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Abstract: The trend of intellectualization and complication of mechanical equipment makes the demand for intelligent
diagnostic methods more and more intense in industry. In view of the difficulty of obtaining mechanical fault samples
and the requirement of clear and reliable diagnosis results, intelligent diagnosis methods need to adapt to the learning
of small samples and have the interpretability of white box model. In this paper, inspired by biological immunity,
an intelligent fault diagnosis method was proposed——optimizing b-cell pool clonal selection classification algorithm
(OBPCSCA). The OBPCSCA provides a method to construct unique B-cell pools corresponding to specific antigen
pools, and uses greedy strategy to generate memory B-cell pools. The experimental comparison with AIRS and AICSL
on four UCI benchmark data sets shows that the OBPCSCA has a better balance between the number of memory cells
and the accuracy of classification. In particular, compared with AIRS, the OBPCSCA can greatly reduce the number of
memory B-cells on the premise of ensuring high classification accuracy. In comparison with the top general classifiers,
the OBPCSCA has certain competitiveness in these four data sets. Finally, the algorithm was applied to the bearing
data set of Case Western Reserve University for fault diagnosis, and the results showed effectiveness of the algorithm.
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1. Introduction
Research on mechanical fault diagnosis has a long history, which can be traced back to 1960s in the United
States [1]. In recent years, with the development of science and technology, mechanical equipment tends to be
complex and intelligent, and the demand for intelligent fault diagnosis technology in the field of mechanical fault
diagnosis is increasingly strong [2, 3]. The application of intelligent methods such as expert system [4], artificial
neural network (ANN) [5, 6] and support vector machine (SVM) [7, 8] in the field of mechanical fault diagnosis
is the best proof. These methods play a positive role in many important fields, such as signal processing [9],
dynamics analysis [10], and reliability analysis [11, 12]. However, these intelligent methods are not completely
compatible with the field of fault diagnosis. ANN needs a lot of samples to train, but it is very difficult to obtain
fault samples in reality [4, 5]. Although SVM does not require as many training samples as ANN, the selection
of its kernel function and its parameters both depend on experience. As for expert system, the difficulty of
knowledge acquisition and the poor updating ability of knowledge base are its fatal defects [4].

Biological immunity is a natural system that protects a host organism against disease-causing elements
threatening its normal functioning [13, 14]. It offers many interesting features that inspired the design of artificial
∗Correspondence: zhang40941@126.com
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immune systems (AIS) to solve several kinds of engineering problems [13], including abnormal detection and
fault diagnosis. One of the earliest engineering applications of the AIS was the negative selection algorithms in
1994, proposed by Forrest [15, 16]. In the following decades, a large number of papers had been published on the
improvement of negative selection algorithm, among which some influential ones were: the real-value negative
selection algorithm proposed by Gonzalez [17]; variable radius detector (v-detector) proposed by Zhou and
Dasgupta [18]. Stibor et al. proposed their own detector classification algorithm (positive selection algorithm)
[19, 20]. In addition, many clustering algorithms had been inspired by artificial immunity. For example, Timmis
proposed the artificial immune system with limited resources [21] and De Casto and Von Zuben [22] proposed
artificial immune network model. Inspired by the biological immune system, these algorithms proposed some
artificial immune system concepts such as artificial recognition ball, affinity degree, affinity threshold, and
memory cell pool, and inspired immune classification algorithms such as artificial immune recognition system
(AIRS) [23], cloning selection classification algorithm [24], and artificial immune classifier with swarm learning
(AICSL)[25].

The algorithm proposed in this paper also belongs to classification algorithm. Compared with the existing
immune classification algorithms, there are two outstanding innovations:

1) A method of constructing B-cell pool was designed. B-cells in immune algorithm are usually hyperspheres
with the same radius. Our scheme is to construct hyperspheres with scale-adaptive radii. This B-cells
with scale-adaptive radii can better express the distribution characteristics of data in the feature space;

2) A method of optimizing B-cell pool was designed. The application of traditional cloning selection is to
clone each antigen to obtain B-cell population, and then delete the redundant B-cells. There are many
disadvantages in this scheme, such as the large number of cloned B-cells and the elimination of high-quality
B-cells when generating memory cells. Therefore, we abandoned the scheme and used greedy strategy to
generate memory B-cells one by one. In fact, it is an incremental learning model.

The remaining sections of the paper are structured as follows. In Section 2, the optimizing B-cell pool
clonal selection classification algorithm (OBPCSCA) will be introduced in detail. The experiments on four UCI
benchmark data sets and application on the bearing data set of Case Western Reserve University1 for fault
diagnosis will be presented in Section 3. In Section 4, conclusion and future work are provided.

2. Optimizing B-cell pool clonal selection classification algorithm (OBPCSCA)

The principal of clonal selection is one of the most elegant in all of immunology, which uses a small number of
B-cells in one class (there will only be about thirty B-cells in the blood that can produce an antibody which will
bind to a given antigen) to defend against a large number of antigen invasions [26]. Inspired by this immune
mechanism, the OBPCSCA was designed to minimize the number of B-cells while ensuring high classification
accuracy. The whole OBPCSCA was comprised of optimizing B-cell pool clonal selection algorithm (OBPCSA)
and classifier modules, which corresponded to the training and testing phases of the algorithm. The flow of the
whole algorithm was shown in Figure 1. In Figure 1, the whole algorithm is visualized, and the training data
contains three different labels, namely, “Orange”, “Green” and “Red”. In the training phase of the algorithm,

1CWRU (2018). Bearing Data Center [online]. Website https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
[accessed 10 August 2020].
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the memory B-cell pool (MBP) is obtained through training, which will be used as the basis for the classification
of the testing phase.

The OBPCSA module contains two main points:

1) A method was designed to construct B-cell pool, which is described in Section 2.1;

2) A method was designed to optimize B-cells from B-cell pool to form Memory B-cell Pool (MBP), which
is described in Section 2.2.

The design of classifier was similar to AIRS [27], which adopted the idea of the k -nearest neighbor algorithm
and is described in Section 2.3.

OBPCSA

Training Data Set MBP

Classifier

Predicted ResultsTesting Data Set

Training phase
Input: Training Data Set

Output: MBP

Testing phase
Input: Testing Data Set

MBP

Output: Predicted Results

"Orange" antigen

"Red" antigen

"Green" antigen

"Orange"memory B-cell

"Green"memory B-cell

"Red"memory B-cell

Unknown antigen

Predicted as "Orange" antigen

Predicted as "Green" antigen

Predicted as "Red" antigen

Figure 1. The whole flow of the optimizing B-cell pool clonal selection classification algorithm. The algorithm consists
of OBPCSA module and classifier module. In training phase, the OBPCSA module obtains memory B-cell pool MBP
through training training data set; in testing phase, the classifier module classifies testing data one by one by combining
MBP obtained in training phase.

2.1. Constructing B-cell pool

The classifier of SVM is designed as a hyperplane of state space, and the core of SVM algorithm is to find an
optimal hyperplane in the state space [28]. Similarly, the OBPCSCA uses hyperspheres to divide state space,
and the core of the algorithm is to construct and optimize hyperspheres in the state space.
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For the sake of description, hyperspheres in state space will be called B-cells in the OBPCSCA. As shown
in Figure 2, any B-cell Bi can be described by (xi ,ri ), where spherical center is the xi , named antibody and
radius is ri . In this paper, the word “pool” expresses the concept of set. The B-cell pool constructed contains
the following characteristics:

1) B-cell pool corresponds to antigen pool one by one. The B-cell pool constructed by this algorithm is
specific, just like the B-cell pool of human immunity: a B-cell secretes only antibodies against specific
antigens;

2) The radii of B-cells in the B-cell pool constructed by this algorithm are scale-adaptive. Each B-cell
contains the information of cell’s center and radius, using Bi to represent the ith B-cell, that is, Bi=
(xi ,δi ), where δi contains the radius information of the ith B-cell;

3) In theory, the number of B-cells in B-cell pool is infinity.

antigen

B-cell

r
i

antibody

xi

Figure 2. Some immune concepts in the optimizing B-cell pool clonal selection classification algorithm. Antigen and
antibody are both points in the same state space, and B-cell is a hypersphere with antibody as its center. The radius of
B-cell is related to its location in the state space: the larger the antigen density, the larger the radius of B-cell.

To this end, we have made the following two definitions:
Definition 1. The antigenic closeness centrality Given an antigen pool Agpk= {y1 ,y2 ,…,yN } with N

antigens in an m-dimensional state space, where the subscript k is the label of all antigens in the antigen pool,
the antigenic closeness centrality ρ(x) at any point x of the state space is defined as Eq. (1):

ρ(x) = e
− dav(x)

θk , (1)

where

dav(x) =
1

N

N∑
i=1

∥x− yi∥ . (2)

The parameter θk is a constant associated with antigen poolAgpk .
Definition 2: Affinity function Given an antigen pool Agpk= {y1 ,y2 ,…,yN } with N antigens in an m-
dimensional state space, where the subscript k is the label of all antigens in the antigen pool, the algorithm
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generates randomly B-cells with its antibodies at any point xj and the affinity between the B-cell Bj(Bj =

(xj , δj)) and any antigen yi(yi ∈ Agpk) is defined as Eq. (3):

fA(Bj, yi) = e
−
(∥yi−xj∥

δj

)2

, (3)

where
δj = ρ(xj). (4)

Therefore, if the affinity threshold of antigen-antibody matching in antigen poolAgpk is set to Tak , the B-cell
Pool BPk can be described as follows: ∀ Bj = (xj , δj) ∈ BPk , ∃ yi ∈ Agpk s.t. fA(Bj, yi) ≥ Tak .

According to the critical condition Affinity(Bj, yi )=Tak , the hyperspherical radius of the Bj is deduced
as Eq. (5):

rj = δj
√

− ln (Tak). (5)

It is noteworthy that if the affinity between an antigen yi and a B-cell Bj exceeds the affinity threshold Tak ,
in the state space, yi is inside the hypersphere corresponding to Bj . In addition, under the condition that
Tak is determined, the rj of the B-cell Bj is affected by δj , that is, the larger δj is, the larger B-cell is.

The B-cell pool BPk is the specific B-cell pool corresponding to the antigen poolAgpk , if the constants
θk and Tak associated with the antigen pool Agpk are known. The principle of θk optimization was as
follows: the optimal θ̇k maximizes the value[max(ρ(y)) -min(ρ(y)) ] , where y ∈ Agpk . The reason is to make
the difference between the δ of B-cells in central and that of edge B-cells obvious.

According to Eq. (1) and Eq. (2), this optimization problem can be described as Eq. (6):{
Max e

− dmin(x)

θk − e
− dmax(x)

θk ;
s.t. dav(x) ∈ [dmin, dmax], y ∈ Agpk.

(6)

From Eq. (6), we can have Eq. (7):

θ̇k =
dmax − dmin

ln (dmax

dmin
)

(7)

Therefore, the optimal θ̇k is determined according to Eq. (7). (Note: dmin =Min [dav(y) , y ∈ Agpk ], and
dmax = Max [dav(y) , y ∈ Agpk ].)

The parameter Tak reflects the inherent property of antigen pool Agpk and its real value cannot be
obtained because of incomplete antigens in Agpk in theory. The solution in the OBPCSCA is to accept the
idea of Watkins [27]: the affinity threshold is the average affinity value of the eigenvector of all training data
items. The affinity threshold is calculated as described in Eq. (8):

Tak =

N∑
i=1

N∑
j=i+1

fA(yi, yj)

N(N−1)
2

, yi, yj ∈ Agpk (8)

where

fA(yi, yj) = e
−
(∥yi−yj∥

δi

)2

The number of B-cells in B-cell Pool BPk corresponding to Agpk is infinity in theory, and mapping
between antigen pool Agpk and B-cell pool BPk is described in Figure 3.
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Figure 3. Mapping between antigen pool Agpk and B-cell pool BPk . The two parameters θk and Tak are found by
training Agpk .

2.2. Optimizing B-cell pool with clonal selection

Biological immune system is able to remember every source of infection (antigen) and when the same infection
occurs again, the immune system reacts more quickly and processes it more efficiently [29]. What supports the
second response of the immune system is the immune memory mechanism. Inspired by this immune mechanism,
the OBPCSCA uses the OBPCSA to achieve immune memory.

Taking the antigen pool Agpk= {y1 ,y2 ,…,yN } for example, the purpose of the OBPCSA is to obtain
the memory B-cell pool MBPk= {M1 ,M2 ,…,Mn}, where n is the number of memory B-cells in MBPk .
This optimization problem can be described by Eq. (9):

{
Min n;
s.t. MBPk ⊂ BPk.

(9)

According to Eq. (9), the optimization is to find a minimum set of hyperspheres to satisfy that any
antigen of Agpk is inside at least one hypersphere in the state space. Greedy strategy was used to optimize
memory B-cells. Through recursion, memory B-cells were generated one by one to form a memory B-cell pool.

To this end, we introduced the clonal selection mechanism and modified the traditional clonal selection
operation appropriately. The clonal selection of the OBPCSA is divided into three parts:
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1) Cloning proliferation of B-cells, whose purpose is to produce a cloned B-cell pool to be optimized;

2) Optimal selection of memory B-cell, whose purpose is to select a memory B-cell from the cloned B-cell
pool obtained;

3) Recursion, whose purpose is to form a memory B-cell pool.

2.2.1. Cloning proliferation of B-cells
Cloning proliferation in OBPCSA involves two steps: antigen presentation and B-cells cloning mutation prolif-
eration.
Step 1 : Antigen presentation. Just as immune helper cells such as macrophages in the biological immune
system process antigens, the purpose of antigen presentation is to expose the characteristics of antigens. Antigen
presentation stage in the OBPCSA will select an antigen y∗ from the antigen pool Agpk= {y1 ,y2 ,…,yN }
based on ρ(y∗)= Max [ρ(y) ,y ∈ Agpk ].
Step 2 : B−cells cloning mutation proliferation. Each B-cell has two parts: antibody (AT), which is
the center of the B-cell, and delta (δ ), which expresses the radius of the B-cell. For convenience of expression,
the cloned B-cell pool (BPclone ) was described in Eq. (10) to Eq. (12):

BPclone = (ATclone, δclone). (10)

where
ATclone = (x1,x2, ,xNc)

T

=


x1
1 x2

1 · · · xd
1

x1
2 x2

2 · · · xd
2

...
... . . . ...

x1
Nc

x2
Nc

· · · xd
Nc

 ,
(11)

δclone = (ρ(x1),ρ(x2), ,ρ(xNc))
T . (12)

B-cells cloning mutation proliferation produces Nc cloned B-cells named cB to form a clone B-cell pool
BPclone , which obeys Eq. (13) and Eq. (14):

ATclone =


y1∗ y2∗ · · · yd∗
y1∗ y2∗ · · · yd∗
...

... . . . ...
y1∗ y2∗ · · · yd∗

+


λ1
1 λ2

1 · · · λd
1

λ1
2 λ2

2 · · · λd
2

...
... . . . ...

λ1
Nc

λ2
Nc

· · · λd
Nc

× µ, (13)

where
λ1
1 − λd

Nc
∈ (−1, 1). (14)

Here any element λ(λ= λ1
1 , λ2

1 ,…,λd
Nc

) is a random number named mutation rate; the parameter µ

is an antigen-dependent constant named step size. If the antigen pool is normalized, a value of 0.01 to 0.1 is
recommended; the parameter Nc is the number of the child clones of the B∗ (where B∗=(y∗ , δ∗ )), a value of
500 to 1000 is recommended. These two parameters involve the step size and the scale of clonal variation. The
smaller the step size and the larger the scale of clonal variation, the more ideal the memory B-cells are to be
found, but the greater the consumption of computing resources. It was found that for a small training set, the
change of parameters in the range of recommended values had little effect on the training results.
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2.2.2. Optimal selection of memory B-cell

In order to find a memory B-cell from the cloned B-cell pool BPclone , a function named fo (cB ,y ) was defined
as Eq. (15):

fo(cB,y) =

{
1 , if fA(cB, y) ≥ Tak;
0 , otherwise.

(15)

where
cB ∈ BPclone, y ∈ Agpk.

If fo (cB ,y )=1 holds, it means that antigen y is inside the cloned B-cell cB . The optimal memory B-cell Ms

obeys Eq. (16):

NMs
=

N∑
i=1

fo(Ms,yi)

= Max
[ N∑

i=1

fo(cB,yi), cB ∈ BPclone

]
.

(16)

The memory B-cell Ms satisfying Eq. (16) could form a nonempty set, and our scheme was to select one
randomly from it. At the same time, an antigen pool Agpk − left would be generated, which was described
by Eq. (17):

Agpk − left = {y∥fA(Ms,y) < Tak,y ∈ Agpk} . (17)

2.2.3. Forming a memory B-cell pool

This is a recursive process. Section 2.2.2 provides the method of producing a memory B-cell. By continuously
calling the method of producing memory B-cell in Section 2.2.2, we can obtain memory B-cells one by one, and
then form a memory B-cell pool. The process was as follows:
step 1. Initialization : Agpk − left = Agpk, Nleft = N ;MBPk = ∅∅∅, n = 0.

step 2. Antigen presentation : Select an antigen y∗ from the antigen poolAgpk − left , where Agpk −
left =

{
y1, y2, · · ·, yNleft

}
, and y∗ s.t.ρ(y∗) = Max[ρ(y),y ∈ Agpk − left].

step 3. B − cells cloning mutation proliferation : BPclone = (ATclone, δclone).

step 4. Find a memory B − cell Ms from BPclone : The optimal memory B-cell Ms obeys Eq. (16).
step 5. Update the memory B − cell pool : MBPk = {MBPk,Ms} , n = n+ 1 .
step 6. Update the antigen pool left : Agpk− left = {y∥fA(Ms,y) < Tak,y ∈ Agpk} , Nleft = Nleft−
NMs

.

step 7. Termination condition : if Nleft ≤ 1 , output MBPk and stop; else, return to step 2 .
In step 7, an isolated antigen did not participate in the formation of memory B-cells because it might

not really belong to the antigen pool Agpk (It could be a noise).

2.3. Design of classifier

The memory B-cells in memory B-cell pool obtained from the OBPCSA are available for use for classification.
The classification is performed in a k -nearest neighbor approach [27], which is like AIRS. In this paper, the k

of k -nearest neighbor in OBPCSCA is one.
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It was described as follows: if there is an antigen y to be classified, the predicted result is denoted as
classify(y) , where M ∈ (MBP1 ∪MBP2 ∪ . . .∪MBPc) and the subscripts of memory B-cell pools are
the names of classes. The predicted result classify(y) = p (p = 1, 2, …, c) obeys Eq. (18):{

M∗ ∈ MBPp;
M∗ = argmax fA(M,y).

(18)

According to Eq. (3) and Eq. (4), because the affinity calculation contains the information of antigen
distribution (θk ), the distance of the nearest neighbor here is replaced by affinity, with different weights of
different classes.

3. Case studies
The performance of the algorithm was evaluated using two case studies. The classification performance of the
algorithm was first tested on four benchmark data sets that are available from a machine learning repository2.
In the second case, the algorithm was applied to the ball bearing fault diagnosis as a real world problem with
the data sets from Case Western Reserve University (CWRU). The results of the case studies are given in the
following sections.

3.1. Case study 1: comparison with other methods on benchmark data sets
In this part, the classification performance of the OBPCSCA was tested on four UCI benchmark data sets. In
order to verify the comprehensive performance of OBPSCSA in classification accuracy and number of memory
cells, the experimental results were compared with other two immune classification algorithms—AIRS [27] and
AICSL [25]. Two immune systems are inspired by the immune network model and consist of artificial immune
cells. We compared two important features of these algorithms: classification accuracy and number of memory
cells. In addition, the performance of the OBPCSCA was also compared with the well-known classification
techniques such as support vector machines, neural networks, fuzzy neural network, and C4.5.

3.1.1. Data sets and experimental design
The descriptions of the data sets used are summarized in Table 1. Specifically, for the Iris data set, the four
attributes are sepal length, sepal width, petal length, and petal width. One of the classes is linearly separable
from the other two which are not linearly separable from each other. For Pima Indian Diabetes data set, the
classification task is to determine if the patient tested positive for diabetes or not , according to these eight
attributes. For Ionosphere data set, the classification task is to determine “good” and “bad” radar returns from
the atmosphere, where “good” returns are those that indicate structure in the ionosphere and “bad” ones do
not. For Sonar data set, the classification task is to determine whether a sonar signal bounced back from a
metal or rock object.

Each simulation experiment consists of three stages: data processing stage, training stage, and testing
stage. In order to better reflect the performance of the algorithm, we first did dimensionless data processing,
specifically using min–max normalization. The normalized data would be divided into training set and testing
set for training and testing, respectively. Considering the consistency of the control test conditions, the k -fold
cross validation was run for each data set to compare the performance of our method to other classifiers that

2UCI (2007). UCI Machine Learning Repository [online]. Website https://archive.ics.uci.edu/ml/index.php [accessed 10 August
2020].
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are reported in the literature. Figure 4 shows how the data sets were partitioned and how the classification
performances were obtained. As shown in Figure 4, each data set was partitioned into k portions, thereby
generating k different sets of data, each containing one portion as the testing set and other portions as the
training set. The result of each run is the average of k -fold classification accuracy. More specifically, for Iris
data set, a 5 -fold cross validation scheme was employed with each result representing an average of three runs.
For Pima Indian Diabetes data set and Sonar data set, the 10-fold cross validation scheme and 13-fold cross
validation scheme were employed, respectively. For Ionosphere data set, 200 instances which are carefully split
almost 50% positive and 50% negative are used for training with the remaining 151 as test instances, consisting
of 125 “good” and only 26 “bad” instances. Except Iris data set, all results are an average of ten runs.

Table 1. Datasets used for experiments.

Data set Samples (n) Attributes (n) Classes(n) Class distribution
Iris 150 4 3 50/50/50
Pima Indian Diabetes 768 8 2 500/268
Ionosphere 351 34 2 225/126
Sonar 208 60 2 97/111

Data Set

1 2 k

1

2

k

Testing Set

2 ~ k

1,3 ~ k

1~ k-1

Training Set

Partition

 accuracy 1

Results

 accuracy 2

 accuracy k

Fold 1

Fold 2

Fold k

+

+

+

+

Figure 4. Partitioning of data set (k -fold cross validation).

3.1.2. Experimental results and analysis
As shown in Table 2, the performance of the OBPCSCA is compared to that of AIRS and AICSL, which shows
that the OBPCSCA has a better balance between the number of memory cells and the accuracy of classification.
In particular, compared with AIRS, the OBPCSCA can greatly reduce the number of memory B-cells on the
premise of ensuring high classification accuracy.

Table 3 shows the location of our proposed methods in the well-known classification techniques in detail.
In Table 3, the results of other algorithms were obtained from [30, 31] and this website of Datasets used for
classification: comparison of results3. Just as shown in Table 3, the OBPCSCA ranks in the top 10 in terms

3Duch W (2010). Datasets used for classification: comparison of results [online]. Website http://fizyka.umk.pl/kis-
old/projects/datasets.html [accessed 10 August 2020].
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of classification accuracy on all four data sets, and ranks the second with classification accuracy of 90.46% on
the Sonar data set. From the ranking of classification accuracy, the OBPCSCA is a very competitive classifier.

Table 2. Performance comparisons with AIRS and AICSL.

Data set Instances AIRS AICSL OBPCSCA
Accuracy(%) cells Accuracy(%) cells Accuracy(%) cells

Iris 120 96.70 30.9 98.14 24 97.11 24.7
Pima Indian Diabetes 691 74.20 273.4 74.99 20 76.15 223.3
Ionosphere 200 95.60 96.3 89.05 50 95.30 82.3
Sonar 192 84.90 177.7 87.50 60 90.46 90

Table 3. Comparisons of OBPCSCA and other classifiers results on benchmark data sets. “Acc” denotes the classification
accuracy.

Rank Iris Pima Indian Diabetes Ionosphere Sonar
Method Acc(%) Method Acc(%) Method Acc(%) Method Acc(%)

1 Grobian
(rough)

100.00 Logdisc 77.70 3-NN
+simplex

98.70 TAP MFT
Bayesian

92.30

2 MOGICA 98.30 IncNet 77.60 VSS 2 epochs 96.70 OBPCSCA 90.46

3 SSV 98.00 DIPOL92 77.60 MLP+BP 96.00 Nave MFT
Bayesian

90.40

4 C-MLP2LN 98.00 Linear
Disc. Anala

77.50 OBPCSCA 95.30
Best 2-layer
MLP+BP,
12 hidden

90.40

5 PVM 2 rules 98.00 SMART 76.80 C4.5 94.90 MOGICA 87.50

6 OBPCSCA 97.11 ASI 76.60 RIAC 94.60 MLP+BP,
12 hidden

84.70

7 PVM 1 rule 96.70 Fischer
Disc. Anala

76.50 MOGICA 94.30 MLP+BP,
24 hidden

84.50

8 FuNe-I 96.70 MLP+BP 76.40 SVM 93.20 1-NN,
Manhattan

84.20

9 NEFCLASS 96.70 OBPCSCA 76.15 Nonlinear
perceptron

93.00 FSM 83.60

10 CART 96.00 LVQ 75.80 FSM
+rotation

92.80 MLP+BP,
6 hidden

83.50

3.2. Case study 2: application of the OBPCSCA in bearing fault diagnosis
In this section, in order to verify the feasibility of the OBPCSCA as an intelligent diagnosis method, we
chose the ball bearing data set of Case Western Reserve University (CWRU) as the object of diagnosis, whose
experimental setup was shown in Figure 5. The test bench mainly contains a motor, a torque transducer, and
a dynamometer. The test bearing is used to support the motor shaft, 0.007” faults are introduced to bearing
inner race, outer race and ball via electrodischarge machining.

For comparison with other intelligent methods, in the case, there are four vibration waveforms: 1 normal
working condition and 3 malfunctioning working conditions with the bearing type, fault size, motor speed, and
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motor load as shown in Table 4. Data was collected at 12,000 samples/second and at 48,000 samples/second
for drive end bearing experiments, and in this section, we chose the former. As shown in Table 4, the bearing
data used in the experiment include four categories: normal, inner race fault, outer race fault, and ball fault.
There were three groups data of fault location in outer race (outer raceway faults located at 3 o ′ clock, at 6
o ′ clock and at 12 o ′ clock) and in this section, data of fault located at 6 o ′ clock was chosen. Under the same
experimental conditions, the experimental results were compared with those in reference [30].

motor

torque transducer dynamometer

Figure 5. Experimental setup of CWRU test.

Table 4. The bearing type and parameters of ball bearing fault used in experiment.

Bearing
manufactuer

Bearing
type

Fault
ocation

Fault diameter
d/(in)

Fault depth
l/(in)

Motor speed
rpm/(r/min)

Bearing
location

Motor load
ML/Hp

SKF 6205 Normal 0.00 0.00 1730 Drive end 3
SKF 6205 Inner race 0.007 0.01 1721 Drive end 3
SKF 6205 Outer race 0.007 0.01 1725 Drive end 3
SKF 6205 Ball 0.007 0.01 1725 Drive end 3

3.2.1. Data processing

Because bearing data is one-dimensional vibration signal, it cannot be directly used in the OBPCSCA. According
to the processing method in [30], we have processed the data accordingly. Specifically, the normal and fault
related features were also decomposed through seven layers “db3” wavelet transform and high frequency of
wavelet energy feature extraction with length of each sample 2048 points. Then, many 7d energy eigenvectors
representing the normal and fault conditions of bearing are formed. For comparison purpose, we got a 180× 7

matrix for each working condition. In addition, in each working condition, 80 samples were randomly selected
as training data, and the rest 100 samples were selected as testing data.

3.2.2. Application on data set obtained

After processing the bearing data, we obtained a data set containing 4 classes, which was named 3Hp .
Specifically, the following experiments on the 3Hp data set was performed and repeated the experiments
were 3 times:

1) Min–max normalization was used on the 3Hp data set;
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2) 80 samples were randomly selected from 180 samples of each class to form the training set with a sample
size of 320, and the remaining 400 samples comprised the testing set;

3) Collected prediction results of testing set on OBPCSCA.

3.2.3. Contrast and analysis

In this part, the classification accuracy of MOGICA [30] and OBPCSCA on the 3Hp data set was compared.
The two experimental treatments for comparison were the same, and the classification accuracy (which of each
class was the average of three experiments) and standard deviation were shown in Table 5. From the results of
Table 5, OBPCSCA had the worst diagnostic accuracy of 97.67% for outer race fault. Although the accuracy of
OBPCSCA in the diagnosis of outer race fault is 0.63% lower than that of MOGICA, it has obvious advantages
in the diagnosis of ball fault. Combined with the results of MOGICA, the data on “outer race fault” and “ball
fault” are close in the feature space. In the three tests of randomly dividing training set and testing set, the
memory B-cell pools obtained from the three trainings are different due to the incremental learning mode of
OBPCSCA, which results in the missed diagnosis of very few data on “outer race fault”. However, from another
point of view, incremental learning mode lays the foundation for the realization of online learning, which is our
next research direction.

Table 5. The bearing diagnosis accuracy of two methods on different fault type and the same level of fault severity.

Type of samples No. of training
samples

No. of testing
samples

MOGICA OBPCSCA
Accuracy rate (%) Accuracy rate (%)

normal samples 80 100 100 ± 0.00 100 ± 0.00
inner race fault with size 0.007” 80 100 100 ± 0.00 100 ± 0.00
outer race fault with size 0.007” 80 100 98.3 ± 0.20 97.67± 0.82
ball fault with size 0.007” 80 100 98.5 ± 0.10 100 ± 0.00

4. Conclusion and future work
In this study, we proposed an intelligent diagnostic method based on optimizing B-cell pool clonal selection
classification algorithm. The algorithm inspired by immune system provides a method to construct B-cell pools,
in which each B-cell has a scale-adaptive radius. In addition, the algorithm uses clonal selection mechanism
to optimize memory B-cell pool, and greedy strategy is adopted in the whole optimization process. In order
to verify the performance of the proposed algorithm, simulation experiments were conducted on four UCI
benchmark data sets. The advantage of the algorithm is that it is suitable for the learning of small samples and
has no hyperparameters. At the same time, the algorithm uses hyperspheres to divide the feature space, which
makes the classification interface more flexible and has the potential of online learning. The comparison with
some general algorithms results show that our method is promising. In addition, the OBPCSCA was applied
to ball bearing diagnosis in Section 3.2 and the effectiveness of the method is further proved.

Future work lies in improving the classification performance of OBPCSCA for data sets with a large
number of attributes and classes. Specifically, it will be the future research direction to realize online learning
through incremental learning mode, to study the correlation between features, to establish the relationship
between features, and to improve the processing ability of algorithm for high-dimensional data.
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