version 1.0.6 is deployed with OVN, unlike the Flannel, Calico and Libnetwork implementations. Libnetwork
with Etcd, Flannel and Weave uses VXLAN tunnelling encapsulation, while OVN uses a Geneve encapsulation.
The overlay solutions that use VXLAN and Geneve encapsulation has an additional performance loss because
of the encapsulation header size. Calico is configured at the BGP mode, while Flannel is used in the VXLAN
mode, Weave uses fastdp and OVN is used with the OVS learning mode in the use cases. These are given in
Table 1. Flannel, OVN and Calico use case implementation topologies are shown as samples in Figures 5a–5c,
respectively.

Table 1. Use cases.

Use case Overlay method MTU sizes (bytes) Implementation
Libnetwork VXLAN 1450 with Etcd
Flannel VXLAN 1450 VXLAN mode
Weave VXLAN 1376 Fastdp mode
OVN Geneve 1442 Learning mode
Calico No overlay 1500 BGP mode

C1
veth0

d
o

ck
er

0

fl
an

n
el

0

flanneld

en
s1

C2
veth0

d
o

ck
er

0

fl
an

n
el

0

flanneld

en
s1

Packet

flannel

ETCD

ETCD

Host1

Host2

(a) Flannel

C2
veth0

d
o

ck
er

0

en
s1

OVS

Consul

ge
n

0

b
r-

in
t

O
p

en
  

vS
w

it
ch

C1
veth0

d
o

ck
er

0

en
s1

Consul

ge
n

0

b
r-

in
t

O
p

en
  

vS
w

it
ch

GENEVE 
Tunnel

Host1

Host2

Packet

(b) OVN

C1
veth0

d
o

ck
er

0 BGP 
Routing

en
s1

C2
veth0

d
o

ck
er

0 BGP 
Routing

en
s1

Packet

ETCD

ETCD

Host1

Host2

(c) Calico

Figure 5. Use case topology samples.

The new architecture implementation has been performed on Kubernetes because of its convenience and
popularity. Single node Kubernetes environment has been created with two CNI’s, which are Calico and Weave.
Although, it is possible to add several network interfaces to a container in pure Docker cluster environment
[19], custom resource definition with the type of network attachment is applied in Kubernetes environment to
add multiple network interfaces to the pods [20]. Kubernetes client v1.18.2 and server v1.18.2 are utilized in
the implementation. The same docker version 18.09.7, build 2d0083d, and the same Etcd version 3.3.9 are used
during the implementation of all scenarios. Flannel version 0.8.0, Weave version 2.5.2, Calico version 3.2.8 and
Open vSwitch version 2.12.0 are deployed in the use cases which are listed in Table 2.

3374



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

Table 2. Application versions in use cases.

Application Version
Kubernetes client, server v1.18.2
Docker 18.09.7,build 2d0083d
Calico 3.2.8
Etcd 3.3.9
Flannel 0.8.0
Weave 2.5.2
Open vSwitch 2.12.0
Consul 1.0.6

3.3. Methodology and tools
This study applies a quantitative analysis as concrete results are educed from the numerical outputs throughout
the experiments. This research is based on a physical model as all the experiments are performed on a physical
environment. This consists of two computers and one switch in real time. The benchmarking tools are shown
in Table 3. Iperf3 3.0.7, Apache JMeter 3.3 r1808647, and Mongo-perf r20190405 which is a micro bechmarking
tool for MongoDB are used to measure the networking performance.

Table 3. Test tools.

Tool Version
Iperf3 3.0.7
Apache Jmeter 3.3 r1808647
Mongo-perf r20190405
Mongo server 3.2.0

Measurement tools are containerized and tests are executed in containers as it is necessary to compare
the container overlay performance. The test results are gathered within 95 percent confidence interval for each
use cases. MongoDB database benchmarks are executed with (1, 5, 50, 100, 200) number of threads within
Mongo-perf. Commonly used database operations such as insert, update and query are tested with diversified
transactions for 5-s time periods, and throughput is gathered within operations per second.

An external web access benchmark test is executed with an Apache Jmeter in a distributed way, which
includes one Jmeter master (client) and one slave (server), in order to improvise it to match a real scenario. The
number of HTTP requests is increased from 5 to 200 to display the behaviour under load. These are sent to a
certain public web site with a thread group duration of 30 s. In this scenario, data is sent through the cluster
network to the internet by assuming that the internet speed does not change. Iperf3 is operated for reliability
test purposes by considering jitter, retransmitted TCP segments, and UDP lost datagrams to observe the load
effects on TCP and UDP bandwidths. Therefore, a parallel (5, 10, 30, 100) number of threads are executed
simultaneously for a 10-s time period.

Various measurement indicator results are observed in different numerical ranges after performing the
experiments. However, performance and reliability evaluations need to be performed by courtesy of different
tests which have similar intentions. Hence, it is necessary to convert the results of all the tests into the same

3375



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

value range in order to evaluate the group of features together. The Z-score normalization method which is
formulated at (1) is selected for this purpose as it ensures that every data point has the same scale, and each
test becomes equally important overall.

Z − score =
value− µ

σ
(1)

By applying normalization, if the value is the mean of all values, it is normalized to 0; if it is higher
than the mean it is positive; while if it is lower than the mean it is negative. Normally, the size of negative
and positive numbers are decided by the standard deviation. During the evaluation of features which relate to
several test results, the normalized results are summed up by giving equal importance to each subfeature.

During the evaluation of the new architecture, MongoDB database pod has been deployed with multiple
network interfaces and the performance evaluation has been performed by insert-int-vector operations. Bench-
marks, has been realized by (1, 5, 40, 50, 100, 125) threads within Mongo-perf application. In our experiments,
the upper bound of thread quantity is limited to 125 as the Kubernetes deployment is different from Docker
cluster environment and the number of feasible threads are tightly bound to the deployment. Applying more
than 125 threads causes to the crash in the containers. The Kubernetes deployment reaches full CPU utilization
quite faster than Docker cluster environment, correspondingly, it could handle less threads than Docker cluster
operates. MongoDB performance evaluation setup for Docker cluster environment is presented in Figure 6a and
similar setup for Kubernetes environment is given in Figure 6b.

Host1 Host2
MongoDB Mongo-perf

C2C1
Operations

(a) Mongo-Per est setup in Docker cluster environment

Host2

MongoDBMongo-perf

C1

P2 P1

Operations
C2

(b) Mongo-Per est setup in Kubernetes environment

Figure 6. MongoDB performance evaluation setup comparison.

4. Performance results
Container networking solution results with multithreading, exhibit quite different behaviours compared to the
single thread analysis outcomes. It is discovered from the experiments that multithreading has affected the
performance of all container networking solutions in a favourable way. In addition, the container networking
solutions’ performance improvements are prone to the specific type of workload operation. However, there is not
enough information to explain the different behaviours of the solutions within those operations. This situation
is probably related to the container solutions’ adequacy with regard to specific types of resource utilization.

4.1. Database operations throughput

Three different insert operations (insert-empty, insert-int-vector, insert-large-doc-vector) are performed to eval-
uate the throughput in high traffic situations. The outcomes are illustrated in Figure 7. In insert-empty

3376



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

operations, all solutions make their highest number of operations within 50 threads. Then, when the thread
numbers are increased, the throughput starts to decrease slightly. This situation is presented in Figure 7a.
In the case of insert-empty operations, Libnetwork gives the highest throughput while Weave and Calico have
quite similar performances overall. Flannel has the worst performing solution by doing 10 percent fewer opera-
tions than Libnetwork. Multithreading affects the Libnetwork in a more favourable way than the others. The
Libnetwork performance is boosted 5.3 times within 5 threads, and 19.7 times within 50 threads, compared to
single thread operations. With regard to the insert-int-vector operations which are illustrated in Figure 7b, the
Libnetwork performance is the highest overall, while Flannel is the worst performing solution. Although OVN
offers a superior performance in single thread operations, multithreading has least improvement in the case of
OVN. Nevertheless, multithreading boosts the performance of Libnetwork 7.6 times with 5 threads, and 14.3
times with 50 threads.

The insert-large-doc-vector operations measurement outcomes are set out in Figure 7c. Although the
solutions’ performance results are pretty close to each other, Calico made the highest number of operations in
all numbers of threads, and its overall performance is 2.4, 2.8, 3.2, 3.66 percent higher than that of Libnetwork,
Flannel, OVS and Weave in insert-large-doc-vector operations, respectively.

1 5 50 100 200
Number of �reads

0

1

2

3

4

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d

10
4

Libnetwork
Weave
Flannel
OVN
Calico

(a) MongoDB insert-empty operations throughput

1 5 50 100 200
Number of �reads

0

0.5

1

1.5

2

2.5

O
p

er
at

io
n

s
p

er
se

co
n

d

10
4

Libnetwork
Weave
Flannel
OVN
Calico

(b) MongoDB insert-int-vector operations throughput

1 5 50 100 200
Number of �reads

0

500

1000

1500

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d

Libnetwork
Weave
Flannel
OVN
Calico

(c) MongoDB insert-large-doc-vector operations throughput

Figure 7. Container cluster networking solutions multithreading throughput comparison with MongoDB insert opera-
tions.

Only one type of MongoDB update operation – update-field-at-offset – is evaluated. The results are given
in Figure 8. Weave has the maximum throughput with regard to all numbers of threads. Its throughput is 9.3
percent more than that of Libnetwork and Flannel when considering the whole of the test results. Networking

3377



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

solutions give their maximum throughput at 50 threads, and throughput starts to dwindle slightly by adding
more threads. Flannel gives the worst performance at 50 threads, and Libnetwork makes the minimum number
of operations at the maximum number of threads.

1 5 50 100 200
Number of �reads

0

200

400

600

800

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d Libnetwork

Weave
Flannel
OVN
Calico

Figure 8. Container cluster networking solutions multithreading throughput comparison with MongoDB update field
at offset operations.

MongoDB query operations behaviour under high traffic loads is investigated with 4 different operations:
query-empty, query-find-projection, query-int-id-range, and query-nomatch. The outcomes of the investigation
regarding query-empty operations are depicted in Figure 9a. For query-empty operations, OVN which makes
the maximum number of operations with a single thread, gives 5.5 percent less throughput than does Libnetwork
with multithreading overall. Although Libnetwork gives the worst performance which is 14.7 percent less than
OVN with a single thread, its performance is boosted with multithreading and become the best performing
solution overall. Flannel is the worst performing solution with 8 percent less throughput than Libnetwork in
the entire measurements.

For query-find-projection operations, all the tested solutions distinctively achieved the maximum perfor-
mance with 50 threads. Their performance started to diminish slightly while increasing the number of threads
which is shown in Figure 9b. Although OVN is the best performing solution with single thread operations,
Libnetwork’s performance is boosted with multithreading and become the first-ranked solution overall. Flan-
nel makes 6.6 percent fewer operations than Libnetwork, and it is the worst performing solution among all
the container networking solutions for the query-find-projection workload, which is similar to query-empty,
insert-empty and insert-int-vector operations.

For query-int-id-range database operations as exhibited in Figure 9c, OVN makes the maximum number
of operations which is 3 percent higher than that of Calico, 7.2 percent and 8.3 percent higher than Flannel
and Weave respectively with a single thread. Libnetwork is the worst performing solution in terms of single
thread operations and is 11.6 percent less than OVN. This alignment is changed by the effects of multithreading.
Weave becomes the best performing solution with a higher performance than Calico, OVN and Libnetwork by
a percentage of 4, 4.8, and 4.9 respectively for all tests including single and multithread operations. Flannel
maintains its worst performing rank with 6.8 percent fewer operations than Weave for all query-int-id-range
operations.

For query-no-match operations, all the tested container networking solutions achieved the maximum
number of operations around 50 threads. However, the number of operations started to decrease with an increase
in thread numbers as shown in Figure 9d. Distinguishing from other database operations, Calico captures the
best performing solution title from OVN and gives an excellent performance both in single and 5 multithreaded
operations. Calico obtains 55 percent more operations with single thread and 72 percent more operations with

3378



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

5 multi threads than OVN which is second ranked solution. Libnetwork yields the worst performance in single
thread operations. However, Libnetwork performance is ascended extremely while increasing thread numbers to
50, 100 and 200. Libnetwork captures the first ranked solution title by providing 11.3 percent more operations
than Calico and 0.6 percent operations than Weave with multithreading.

1 5 50 100 200
Number of �reads

0

0.5

1

1.5

2

2.5

O
p

er
at

io
n

s
p

er
se

co
n

d

10
4

Libnetwork
Weave
Flannel
OVN
Calico

(a) MongoDB query-empty operations throughput

1 5 50 100 200
Number of �reads

0

0.5

1

1.5

2

O
p

er
at

io
n

s
p

er
se

co
n

d

10
4

Libnetwork
Weave
Flannel
OVN
Calico

(b) MongoDB query-find-projection operations throughput

1 5 50 100 200
Number of �reads

0

5000

10000

15000

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d Libnetwork

Weave
Flannel
OVN
Calico

(c) MongoDB query-int-id-range operations throughput

1 5 50 100 200
Number of �reads

0

0.5

1

1.5

2

2.5
O

p
er

at
io

n
s

p
er

se
co

n
d

10
4

Libnetwork
Weave
Flannel
OVN
Calico

(d) MongoDB query-no-match operations throughput

Figure 9. Container cluster networking solutions multi-threading throughput comparison with MongoDB query opera-
tions

4.2. Reliability
The number of retransmitted TCP segments, UDP jitter and the number of UDP lost datagrams are selected
as reliability indicators, and the container cluster networking reliability under load are evaluated over those
parameters. The number of TCP retransmitted segments are gathered and are shown in Figure 10a. While
increasing the number of threads, Libnetwork TCP retransmissions are mounted up within 100 threads. Weave
makes the least number of retransmissions in the entire test scenario. Libnetwork makes the maximum number
of retransmissions on 5 and 100 threads which are the minimum and maximum number of threads.

Jitter is observed during the multithreaded evaluations on UDP and shown in Figure 10b. Libnetwork
gives the maximum jitter with a single thread. Weave gives the worst jitter with 5, 10 and 30 threads, while
giving a minimum jitter which is slightly less than that of Flannel with 100 threads. Calico had the minimum
jitter for 5, 10, and 30 threads. Although, OVN gives the minimum jitter with a single thread, it yields the
maximum jitter in the case of 100 threads.

The UDP lost datagram results are displayed in Figure 10c. None of the container networking solutions
lose any UDP packages in single thread operations with the exception of OVN. It is supposed that the OVN

3379



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

packet losses in single thread operations is the due to first hit misses and the long OVN data path because of
it’s learning mode. Although other solutions do not lose any datagrams until 100 threads, Flannel loses around
0.1 percent of datagrams with 10 multiple threads. Experiments reveal that Flannel loses the datagrams in all
multithreaded operations, while Weave and Calico lose the insignificant amount of datagrams at the maximum
number of threads.

5 10 30 100
Number of Streams

0

5000

10000

15000

R
et

ra
sm

it
te

d
 s

eg
m

en
ts

 n
u

m
b

er Libnetwork
Weave
Flannel
OVN
Calico

(a) Retransmitted TCP segments

1 5 10 30 100
Number of Streams

0

1

2

3

4

5

m
s

Libnetwork
Weave
Flannel
OVN
Calico

(b) UDP jitter

1 5 10 30 100
Number of Streams

0

0.02

0.04

0.06

0.08

0.1

P
er

ce
n

ta
ge

o
f

L
o

st
D

at
ag

ra
m Libnetwork

Weave
Flannel
OVN
Calico

(c) UDP lost datagram

Figure 10. Container cluster networking solutions multithreading reliability comparison.

4.3. Web access operations throughput

The HTTP traffic average throughput with multithreading is exhibited in Figure 11. In terms of increasing
the number of threads, after 100 threads, the throughput decreases for all container overlay solutions. This is
probably due to the impact of resource congestion in the host. Although the networking solutions results are
quite close to each other, Flannel gives the highest throughput overall. All the solutions give their maximum
throughput with 100 threads. The Flannel throughput is 8.7, 10, 11, and 16 percent more than OVN, Calico,
Libnetwork and Weave, respectively. Calico and Flannel give the highest performance amongst the tested
container networking solutions at the maximum thread number which is 200. In 200 threads, all networking
solutions’ performance has significantly dropped, which is around 40 percent compared to 100 threads.

5. A new smart container networking architecture

In this research, the performance and reliability of MongoDB and web access operations which are the most
commonly applied VNF processes, are evaluated under various traffic loads. It is deduced from the experiments

3380



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

5                          50 100 200
Number of �reads

0

20

40

60

80

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Libnetwork
Weave
Flannel
OVN
Calico

Figure 11. Container cluster networking solutions multithreading throughput comparison with web access operations.

that container networking solutions’ performance changes depending on the traffic load and application type.
Container networking solutions usually present maximum throughput within 50 threads which is therefore
designated as the optimum load for database operations except MongoDB insert-large-doc-vector operation
which is not limited with 50 threads and its performance keeps to increase while adding more threads. In
addition, web access operation reaches the maximum throughput within 100 threads. Although, investigation
of resource consumption is not the subject of this study, it is known that optimum thread number is quite
relevant by how quickly threads can utilize CPU with 100 percent or fill network bandwidth totally etc. As
different operations have different resource intensities, similar operations consume the same type of resources
and have similar optimum load points. However, the operations which has different resource intensities may
have different optimum load points in the same environment. For example, insert-large-doc-vector operations
performance is not bounded to 50 threads and the optimum load point is taken as maximum thread number
(200). The reason why, insert-large-doc-vector operations are I/O intensive and they do not utilize the 100
percent CPU quickly unlike other operations.

Besides, optimum thread number is also related with the architecture of the environment. While
evaluating the same type of operations (insert-int-vector in MongoDB) in Docker cluster and Kubernetes
environment, as it is observed in Table 4 and Table 5 respectively, optimum load point (40 threads) in Kubernetes
deployment is less than Docker cluster environment (50 threads). This situation is explained by Kubernetes
deployment reaches full CPU utilization quite faster than Docker cluster environment.

Table 4. Performance results of Weave and Calico networking solutions for MongoDB insert-int-vector operations in
Docker cluster environment (operations per second).

No. of thread Calico (ops/s) Weave (ops/s)
1 1480.2 1458.44
5 12024.84 10675.06
50 20480.5 20604.12
100 19992.06 20183.7
200 19663.32 20070.28

The tested maximum thread number is 200 for Docker cluster environment. This is assigned as a heavy
load state for web access and MongoDB operations. In order to evaluate several features together, Z-score
normalization has been applied to the results, and all the values are reduced to the same scale. Under these

3381



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

Table 5. Performance results of Weave and Calico networking solutions for MongoDB insert-int-vector operations in
Kubernetes (operations per second).

No. of thread Weave on K8S (ops/s) Calico on K8S (ops/s) SIM on K8S (ops/s)
1 3002.00 3089.88 3089.88
5 9317.51 9402.50 9402.50
40 10385.06 10416.74 10416.74
50 10061.23 10182.48 10182.48
100 9850.16 9854.25 9854.25
125 9646.20 9348.62 9520.75

circumstances, by utilizing the normalized results, high performing container networking solutions affiliated to
application type, traffic load and robustness demand are pieced together in Table 6.

Table 6. High performing networking solutions according to test results by considering application requirements, traffic
loads and robustness.

Application HL,R HL,UR OL,R OL,UR
Web acess Calico Flannel OVN Flannel
MongoDB insert Calico Libnetwork Calico Libnework
MongoDB update Weave Weave Weave Weave
MongoDB query Weave Weave Weave Libnetwork

HL: High load, OL: Optimum load, R: Robust, UR: Unrobust.

The high performing container networking solutions which have been discovered are as indicated in
Table 6. The advice is to use Calico for web access and MongoDB for insert operations, while using Weave for
MongoDB updates and for query operations if robustness is required under a heavy load traffic. Peradventure
robustness is not taken into account, Flannel provides the best performance for Web access operations, and
Libnetwork provides a higher throughput for MongoDB insert operations under heavy load conditions.

The tested networking solutions highest throughput values are obtained at the optimum traffic load
points amongst the total range of traffic loads. If robustness is necessary, it is advised that OVN for Web access
operations, Calico for MongoDB insert operations, and Weave for MongoDB update and query operations in
optimum traffic load is used. If peradventure robustness is not necessary, the use of Flannel for Web access
operations, Libnetwork for MongoDB insert and query operations in optimum traffic load is proposed.

It is concluded from the evaluation presented in Table 6 that solution behaviours differ dynamically
depending on traffic load and application type. Therefore, it is impossible to use the suggested solutions
adaptively with traditional container networking implementation methods. To overcome this problem, a new
smart container networking implementation design is proposed, which is shown in Figure 12.

In container cluster environment, a new component, smart container network interface manager (SIM),
is inserted between the container runtime and the container networking solutions, which is given in Figure 12b.
In smart container networking architecture, containers are linked to available container networking solutions,
which is presented at Figure 12a. Initially, SIM tests the available interfaces by the help of monitoring tools,
then it selects the highest performing network interface of container as active path. Afterwards, two containers
transfer the data through these selected network interfaces. SIM simultaneously observes the performance of

3382



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

all container networking solutions; at that point, testing mechanisms are implemented by the help of container
monitoring tools. When the performance of active path has degraded, traffic is switched to more adequate
interfaces of containers by SIM. It is experienced with the implementation that switching decision should be
given if performance gain is higher than switching loss.

The decision process is quite important to ensure performance gain. For this purpose, SIM decision
mechanism needs to be supported by machine learning algorithms such as supervised learning or kinds of
methods from artificial intelligence. SIM interface selection flow diagram has given in Figure 12c.

Primary implementation of SIM is realized in single node Kubernetes environment, which is demonstrated
in Figure 4. Pods are linked to two available networks, which are Calico and Weave by applying custom resource
definition with the type of network attachment [20]. One MongoDB database has been located in one of the
pod. Mongo-perf tester together with Python application in another pod has acted as SIM. Initially, standalone
performances of Calico and Weave has been evaluated by insert-int-vector operations. Networking solutions’
performance results in Docker cluster and Kubernetes environments are shown in Tables 4 and 5, respectively.

It is clearly seen in Figure 6 that MongoDB container is located in host1 and network bandwidth has
been limited by the physical connection between host1 and host2 for Docker cluster networking. For Kubernetes
cluster, MongoDB and Mongo-perf pods are located in host2, hence there is no physical network connection
which limits the traffic. In addition, host1 and host2 have equal amount of resources in terms of network,
memory, I/O interface and disk specifications except host2 processor specifications are better than host1.

In this situation, it is expected to have higher performance results in Kubernetes environment compared
with Docker cluster environment, as there is no factor which limits the traffic. In addition, there are twofold
number of CPUs with higher frequencies in Kubernetes environment. Single thread operations meet this
expectation as shown in Table 5. Number of operations of Calico and Weave networking solutions in Kubernetes
environment with single thread, is higher than Docker cluster environment. However, while increasing the
number of threads, Docker cluster environment gives higher performance results than Kubernetes environment.
Kubernetes is a larger system with more features and several objects compared to Docker cluster environment.
Hence, all those components consume host resources. Moreover, the performance of the implementations are
generally evaluated by how quickly they can reach 100 percent resource utilization and by number of operations
in a second. In addition, database performance is influenced by availability of memory, CPU, physical-virtual
network bandwidth and disk I/O bandwidth [21]. It is put forth by [21] that Kubernetes consumes more memory
than Docker cluster and spends more CPU time on soft interrupts than Docker cluster. Furthermore, these CPU
resources are generally spent for virtual networking between containers. Hence, Kubernetes total (physical and
virtual) network usage is also quite higher than Docker cluster. In spite of these, Kubernetes presents better
performance than Docker cluster for small number of threads (e.g., 1 thread) that can be explained by its I/O
path implementation method which uses hostPath volume. Consequently, Kubernetes deployment reaches full
CPU utilization quite faster than Docker cluster environment, correspondingly, Kubernetes performance with
respect to number of operations in a second is higher than Docker cluster environment before it is overloaded.
This also explains the reason of applicable thread number in Kubernetes environment is less than Docker cluster
environment.

The results given in Tables 4 and 5 output that tested container cluster networking solutions relative
performance and their behaviour under load in Kubernetes environment are consistent with the results which
are gathered from Docker cluster. In Kubernetes environment, Calico gives highest results between threads 1
to 100, however Weave presents better results under high loads such as 125 threads.

3383



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

CNFCNF
Host Host

High Speed

Low Speed

In-useIn-use

Linked
& Idle

Linked &
Idle

(a) New architecture which supports several container cluster networking
solutions at the same time

Container Runtime

Smart Container Network Interface Manager (SIM)

net0net1

Container

Container Monitoring
Tool

Decision Mechanism based on Machine 
Learning or AI Algorithms

(b) Dynamic container network interface selection by Smart Interface Manager

Create the Pod
with multiple 

interfaces from
available
networks

USER SIM

Initially,test the
available

interfaces by the
help of  

monitoring
tools

Decide the best 
solutionwith
implemented

decision
mechanism

Switch traffic to
more adequate 

interface of 
container if

performance
gain is higher

than switching
loss

SIM SIM

Dynamic
Control  Loop

(c) SIM interface selection flow diagram

Figure 12. Smart networking architecture for CNFs.

In smart networking architecture, SIM imitation (Python application) has performed switching between
Calico and Weave starting from 1 times to 3000 times during 5000 insert operations in order to analyze switching
overhead. During this period, networking solutions performed equal number of operations. It is observed from
the results which are given in Table 7 that one switching costs 13.42 (ms) and overall switching loss (ms) does
not increase linearly while increasing the quantity of switching which requires further investigation about its
trend.

3384



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

5 40 50 100 125
Number of Threads

8500

9000

9500

10000

10500

O
p
er

at
io

n
s 

p
er

 s
ec

o
n
d Weave

Calico

SIM

Figure 13. Overall performance improvement with SIM.

1 41,46

5 126,17

40 139,78

50 136,63

100 132,23

125 125,44

1; 41,46

5; 126,17
40; 139,78

50; 136,63
100 ; 132,23

125 ; 125,44

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

)s/
p

o(
ni

a
G   

ec
n

a
mr

of r
e

P

Number of !reads

Switching is better area

Continuation is better area

Figure 14. Trade-offs between performance gain and switching loss.

Table 7. Analysis of switching overhead.

Operation type Completion time (ms) Switching loss (ms)
Calico wout switching 1640.96 -
Weave wout switching 1650.13 -
1 time switching between Calico and Weave 1658.96 13.42
5 times switching between Calico and Weave 1659.76 14.21
100 times switching between Calico and Weave 1675.89 30.34
500 times switching between Calico and Weave 1678.89 33.35
1000 times switching between Calico and Weave 1701.95 56.40
3000 times switching between Calico and Weave 1800.54 155

Measurements are taken by making 5000 insert operations.

In this experiment, SIM selected the Calico during MongoDB operations between 1 to 100 threads because
of its higher performance under these traffic load, then Weave is selected while performing operations under 125
threads. By employing Weave with 125 threads, 172 more operations in a second has been gained compared
to traditional Calico (only) performance results, though there is switching loss. This is because Weave has
better performance under high traffic loads. Consequently, 1.84 percent performance improvement has been

3385



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

achieved in overall compared with traditional Calico (only) scenario by utilizing dynamic interface selection.
These results are presented in Figure 13.

This study also shows that although there is trade-offs between performance gain and switching loss, it
is possible to achieve higher performance results with appropriate and on time decision mechanism. According
to implemented scenario, a sample trade-offs table is given in Figure 14. This figure has been constituted
by switching traffic between Calico and Weave, while performing insert-int-vector operations on MongoDB
for different thread quantities. It shows that if the performance gain is higher than switching cost, switching
improves the overall performance. The area above the line is indicated as switching better area.

As a result, dynamic interface selection solves the problem of inadequacy of single container networking
solution under variety of traffic loads and application types. This implementation achieves higher performance
results by dynamically selecting the available networking solutions. The success of smart networking architecture
comes from accurately evaluating the measurements and making better decisions.

6. Conclusion
In this paper, performance and reliability has been investigated for the container networking solutions Libnet-
work, Flannel, Calico, OVN and Weave. The most commonly used container network functions in the form
of MongoDB and web access are tested under different traffic loads in terms of throughput, jitter, retrans-
mitted TCP segments and lost datagrams. By evaluating all the experiments, the tested networking solutions
behaviours depending on application type under specific traffic loads for CNF workloads are revealed. It is
observed that none of the solutions provided relatively high throughput for all types of workload under opti-
mum or heavy load conditions. As it is impossible to apply the suggested networking solutions adaptively with
traditional container networking implementation methods, a new smart networking architecture is proposed.
This proposed architecture has a strong decision mechanism which is provided by the component named as SIM.
In this paper, the primary implementation of the architecture is given and analysed by allowing containers to
use several networking solutions dynamically. This study has shown that although there is trade-offs between
performance gain and switching loss, our architecture exhibits better performance than traditional architecture.
Our performance results show that the proposed architecture presents better performance as long as appropriate
and on time decision making mechanism is provided. Hence, this new smart container networking architecture is
promising candidate, which can solve the traditional container networking implementation methods’ inadequacy
about meeting 5G NFV implementation diversified operational requirements for different kind of applications
and traffic density.

As a future work, more sophisticated smart container networking architecture can be enhanced by
developing strong decision mechanism supported by machine learning algorithms and artificial intelligence for
actual deployments. The SIM networking selection mechanism can be improved in a learning mode by using
artificial intelligence. While increasing the number of switching, trend in the switching loss can be investigated.
In addition, container monitoring functionality can be integrated into SIM by monitoring the traffic flows
concurrently. This facilitates and accelerates the different networking solutions performance testing during the
network interface selection process.

Acknowledgment

The authors would like to thank anonymous reviewers for their valuable comments. This work is supported by
Bahçeşehir University (İstanbul, Turkey) and Ulak Haberleşme A.Ş. (Ankara, Turkey).

3386



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

References

[1] Anderson J, Hu H, Agarwal U, Lowery C, Li H et al. Performance considerations of network functions virtualization
using containers. In: International Conference on Computing, Networking and Communications; New York, NY,
USA; 2016. pp. 9-16. doi: 10.1109/ICCNC.2016.7440668

[2] Rotter C, Farkas L, Nyíri G, Csatári G, Jánosi L et al. Using Linux containers in telecom applications. In:
Innovations in Clouds, Internet and Networks; New York, USA; 2016. pp. 234-241.

[3] Struye J, Spinnewyn B, Spaey K, Bonjean K, Latr S. Assessing the value of containers for NFVs: a detailed network
performance study. In: 13th International Conference on Network and Service Management; Tokyo, Japan; 2017.
pp. 1-7. doi: 10.23919/CNSM.2017.8256024

[4] Bolivar LT, Tselios C, Area DM, Tsolis G. On the deployment of an open-source, 5G-aware evaluation testbed.
In: 6th IEEE International Conference on Mobile Cloud Computing, Services and Engineering, MobileCloud 2018;
Bamberg, Germany; 2018. pp. 51-58. doi: 10.1109/MobileCloud.2018.00016

[5] Zeng H, Wang B, Deng W, Zhang W. Measurement and evaluation for Docker container networking. In: 2017
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery; Nanjing, China;
2017. pp. 105-108. doi: 10.1109/CyberC.2017.78

[6] Ruan B, Huang H, Wu S, Jin H. A performance study of containers in cloud environment. In: Advances in Services
Computing - 10th Asia-Pacific Services Computing Conference; Wuhan, China; 2016. pp. 343-356. doi: 10.1007/978-
3-319-49178-3

[7] Martin JP, Kandasamy A, Chandrasekaran K. Exploring the support for high performance applications in the
container runtime environment. Human-centric Computing and Information Sciences 2018; 8 (1): 1-15. doi:
10.1186/s13673-017-0124-3

[8] Casalicchio E, Perciballi V. Measuring Docker performance: what a mess. In: ICPE 2017, Companion of the 2017
ACM/SPEC International Conference on Performance Engineering; New York, NY USA; 2017. pp. 11-16. doi:
10.1145/3053600.3053605

[9] Herbein S, Dusia A, Landwehr A, McDaniel S, Monsalve J et al. Resource Management for Running HPC Applica-
tions in Container Clouds. In: Kunkel J, Balaji P, Dongarra J (editors). High Performance Computing. ISC High
Performance 2016. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Vol. 9697. Cham, Switzerland: Springer, 2016, pp. 261-268.

[10] Buzachis A, Galletta A, Carnevale L, Celesti A, Fazio M et al. Towards osmotic computing: analyzing overlay
network solutions to optimize the deployment of container-based microservices in fog, edge and IoT environments.
In: 2018 IEEE 2nd International Conference on Fog and Edge Computing, ICFEC 2018 - In conjunction with 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, IEEE/ACM CCGrid; USA; 2018.
pp. 1-10. doi: 10.1109/CFEC.2018.8358729

[11] Kang H, Tao S. Container-based emulation of network control plane. In: HotConNet 2017 Proceedings of
the 2017 Workshop on Hot Topics in Container Networking and Networked Systems, Part of SIGCOMM
2017(9781450350587); New York, USA; 2017. pp. 24-29. doi: 10.1145/3094405.3094410

[12] Suo K, Zhao Y, Chen W, Rao J. An analysis and empirical study of container networks. In: IEEE Confer-
ence on Computer Communications, IEEE INFOCOM; New York, USA; 2018. pp. 189-197. doi: 10.1109/IN-
FOCOM.2018.8485865

[13] Hermans S, Niet P. Docker overlay networks performance analysis in high-latency environments. Bachelor Thesis,
University of Amsterdam, Netherlands, 2016.

[14] Bankston R, Guo J. Performance of container network technologies in cloud environments. In: IEEE International
Conference on Electro Information Technology; USA; 2018. pp. 277-283. doi: 10.1109/EIT.2018.8500285

[15] Brown CL. Network performance analysis on a containerized testbed. Master’s thesis, Tennessee State University,
Nashville, TN, USA, 2018.

3387



ATICI and BÖLÜK/Turk J Elec Eng & Comp Sci

[16] Boza EF, Abad CL. A case for performance-aware deployment of containers. In: WOC 2019 - Proceedings of the 2019
5th International Workshop on Container Technologies and Container Clouds, Part of Middleware, (9781450370332);
USA; 2019. pp. 25-30. doi: 10.1145/3366615.3368355

[17] Bachiega NG, Souza PSL, Bruschi SM, Souza SRS. Container-based performance evaluation: a Survey and chal-
lenges. In: Proceedings - 2018 IEEE International Conference on Cloud Engineering, IC2E 2018; Orlando, FL, USA;
2018. pp. 398-403. doi: 10.1109/IC2E.2018.00075

[18] Burns B, Beda J, Hightower K. Kubernetes: Up and Running. USA: O’Reilly Media, Inc, 2019.

[19] Smith R. Docker Orchestration: A Concise, Fast-paced Guide to Orchestrating and Deploying Scalable Services
with Docker. Birmingham, England: Packt Publishing, 2017.

[20] Caban W. Architecting and Operating OpenShift Clusters: OpenShift for Infrastructure and Operations Teams.
Berkeley, CA, USA: Apress Media LLC, 2019.

[21] Truyen E, Van Landuyt D, Lagaisse B, Joosen W. Performance overhead of container orchestration frameworks for
management of multi-tenant database deployments. In: Proceedings of the ACM Symposium on Applied Computing;
New York, NY, USA; 2019. pp. 156-159.

3388


	Introduction
	Container cluster networking solutions
	Experimental setup
	Test environment
	Use cases
	Methodology and tools

	Performance results
	Database operations throughput
	Reliability
	Web access operations throughput

	A new smart container networking architecture
	Conclusion

