
Turk J Math
(2020) 44: 2113 – 2122
© TÜBİTAK
doi:10.3906/mat-1909-73

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Dual quaternion algebra and its derivations

Eyüp KIZIL∗, Yasemin ALAGÖZ
Department of Mathematics, Faculty of Arts and Sciences, Yıldız Technical University, İstanbul, Turkey

Received: 21.09.2019 • Accepted/Published Online: 31.08.2020 • Final Version: 16.11.2020

Abstract: It is well known that the automorphism group Aut(H) of the algebra of real quaternions H consists entirely
of inner automorphisms iq : p → q ·p ·q−1 for invertible q ∈ H and is isomorphic to the group of rotations SO(3) . Hence,
H has only inner derivations D = ad(x), x ∈ H . See [4] for derivations of various types of quaternions over the reals.
Unlike real quaternions, the algebra Hd of dual quaternions has no nontrivial inner derivation. Inspired from almost
inner derivations for Lie algebras, which were first introduced in [3] in their study of spectral geometry, we introduce
coset invariant derivations for dual quaternion algebra being a derivation that simply keeps every dual quaternion in
its coset space. We begin with finding conditions for a linear map on Hd become a derivation and show that the dual
quaternion algebra Hd consists of only central derivations. We also show how a coset invariant central derivation of Hd

is closely related with its spectrum.
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1. Introduction
Derivations of an algebra give interesting insights for studying its algebraic structure. We have considered
derivations of Lie algebras and provided for this purpose a simple computational algorithm in [1]. Recently,
we have considered quaternions as a class of Lie algebra and given explicitly in [4] derivations of generalized
quaternion algebra over the field of real numbers. In this paper, we consider derivations of the algebra Hd of dual
quaternions since for such quaternions we have no inner derivations in contrast to classical real quaternions. We
first obtain conditions for a linear mapping on Hd be a derivation and show that dual quaternion algebra consists
of only central derivations. This is particularly interesting since a derivation of an algebra is the infinitesimal
operation corresponding to an automorphism and thus one might determine through the exponential map central
automorphisms, as well. Since in the dual quaternion algebra there is no nontrivial inner derivation and every
derivation is central we have found it convenient to put an extra condition on such derivations to explore some
algebraic properties. Hence, we introduce derivations that keep every dual quaternion in its coset space (i.e.
derivations D such that Dx ∈ x · Hd or Dx ∈ Hd · x for every x ∈ Hd ) and call them coset invariant. The
idea actually comes from almost inner derivations for Lie algebras which were first introduced by Gordon and
Wilson in [3] in their study of spectral geometry. We refer the reader to the work [2], where the authors establish
some algebraic properties of almost inner derivations for Lie algebras. We show how a coset invariant (central)
derivation of Hd is related with its eigenvalues.
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This article is organized as follows: Section 2 gives a brief information on classical quaternions. Section
3 considers derivations of the dual quaternion algebra Hd , which is the main subject of the paper. We then
determine explicitly all the derivations of Hd and introduce coset invariant derivations which are central since
there is no inner derivation in the dual case. We also show how such a derivation acts on pure and non-pure
dual quaternions.

2. Preliminaries
An algebra A over a field K is a vector space over K provided with a bilinear map · : A × A → A . The
real quaternions which we denote by H form an algebra over the reals generated by the units e0, e1, e2, e3

corresponding to the familiar 1, i, j, k. The quaternion (or Hamiltonian) product ” · ” is determined by the
following rules

e1 · e2 = −e2 · e1 = e3,

e2 · e3 = −e3 · e2 = e1,

e3 · e1 = −e1 · e3 = e2,

and
e21 = e22 = e23 = e1 · e2 · e3 = −e0

where e0 acts as identity: e0 · ei = ei · e0 = ei . We express a quaternion q ∈ H as

q = q0e0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3 ∈ R.

Throughout the manuscript we also use interchangeably one of the interpretations q = (q0, q1, q2, q3) or
simply q = (q0,q) where q = (q1, q2, q3) ∈ R3 . The e0 -component q0 of q may be thought of a time parameter
while the vector part q (also called pure or imaginary quaternion) represents the space.

Denote by H the algebra of all real quaternions which is a four dimensional real vector space with the
basis B(H) = {e0, e1, e2, e3} . The orthonormal basis B(H) actually corresponds to the canonical basis of R4

and hence it might be set

e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0) and e3 = (0, 0, 0, 1).

It should be noted that the quaternion products e1 · e2 = e3 , e2 · e3 = e1 and e3 · e1 = e2 are the same as vector
product

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2

except for the vector product
e1 × e1 = e2 × e2 = e3 × e3 = 0

while for quaternions, this is e2i = −e0 for any i = 1, 2, 3 .
Let q, p ∈ H , where q = (q0,q) and p = (p0,p) . The conjugate of q = q0e0 + q1e1 + q2e2 + q3e3 is the

quaternion q∗ = q0e0 − q1e1 − q2e2 − q3e3 . Hence the subalgebra R = R · e0, which is the center Z(H) of H ,
can be also interpreted as R = {q ∈ H : q∗ = q} . Also, the norm |q| of the quaternion q is given by

|q| =
√
q20 + q21 + q22 + q23 =

√
qq∗.
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Since any nonzero quaternion q 6= 0 admits a (unique) inverse

q−1 =
q∗

|q|2

it is clear that H is a normed division algebra. Addition (and hence subtraction) is defined componentwise:

q + p = (q0 + p0,q+ p).

The multiplication rule for quaternions is the same as for polynomials, extended by the multiplicative properties
of the quaternion elements e1, e2, e3 as follows: Let q, p ∈ H , where q = (q0,q) and p = (p0,p) .

q · p = (q0p0 − 〈q,p〉 , q0p+p0q+ q× p)

where 〈, 〉 and × stand for the usual scalar and vector product we are familiar from R3 . Multiplication of a
quaternion q = q0e0 + q1e1 + q2e2 + q3e3 by c is given by

c · q = cq0e0 + cq1e1 + cq2e2 + cq3e3.

It follows that the multiplication of quaternions is anticommutative but associative and distributive over
addition.

3. Derivations
Definition 3.1 (Derivation) A derivation of an algebra A is a linear map D : A → A such that

D(x · y) = D(x) · y + x ·D(y) (3.1)

for all x, y ∈ A .

A simple example is given by the ring of all polynomials in one variable with real coefficients. One might
regard this ring as an algebra over the reals and the mapping that sends a polynomial P (x) into its derivative
Dx(P ) is a derivation in the above sense. Another example is the algebra A of smooth functions R → R and
the usual derivative D(f) = f ′ where f ∈ A since D(f · g) = (Df) · g + f ·D(g) holds for every f, g ∈ A .

The set of derivations of an algebra A forms a vector space, which we denote by Der(A) and call
derivation algebra of A . Recall that gl(A) is a Lie algebra with Lie bracket given by [f, g] = f ◦ g − g ◦ f for
all f, g ∈ gl(A) . It follows from the definition of derivation and the fact Der(A) ⊂ gl(A) that Der(A) is a Lie
subalgebra of gl(A) since

[D1, D2](x · y) = [D1, D2](x) · y + x · [D1, D2](y)

for every D1, D2 ∈ Der(A) and x, y ∈ A . This means [D1, D2] is also a derivation. Any associative algebra A

can be made into a Lie algebra by taking commutator as the Lie bracket [x, y] = x · y − y · x for all x, y ∈ A .
It follows that if D ∈ Der(A) , then D is also a derivation of the corresponding Lie algebra L(A) = a which
means

D([x, y]) = [D(x), y] + [x,D(y)] (3.2)

for all x, y ∈ a . However, there may exist in general an associative algebra A and a derivation of the
corresponding Lie algebra which is not a derivation of A . Since we are mostly interested in algebra derivations
and not Lie algebra derivations we simply do not mind the converse implication.

A particular class of derivations are so called inner derivations.
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Definition 3.2 (Inner derivation) Let A be an algebra and x ∈ A . By an inner derivation associated to x we
mean the map

D = ad(x) : A −→ A, y 7−→ x · y − y · x,

for every y ∈ A .

Let ad(A) = {ad(x) : x ∈ A} denote the set of inner derivations of A which is a subalgebra (resp. ideal)
of Der(A) . In this paper, we mainly consider A as the algebra Hd of dual quaternions. It is known that
ad(Hd) can be determined from the equation

ad(Hd) '
Hd

Z(Hd)

which immediately implies ad(Hd) = {0} since Hd is commutative and hence Z(Hd) = Hd . It is also well
known that the automorphism group Aut(H) of classical quaternion algebra H over R consists entirely of
inner automorphisms iq : p → q · p · q−1 for invertible q ∈ H and is isomorphic to the group of rotations
SO(3) = {A ∈ GL(3,R) : ATA = 1} , where GL(3,R) denotes the general linear group of 3 × 3 invertible
matrices with real entries. Moreover, the Lie algebra so(3) of SO(3) is semisimple and it follows that H has
only inner derivations D = ad(ei) for i = 1, 2, 3 . Hence we have Der(H) = ad(H) while ad(Hd) for dual
quaternion algebra is trivial as we have just seen above. Actually, Der(Hd) consists of only central derivations
as we will see below.

Definition 3.3 A derivation D of an algebra A is called central if it maps A into its center Z(A) .

Denote by C(A) the set of all central derivations of an algebra A . It is clear that C(A) is a subalgebra of
Der(A) and every element of C(A) sends the derivation algebra of A to 0 . Note also that a central derivation
of an algebra A commutes with every inner derivation of A since C(A) = CentDer(A)(ad(A)) where for any
ideal I of A

CentA(I) = {x ∈ A : x · y − y · x = 0,∀y ∈ I}

denotes the centralizer of I in A . Studying central derivations goes back to sixties. See for example Togo [4].
We show in the subsequent section that the algebra Hd of dual quaternions has only central derivations. See
Proposition 3.4. First we give a brief exposition on dual quaternion algebra.

3.1. Dual quaternions

Denote by Hd the algebra of dual quaternions for which we have the following relations between its units:

e2i = 0,∀i and eiej = 0 for 1 ≤ i < j ≤ 3.

The quaternion product on Hd is defined by

x · y = (x0y0)e0 + (x0y1 + y0x1)e1 + (x0y2 + y0x2)e2 + (x0y3 + y3x0)e3

for all x, y ∈ Hd . It follows at once that the center Z(Hd) = Hd since it is commutative. Now, let D be a
derivation of Hd . Thus, D admits a matrix representation with respect to the basis B(Hd) = {e0, e1, e2, e3}
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which is the 4× 4 matrix [D] = (dij)
T whose entries are defined by the equations

D(e0) = d11e0 + d12e1 + d13e2 + d14e3

D(e1) = d21e0 + d22e1 + d23e2 + d24e3

D(e2) = d31e0 + d32e1 + d33e2 + d34e3

D(e3) = d41e0 + d42e1 + d43e2 + d44e3.

Each column of the above matrix is of course a dual quaternion. In order to obtain D in the matrix
form it suffices to know the Leibnitz rule in (3.1) only between the basis elements. First we notice a simple
observation: If D is a derivation of Hd , then the first column of the matrix representation of D consists of
only zeros. Indeed, e0 acts as an identity element and we have for any i = 1, 2, 3 that

D(e0 · ei) = D(e0) · ei + e0 ·D(ei) ⇐⇒ D(ei) = D(e0) · ei +D(ei)

which occurs if and only if
D(e0) · ei = 0, ∀i = 1, 2, 3.

Actually, it is enough to evaluate the latter equation only for e0 since D(e0) · e0 = 0 already implies

d11 = d12 = d13 = d14 = 0.

A simple computation yields for 1 ≤ i, j ≤ 3 that

D(ei · ej) =
{

2d(i+1),1ei if i = j
d(j+1),1ei + d(i+1),1ej if i 6= j

and hence we have obtained a typical derivation of dual quaternion algebra as in the proposition below:

Proposition 3.4 Any derivation D of the algebra Hd of dual quaternions is of the form

D =

(
0 O
OT A

)
∈ M4(R),

where O = (0 0 0) and A = (aij)1≤i,j≤3 is a submatrix with real entries and the dimension of Der(Hd) is 9.
Moreover,

Der(Hd) = C(Hd),

that is, any derivation is central.

Proof Der(Hd) has no nontrivial inner derivation since ad(ei) = 0 for every i . Thus, the algebra Hd

possesses entirely noninner derivations. If D ∈ Der(Hd), then we have D(Hd) ∈ Re1 + Re2 + Re3 ⊂ Z(Hd)

which means every derivation is central and hence we write Der(Hd) = C(Hd) . 2

The fact that dual quaternion algebra has only central derivations enables us to connect such derivations
to central automorphisms.

Definition 3.5 An automorphism σ of an algebra A is called central if and only if it commutes with every
inner automorphism, or x−1 · σ(x) ∈ Z(A) for each x ∈ A where by Z(A) we mean the center of A as usual.
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Denote by Autc(A) the set of central automorphisms of an algebra A , which is a subgroup of the group
Aut(A) of all A -automorphisms. Since a derivation of an algebra is the infinitesimal operation corresponding
to an automorphism it follows that Autc(Hd) might be obtained through the exponential image of the algebra
of central derivations. Hence, it is enough to select a derivation of Hd and simply take its matrix exponential
to generate the corresponding central automorphism in Hd .

Also, apart from the description of D it is immediate that we have a particular advantage of considering
a derivation of dual quaternions essentially as a 3 × 3 matrix. Although one might have either det(A) = 0 or
detA 6= 0 , this has absolutely no effect in detD which is always zero. However, the task of finding eigenvalues
of D might be simply reduced to that of A :

Corollary 3.6 Both A and D have the same eigenvalues λ (except possibly for λ = 0) such that u = (x, y, z)

is the corresponding eigenvector of A if and only if v = (t, u) ∈ R4 with λt = 0 is the corresponding eigenvector
of D .

Proof Because the characteristic polynomials of A and D satisfy

det(D − λI4) = −λ det(A− λI3) (3.3)

we conclude that A and D have, indeed, the same eigenvalues. In particular, λ = 0 is always an eigenvalue
of D . Regarding the corresponding eigenvectors, let 0 6= λ be a common eigenvalue for A and D with the
corresponding eigenvectors u and v , respectively. Since

D − λI4 =

(
−λ O
OT A− λI3

)
,

it follows immediately that (D − λI4)v = 0 if and only if(
−λ O
OT A− λI3

)(
t
u

)
= 0,

where (A− λI3)u = 0 and λt = 0 for any t ∈ R . 2

Since there is no nontrivial inner derivation for dual quaternion algebra but only central derivations we
find it convenient to report that (central) derivations of dual quaternions satisfy interesting properties if we
assume an extra condition on Der(Hd) as follows:

D(x) ∈ x ·Hd, ∀x ∈ Hd.

Actually, we have inspired by the definition of almost inner derivations which were introduced for Lie algebras
by Gordon and Wilson in [3]. We recall that a derivation D of a Lie algebra g is called almost inner if
D(x) ∈ [g, x] for every x ∈ g . Note that ad g · x = [g, x] is the orbit of ad g under the action of Der(g) on g

which in turn is obtained by differentiating the action of Aut(G) on g . Of course, we could treat Hd with the
usual commutator rule as a Lie algebra and consider almost inner derivations for the corresponding Lie algebra
L(Hd) = hd . However, commutativity implies that a derivation D of hd is almost inner if D(x) = 0 for every
x ∈ hd , that is, if D annihilates hd . Looking at the Proposition 3.4, we see that D = 0 is the only possibility.
Hence there is no almost inner derivation for the (Lie) algebra of dual quaternions. That is why we manipulate
the definition of almost inner derivation and require D to keep each dual quaternion x in its coset space x ·Hd

rather than belonging to the adjoint orbit ad hd · x . See the definition below.
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Definition 3.7 We call a derivation D of Hd coset invariant if D(x) ∈ x ·Hd (resp. D(x) ∈ Hd · x) for all
x ∈ Hd .

We denote by CI(Hd) the set of all coset invariant (central) derivations of Hd . Note that if D1, D2 ∈
CI(Hd) are such that D1D2 ∈ Der(Hd) , then we can try to see whether or not D1D2 is coset invariant. In
general, D1D2 can fail to be a derivation. However, thanks to Proposition 3.4 no need to worry about it for dual
quaternions. In fact, given arbitrary x ∈ Hd there exist y, z ∈ Hd such that D1(x) = x · y and D2(x) = x · z .
Thus

(D1D2)(x) = D1(x · z) = D1(x) · z + x ·D1(z)

= (x · y) · z + x · (z · w)

for some w ∈ Hd . It follows from bilinearity of the product · that

(D1D2)(x) = x · (y · z) + x · (z · w)

= x · t

for some t = y · z + z · w ∈ Hd . That is, D1, D2 ∈ CI(Hd) always yields D1D2 ∈ CI(Hd) .
Now, we pay attention to some equations which are apparently simple but at the same time could be

useful for finding eigenvalues and the corresponding eigenvectors of both A and D . Hence we find it convenient
to state the following

Proposition 3.8 Let D ∈ CI(Hd) and let x = (x0, x1, x2, x3) ∈ Hd be arbitrary. Then there exists y =

(y0, y1, y2, y3) ∈ Hd for which
Ax = y0x+ x0y

and
Dx = y0x+ x0y,

where x = (x1, x2, x3)
T and y = (y1, y2, y3)

T are imaginary parts of x and y , respectively.

Proof By Proposition 3.4, being a derivation D is such that D(e0) = 0, D(e1) = a11e1 + a21e2 + a31e3,

D(e2) = a12e1 + a22e2 + a32e3 and D(e3) = a13e1 + a23e2 + a33e3 . We recall that the multiplicative structure
in Hd is defined by

x · y = (x0y0)e0 + (x0y1 + x1y0)e1 + (x0y2 + x2y0)e2 + (x0y3 + x3y0)e3.

Since D is coset invariant it follows that D(x) = x · y for some y = (y0, y1, y2, y3) ∈ Hd implies both

0 = x0y0 (3.4)

and
a11x1 + a12x2 + a13x3 = x0y1 + x1y0
a21x1 + a22x2 + a23x3 = x0y2 + x2y0
a31x1 + a32x2 + a33x3 = x0y3 + x3y0

. (3.5)

This immediately yields that Ax = y0x + x0y . Since the first row and column of D consists of only zeros, it
follows at once that the equation Ax = y0x+ x0y together with x0y0 = 0 can be extended to the one defined
by Dx = y0x+ x0y . 2
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Lemma 3.9 Let D ∈ CI(Hd) and let x = (x0, x1, x2, x3) ∈ Hd be arbitrary. Denote by [D] = (dij)
T the

matrix of D . If x is not a pure dual quaternion (i.e. x0 6= 0), then there exists a (unique) pure dual quaternion
y = (0, y1, y2, y3) ∈ Hd with nonzero components

yi =
1

x0

3∑
j=1

di+1,j+1 xj , 1 ≤ i ≤ 3,

such that D(x) = x · y .

Proof Note that x0 6= 0 together with the condition x0y0 = 0 implies necessarily that y0 = 0 and hence
Ax = x0y + y0x = x0y . Since we are looking for y for which D(x) = x · y, it makes sense to organize the
collection of equations in (3.5) of the preceding Proposition and state as the following nonhomogeneous linear
system ΣL :

ΣL : (x0I3)y = Ax.

It follows that if x ∈ Hd is such that x0 6= 0 then det(x0I3) 6= 0 and hence ΣL has a unique non-trivial
solution y = 1

x0
Ax (resp. unique pure dual quaternion y = (0,y) ∈ Hd with y = (yi)1≤i≤3, such that

yi = (1/x0)Σ
3
j=1di+1,j+1xj ). 2

Remark 3.10 The Lemma above says actually that if x is not selected to be a pure dual quaternion then it
follows for any derivation D ∈ Der(Hd) that we have Dx ∈ x · Hd , i.e. every derivation is coset invariant
and hence Der(Hd) = CI(Hd) on imaginary dual quaternions. If x is a pure dual quaternion then x0 = 0

should imply y0 = 0 or y0 6= 0 . This means in the case x0 = y0 = 0 one gets for any D ∈ Der(Hd) that
Dx = 0 = x · 0 ∈ x · Hd (that is, Dx = x · y for y = (0, 0, 0, 0) ∈ Hd ). If x0 = 0 and y0 6= 0 then
Dx = y0x = xy0 implies y0 = d22 = d33 = d44 and hence only a derivation of the form

D =

(
0 O
OT y0I3

)

acts as a coset invariant derivation since Dx = xy0 = x · y for y = (y0, 0, 0, 0) ∈ Hd .

In view of Proposition 3.8, everything indicates that the equation(s) Ax = y0x + x0y and/or Dx =

y0x+x0y can be analyzed by means of its terms, one of which is for determining explicitly the existing y when
D is a coset invariant derivation. This is already done in Lemma 3.9. And the other term serves to obtain
eigenvalues of D . Hence, we present below one more result to express eigenvectors of coset invariant derivations
for dual quaternions.

Theorem 3.11 Let D ∈ CI(Hd) and let x = (x0, x1, x2, x3) ∈ Hd be arbitrary. If x is such that x0 = 0 (i.e.
x is a pure dual quaternion) then there exists a y = (y0, y1, y2, y3) ∈ Hd such that Re(y) = y0 ∈ Spect(D) with
the corresponding eigenvector x .

Proof x0 = 0 implies either y0 = 0 or y0 6= 0 since x0y0 = 0 as we have already noted before. Hence, we
have Dx = x0y + y0x = y0x with y0 = 0 or y0 6= 0, where x = (0, x1, x2, x3) and y = (y0, y1, y2, y3) . This can
be also interpreted as (D − y0I4)x = 0 with y0 = 0 or y0 6= 0 . Since always det(D − y0I4) |y0=0 = detD = 0
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we obtain y0 = 0 ∈ Spect(D) for any derivation D ∈ Der(Hd) . In case y0 6= 0 we have again y0 ∈ Spect(D)

but only for the derivation D ∈ Der(Hd) with the submatrix A = y0I3 . 2

Remark 3.12 If D ∈ CI(Hd), then for a given x = x0e0 +x1e1 +x2e2 +x3e3 ∈ Hd we write D(x) = x · y for
some y ∈ Hd and we have seen that Re(y) of y might be related with the spectrum of D . On the other hand,
if we consider the 4× 4 real matrix representation

x ∼ X =


x0 0 0 0
x1 x0 0 0
x2 0 x0 0
x3 0 0 x0


of x left multiplication we also see that in case x is not a pure dual quaternion, then Re(x) of x is the only
eigenvalue of the matrix X .

We end the paper mentioning shortly about parabolic quaternions since this class of quaternions as well as
Hd does not provide inner derivations. We will content ourselves providing only derivations of such quaternions
without further discussions. Denote by Hp the algebra of parabolic quaternions whose units satisfy

e21 = e23 = 0, e22 = e0

e1 · e2 = e3, e2 · e3 = e1, e3 · e1 = 0.

Although ad(Hp) = {0} there may exists a derivation in general. Repeating what we have done so far, it is not
difficult to see that we obtain a derivation D of Hp as the following matrix:

D =


0 0 0 0
0 a 0 b
0 0 0 0
0 b 0 a

 .

Hence, the dimension of Der(Hp) is 2. Note that since DT = D, the transpose of D is also a derivation
(the same is true also for Hd ) which does not happen in general. Observe also that there are typically two
generators of the algebra Der(Hp) given by

D1 =

(
A O
O A

)
, D2 =

(
O A
A O

)
,

where A =

(
0 0
0 1

)
and O (zero matrix) are 2 × 2 matrices. It follows that D1D2 is a derivation (resp.

D2D1 ∈ Der(Hp)).
On the other hand, if A is an algebra over a commutative field K with characteristic p 6= 0 then it

follows by the very definition of derivation that one has the Leibnitz formula for pth power of a derivation D ,
that is,

Dp(x · y) = Dp(x) · y + x ·Dp(y)

for every x, y ∈ A . Here, we have in particular that Dp
1 = D1 (resp. Dp

2 = D2 ) since the matrix A is
idempotent. One may also observe that the derivation [D1, D2] of the corresponding Lie algebra hp is 0 .
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