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1. Introduction
With the rapid development of agriculture, medicine, and food packaging, people are increasingly using polymer materials. 
Petro-chemical-based synthetic polymers (polyethylene, polypropylene, polystyrene, etc.) are difficult to degrade in the 
natural environment [1]. These polymer materials seriously pollute the environment and endanger living organisms. As 
environmental awareness has increased in recent decades, the biodegradable materials offered in different areas have 
attracted increasing interest [2,3].

In order to avoid the possible risks of metal implants implanted in the human body, such as bone corrosion, stress 
shielding effect, defects of nondegradation, and the need for secondary surgery, absorbable polymer materials are being 
increasingly favored by researchers. At present, absorbable polymers are mostly used for implant materials that do not 
require high strength. Besides, the degradation properties are also one of the important factors affecting the application of 
absorbable polymers.

Polydioxanone (PPDO) is a unique aliphatic polyester, synthesized by ring-opening polymerization of p-dioxanone. 
PPDO is similar to polylactic acid (PLA), polyglycolic acid (PGA), and polycaprolactone (PCL), etc., whose main molecular 
chain contains ester bonds, endowing polymers with excellent biodegradability, biocompatibility, and bioabsorbability [4]. 
Furthermore, due to the unique ether bond, PPDO has excellent flexibility as an ideal medical biodegradable material [5]. 
The degradation products produced by PPDO are less acidic than PGA and PLA [6]. PPDO is one of the few polymers 
that have been approved by the Food and Drug Administration (FDA). PPDO as a long term surgical suture (e.g., PDS II 
by Ethicon) provides support during healing periods longer than four weeks [7]. In addition to its successful application 
in the surgical suture, PPDO is used to make orthopedic fixation materials, tissue repair materials, cell scaffolds, and drug 
carriers [8,9]. Since the polymer is easy to be processed by injection-molding, PPDO also has great potential for general 
use, such as in films, molded products, laminates, foams, nonwoven materials, adhesives, and coatings [10]. However, the 
mechanical strength of PPDO is relatively low, which hinders its use in applications requiring high mechanical strength. 
Besides, compared to other polyester polymers, PPDO degrades much faster. In a case where PPDO scaffolds are implanted 
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in the subcutaneous tissue of mice, almost complete degradation is observed after 28 days [11]. Atrial septal defect (ASD) 
is one of the most common congenital heart defects, and it accounts for about 30% of the congenital heart diseases. PPDO 
as ASD occluders degrades gradually over about 24 weeks in an acute animal (canine) model [12].

Heat treatment has been proven to affect the crystallization and mechanical properties of materials [13–15]. The 
possibility of improving the mechanical properties of PPDO via thermal treatment has been proposed in this context 
[16,17]. Zhao et al. [18] have improved the compressive performance of PPDO self-expandable stents through thermal 
treatment conditions (60 ℃, 80 ℃, and 100 ℃, 1 h). At the same time, the heat treatment process might damage the 
mechanical properties of PPDO because of thermal degradation or thermal oxygen degradation. Li et al. [19] give some 
details about the thermal stability of PPDO by thermogravimetric (TG) analysis. Nishida et al. [20,21] have studied 
the thermal decomposition of PPDO in nitrogen and discussed the thermal decomposition mechanism. Therefore, the 
selection of heat treatment conditions is very important.

The isothermal annealing is essential to adjust the final physical properties of the material in the course of processing 
[22–24]. The semicrystalline nature of PPDO makes it possible to adjust the final physical properties of the applications 
through isothermal annealing. Obtaining optimum properties for future polymer devices produced by PPDO would 
require an understanding of the annealing process. From a safety perspective, the tensile strength is beneficial for the design 
of medical implants in the future, such as surgical sutures, orthopedic fixation, etc. However, to our knowledge, there is still 
a lack of a clear relationship between heat treatment and the properties of PPDO. To guide the design and manufacture, 
we prepared the PPDO samples via compression molding and investigated the effects of annealing temperature (Ta) and 
annealing time (ta) on the mechanical properties and degradation properties. 

2. Materials and methods
2.1. Materials
According to the references [25–27], PPDO (Mv = 1.13×105 g·mol-1) was synthesized by ring-opening polymerization of 
the para-dioxanone monomer under vacuum at 120 °C for three days, using stannous octoate as the catalyst. The polymers 
were purified by being dissolved in dichloromethane and precipitation into ethanol, washed with fresh ethanol and dried 
at room temperature under vacuum. The intrinsic viscosity ([η] = 2.43 g·dL–1) was measured by Ubbelohde viscometer at 
25 ℃, using hexafluoroisopropanol (HFIP, Suzhou Highfine Biotech Co., Ltd., Suzhou, Jiangsu, China) as the solvent. The 
viscosity-average molecular weight (Mv) of PPDO was calculated using the Mark–Houwink equation.

 [η] = KMva	 (1)
where α is 0.69, and K is 79 × 10–3 cm3·g–1.
KH2PO4 was purchased from Chengdu Chron Chemical Co., Ltd. (Chengdu, Sichuan,  China), and Na2HPO4·12H2O 

was purchased from Guangdong Guanghua Sci-Tech Co., Ltd. (Guangzhou, Guangdong, China). The other solvents were 
of analytical grade.
2.2. Preparation and isothermal annealing of PPDO bars
PPDO was compression-molded into bars with dimensions in accordance with ASTM standard D638-039 specifications, 
using a Model XLB platen vulcanizing press (Haimen Jinma Rubber & Plastics Machinery Technology Co., Ltd., Haimen, 
Hainan, China) at 140℃, and the processing pressure was 12.5 MPa. 

The isothermal annealing of PPDO bars [13,18]: Firstly, the vacuum oven (Shanghai Shenxian Instrument Co., Ltd., 
Shanghai, China) was heated to the designated temperature (50 ℃, 60 ℃, 70 ℃, 80 ℃, 90 ℃, and 100 ℃). A thermometer 
was placed in the oven to rectify the temperature. At the same time, anhydrous calcium chloride was added for drying. 
Then, the bars were placed between two sheets of clean glass slide to prevent the material from thermal deformation. 
Next, the PPDO bars were placed in the vacuum oven. Finally, the oven was evacuated to prevent the thermal oxygen 
degradation of the bars. When the time was over (1 h, 2 h, 3 h), the oven stopped heating, and the bars were taken out after 
being cooled to room temperature.
2.3. Characterization
2.3.1. Polarized optical micrograph (POM)
The spherulite growth of the sample was observed using a polarized optical microscope (XPN-203) equipped with a 
stage temperature controller [XMT-3000A(4000A)]. The samples were first heated to 150 °C, and they were held at this 
temperature for 3 min to be pressed into film and to destroy thermal history. Then, the samples were cooled to the desired 
crystallization temperatures (Tc) and held at the Tc for the performing of a spherulite. The polarizing microscopic pictures 
of the samples were taken by a camera (TK-C921EC, Victor Company of Japan, Ltd., Yokohama, Japan) at regular intervals 
to calculate the spherulite growth rate.
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2.3.2. Tensile testing
The mechanical properties of the PPDO bars were measured using a Model CMT 4503 type SANS tensile tester (Shenzhen 
Xinsansi Material Testing Co., Ltd., Shenzhen, Guangdong, China) with a drawing speed of 20 mm/min at room 
temperature according to ASTM standard D638. Each reported value was the mean of five parallel samples.
2.3.3. Differential scanning calorimetry (DSC)
The annealed samples (5–10 mg) were cooled to –40℃ and held for 5 min. Then, the samples were heated to 150 ℃ at a 
heating rate of 10 ℃/min under nitrogen flow using a Model Q20 DSC (TA Instruments Inc., New Castle, DE, USA). 
2.3.4. Thermogravimetric analysis (TGA)
Thermogravimetric analysis (TGA) was carried out with Mettler TGA2 (Mettler-Toledo International Inc., Greifensee, 
Switzerland) to measure the decomposition temperature of the materials. The specimen (10 mg) was heated from 20 ℃ to 
600 ℃ under a nitrogen atmosphere at a heating rate of 10 ℃/min.
2.3.5. X-ray diffraction (XRD)
X-ray diffraction (XRD) was performed with the TTR III XRD (Rigaku Corp., Tokyo, Japan), employing Ni-filtered CoKα 
as radiation (λ= 1.54 Å) at 48 kV and 100 mA. A scan axis of 2θ(10~35°, 5 °/min)was used to obtain diffraction patterns. 
The full width at half maximum (FWHM) was obtained from the crystallization peak at 2θ of 21.90°, using the XRD 
analysis software (Jade Software Corp., Christchurch, New Zealand). XC was calculated from the XRD patterns:
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Where XC, WAXD, A_am, and A_cr represent the crystallinity, the areas of amorphous, and crystalline peaks (2θ = 10~35°), 
respectively. A_am and A_cr are evaluated by the curve fitting method [17].

The Debye–Scherrer formula reflected the correspondence between grain size and FWHM:
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where D is the average thickness of the crystal grains perpendicular to the crystal plane direction. K is the Scherrer 
constant, and γ is the X-ray wavelength (1.54 Å). B is the half-height width of the diffraction peak of the measured sample. 
θ is the Bragg diffraction angle.
2.4. Degradation properties
2.4.1. Degradation experiment in vitro
1.65 g of KH2PO4 and 19.53 g of Na2HPO4·12H2O were dissolved in deionized water (1L) to prepare phosphate buffer 
saline (PBS, pH = 7.40). The annealed PPDO bars (90 ℃, 2 h) reached the maximum tensile strength. Therefore, untreated 
PPDO and annealed PPDO bars (90 ℃, 2 h) were selected for hydrolytic degradation in vitro.

The annealed PPDO bars were divided into three groups corresponding to 2W, 4W, and 5W respectively, four parallel 
samples per set. The three sets of samples were completely immersed in PBS buffer solution (25 ml). The degradation 
experiment was carried out in a 37 °C water-isolated incubator (GHP-9080, Guangzhou Mecan Trading Co.,  Ltd., 
Guangzhou, Guangdong, China), and the test was performed periodically [28]. The untreated PPDO bars were prepared in 
the same way as the annealed bars. The mass loss rate and water absorption rate were calculated according to the following 
formula:
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where mi is the initial dry weight before degradation, mw is the wet weight after degradation, and md is the dry weight after 
degradation.
2.4.2. Scanning electron microscope
After the surface of the sample was subjected to gold spray treatment, the surface morphology of the material after 
degradation was observed by an Inspect F50 scanning electron microscope (FEI, Thermo Fisher Scientific Inc., Waltham, 
MA, USA). 

3. Results and discussion
3.1. POM analysis 
Firstly, the growth behavior of PPDO spherulite was studied by POM. Figure 1 showed the polarized optical micrographs 
of PPDO spherulite after isothermal crystallization at different temperatures. The crystallization was too fast at 50℃ to 
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observe the growth of the spherulite. The spherulites that formed at lower crystallization temperature (Tc=60~90 ℃) 
showed obvious Maltese cross patterns and concentric rings (Figures 1a–1d) [7,29]. With the temperature increase, the 
Maltese cross patterns and concentric rings gradually disappeared in Figure 1e. It was replaced by a cracked crystal with 
a rough surface while the temperature was 100 ℃. This was due to the acceleration of molecular motion, resulting in the 
irregular growth of spherulites. At crystallization temperatures of 80 ℃ or higher, double banding became very clear since 
the two different periodicities kept increasing with Tc, as indicated in Figure 1d [30].

It could be observed that the growth rate of PPDO spherulite was affected by Tc. The radius growth rate of spherulites 
(G) was plotted in Figure 2 as a function of Tc. The G value was estimated from the slopes of lines, in which spherulite 
radii were plotted as a function of crystallization time [13]. It could be seen from Figure 2 that the spherulite growth rate 
decreased with an increase in Tc. On the one hand, as the temperature went up, the thermal movement of the molecules 
became more intense. The nuclei which were not easy to form or not stable enough were easily destroyed by molecular 
thermal movement. As a result, the occurrence time of spherulites at high temperatures was much slower than that at 
low temperatures. On the other hand, when the temperature approached the melting point, the crystal nucleus was more 
unstable. Thus, the growth rate of the spherulite was slower. When the temperature was 100 °C, it took a long time for the 
PPDO spherulite to grow. The POM showed that the spherulite growth rate of PPDO decreased with an increase in Tc.
3.2. Mechanical properties
If the polymer were heated to a temperature above Tg and below Tm, annealing would occur. In practical applications, this 
could eventually affect the mechanical properties. Tsuji et al. [31] used three different processes to anneal the PLLA film 
prepared by solution casting: process A, direct annealing of the as-cast film (film A); process B, melting and annealing (film 
B); and process C, melting, quenching, and annealing (film C). They found that the spherulite density of film C is larger 
than that of film A and film B. Higher spherulite nucleation density of film C must have shortened the annealing time 
required for the completion of overall crystallization and decreased the sphere radius. Meanwhile, Tsuji suggested that 
process C allows producing PLLA films with different Tm by varying Ta, without the morphology change [31]. Zhao et 
al. [13] annealed PLLGA85/15 bars using a method similar to process C. In this study, we chose to eliminate the thermal 
history by reaching the melt temperature of PPDO and then quenching to room temperature (PPDO was compression-
molded into bars). Then, PPDO bars were annealed after raising the temperature to the desired annealing temperature. The 
tensile properties of PPDO bars were improved by the isothermal annealing process. The mechanical and thermodynamic 

Figure 1. Polarized optical micrographs of PPDO spherulites after isothermal  crystallization  at  different  temperatures (Tc) for 
different time (tc): (a) Tc = 60 °C, tc = 6 min, (b) Tc = 70 °C, tc = 19 min, (c) Tc = 80 °C, tc = 30 min, (d) Tc = 90 °C, tc = 110 min, (e) 
Tc = 100 °C, tc = 100 min.
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performance data of annealed PPDO are given in Table 1. Each reported value was the mean and standard deviation of five 
parallel samples. The effect of Ta on the tensile strength of annealed PPDO can be seen in Figure 3. The tensile strength 
had the same tendency regardless of whether ta was 1 h, 2 h, or 3 h. For example, when ta was 1h, observing the change 
of tensile strength with Ta, the tensile strength of PPDO annealed at 50 ℃ was 28.9 ± 0.4 MPa. The tensile strength could 
reach 40.3 ± 0.5 MPa at 90 ℃. When Ta further increased to 100 ℃, the tensile strength decreased to 37.4 ± 1.1 MPa. The 
process of isothermal annealing could effectively adjust the tensile strength by changing Ta, improving the tensile strength 
of PPDO. For the same ta, PPDO isothermal annealed at 90 ℃ had the maximum tensile strength.

The mechanical properties of aliphatic polyesters were mainly affected by chemical structure and aggregation structure, 
crystal morphology, and crystallinity [32]. Polymer crystals usually grew under conditions far from thermodynamic 
equilibrium. Annealing was a dynamic process in which isothermal annealing accelerated the movement of molecular 
chains to reduce or remove residual stresses and strains, resulting in a more desirable and stable structure. During the 
annealing, the amorphous regions became locally ordered, and the arrangement of molecular chains in the crystal became 
compact and regular. Also, the size and number of the crystal grains increased. Choosing different Ta could result in 
different recrystallization rates and crystallinity, giving different tensile strength. As a result, although different Ta was 
selected, compared with untreated PPDO, the tensile strength of PPDO increased in different degrees. Annealed at 90 
°C, the tensile strength of PPDO was significantly improved. As Ta gradually approached the melting point of PPDO, the 
tensile strength of PPDO was damaged. The decrease in tensile strength was due to the limited formation of crystal nuclei, 
which was detrimental to crystallization, resulting in a decrease in crystallinity. This could be obtained by XRD analysis.

The ta can also affect the tensile strength of PPDO. The effect of ta on the tensile strength of annealed PPDO could be 
evaluated from Figure 4. The tensile strength had two trends with an increase in ta. One was that at low Ta (50 ℃, 60 ℃), 
and prolonging the annealing time could increase the tensile strength. Since the diffusion of polymer chains depended on 
time, the longer annealing time allowed more chains to diffuse into the suitable orientations for crystalline arrangement 
[33], and the crystal integrity and crystallinity gradually improved. The other was that at high Ta (70 ℃, 80 ℃, 90 ℃, 
100 ℃), the tensile strength rose first and then decreased. The full development of the crystalline domains would limit 
the segmental mobility in the amorphous phase. The transition from the amorphous state to the crystalline state became 
more difficult. When the crystallization reached a certain level, the crystallinity of the material and the percentage of 
crystal integrity were almost constant. When ta was 3 h, the tensile strength decreased. The reason for this may be that the 
material underwent thermal degradation during annealing. 

Figure 2. Radius growth rate of spherulites (G) of PPDO as a function of crystallization 
temperature (Tc).
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Table 1. Thermal- and mechanical properties of untreated PPDO and annealed PPDO. Values are expressed as 
mean ± standard deviation, n = 5.

Samples Ta
(°C)

ta
(h)

TLM
(°C)

ΔHC(LM)
(Jg–1)

THM
(°C)

ΔHC(HM)
(Jg–1)

Elastic modulus
(MPa)

Untreated PPDO PPDO 25 0 46.07 0.88 106.52 56.25 254.1 ± 37.3

Annealed
PPDO

50 1 61.91 1.97 106.48 51.84 285.3 ± 9.9

50 2 61.96 2.87 106.79 55.85 297.8 ± 22.6

50 3 62.73 2.40 106.53 47.90 296.3 ± 17.9

60 1 71.28 2.45 106.80 52.21 290.1 ± 21.6

60 2 70.79 3.39 107.23 56.64 296 ± 9.2

60 3 73.08 2.60 106.50 58.75 296 ± 30.5

70 1 81.10 4.14 107.76 57.00 288.3 ± 24.7

70 2 79.75 4.00 106.27 59.91 294.7 ± 20.4

70 3 83.06 3.58 106.50 51.00 316.5 ± 41.2

80 1 88.96 2.79 106.38 47.36 299.5 ± 36.2

80 2 89.98 3.33 106.42 44.78 300 ± 38.2

80 3 90.11 4.42 106.56 42.06 321.9 ± 35.2

90 1 - - 106.19 64.44 381.6 ± 10.6

90 2 - - 107.42 65.12 431.0 ± 22.1

90 3 - - 108.65 64.97 375.2 ± 33.7

100 1 - - 107.35 67.90 484.9 ± 32.2

100 2 - - 111.42 70.03 492.8 ± 47.2

100 3 - - 110.66 73.96 490.5 ± 45.9

Figure 3. Tensile properties of PPDO bars after isothermal annealing at different Ta.
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Zhao et al. [18] investigated several thermal treatment conditions (60 °C, 80 °C, and 100 °C for 1 h) to improve the 
characteristics of PPDO self-expandable stents. They suggested that the 60 °C annealing stents show higher compressive 
stiffness, and prior viscoelasticity and shape stability are obtained at higher annealing temperatures (80 °C and 100 °C). 
Thus, the choice of heat treatment conditions was very important. Choosing proper Ta and ta can effectively increase 
the crystallinity and improve the tensile strength of PPDO. PPDO could reach the maximum tensile strength (41.1MPa)
when annealed at 90 ℃ for 2 h. The tensile strength improved by 79.48% compared to untreated PPDO. From a safety 
perspective, it could provide guidance for the design of tensile products, such as surgical sutures.
3.3. DSC analysis
The DSC heating curves had the same tendency regardless of whether ta was 1 h, 2 h, or 3 h.  The DSC curves of PPDO 
after isothermal annealing for 2 h at various Ta can be seen in Figure 5. It was obvious that the DSC curves showed a 
baseline shift (asterisk). The melting curve showed two melting endotherms, a weaker lower melting peak (LM), and a 
higher melting peak (HM) near the melting point [9]. LM moved to a high temperature with an increase in Ta. When Ta≥ 
90 ℃, the double melting peak gradually disappeared and turned into a melting peak. The melting points corresponding 
to the two melting peaks were TLM and THM, respectively. By linearly fitting the melting point, it could be seen in Figure 6 
that the TLM increased linearly. The TLM was approximately 10 °C higher than Ta, indicating the dependence of TLM on Ta. 
The THM was stable at 106~108 °C, which was not affected by the change in Ta. After the double melting peak disappeared, 
the melting point moved to a higher temperature (110 °C).

The annealing process could induce the folding and rearrangement of molecular chains in unstable regions. Therefore, 
the recrystallization of PPDO occurred during isothermal annealing. Due to the melting of the polymer produced in 
the secondary crystallization, it could be asserted that the occurrence of the double melting of PPDO was a result of 
recrystallization. At lower Ta, the initial recrystallization of PPDO produced imperfect crystals. The corresponding TLM at 
this annealing temperature was also lower. As Ta increased, the less stable regions were melted and redistributed between 
the more stable regions, and the LM crystals of the double melting peak observed in DSC during heating were reorganized 
into more ordered HM crystals by recrystallization. The size and perfection of the LM crystal may be increased by the solid-
state diffusion mechanism. Therefore, the TLM depended on Ta and was always 10 ℃ higher than Ta. The HM crystals were 
relatively perfect, so THM showed independence from Ta. The change in DSC double melting peak and recrystallization 
can indicate that the annealing process changed the internal structure. Finally, it changed the tensile strength of PPDO.
3.4. TGA analysis
The thermal stability of untreated PPDO and annealed PPDO (90℃, 2h) were examined by TGA analyses at a heating rate 
of 10 ℃/min with a steady flow of nitrogen [19]. The TGA curves are shown in Figure 7, and the data for the samples are 

Figure 4. Tensile properties of PPDO bars after isothermal annealing for different ta.
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summarized in Table 2. The thermal decomposition of PPDO was mainly a zero-order depolymerization process [20,21]. 
It can be observed that the main thermal degradation step of untreated PPDO started at around 185.25 °C, while this step 
was initiated at 181.50 °C for annealed PPDO. The temperature at a maximum rate (Tmax) of untreated PPDO was about 
306.83 °C. However, Tmax of annealed PPDO appeared at 299.83 °C. Then, the weight of untreated PPDO and annealed 
PPDO decreased steadily, corresponding to almost complete degradation at 311.83 ℃ and 306.50 ℃, respectively.

Figure 5. DSC thermograms of PPDO after isothermal annealing at various Ta for 2 h.

Figure 6. Peak melting temperatures of PPDO as a function of Ta after isothermal 
annealing for 2 h: (A) linearly fitting of TLM, (B) linearly fitting of THM.
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When untreated PPDO and annealed PPDO are compared, it can be seen that the main reason for these declines was 
that PPDO underwent slight thermal degradation during the annealing process, resulting in a decrease in the molecular 
weight of annealed PPDO. The change in molecular weight can affect the thermal stability of the polymer [34]. As can 
be seen in Figure 7, annealed PPDO still had good thermal stability. The annealing process did not cause severe thermal 
degradation of PPDO.
3.5. XRD analysis
The untreated PPDO and annealed PPDO were investigated by XRD. Figure 8 shows the WAXD diagram of PPDO in the 
range of 10~35° (2θ) after annealing at various Ta for 2 h. It can be seen that the PPDO has three characteristic diffraction 
peaks at 21.9°,23.8°, and 29.3°, and the corresponding spacings between the planes in the crystal are 0.405 (d210), 0.373 
(d020), and 0.304 (d310) nm, respectively [17]. Compared with untreated PPDO, the annealed PPDO showed little change 
in the WAXD pattern, indicating that there was no transition of the crystal phase [18]. When Ta ≥ 50 ℃, the main peak 
became sharper with an increase in Ta. There was not a new diffraction peak formed, and the isothermal annealing did not 
cause the crystal form change of PPDO.

The degree of crystallinity was calculated as the percentage of the scattering intensity of the crystalline phase relative to 
the total scattering intensity of the crystalline phase and the amorphous phase using Eq. (2). PPDO was a semicrystalline 
polymer whose crystallinity first rose and then decreased with an increase in Ta. The relationship between the crystallinity 
of annealed PPDO and Ta can be seen in Figure 9. The crystallinity of the untreated PPDO was only 44.46%. When Ta ≤ 

Figure 7. TGA curves of weight loss as a function of temperature for untreated 
PPDO and annealed PPDO (90 °C, 2h).

Table 2. The TG data of untreated PPDO and annealed PPDO (90 °C, 2h). Ti is 
the initial thermal degradation temperature.T50% is the temperature with weight 
loss of 50%. Tmaxis the maximum rate temperature. Td is the maximum thermal 
degradation temperature.

Samples Ti
(°C)

T50%
(°C)

Tmax
(°C)

Td
(°C)

Untreated PPDO 185.25 300.33 306.83 311.83
Annealed PPDO (90 (°C), 2h) 181.50 294.39 299.83 306.50
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70 ℃, the crystallinity smoothly increased. While Ta ≥70 ℃, the crystallinity increased rapidly and reached a maximum 
(57.21%) at 90 ℃. When Ta further increased to 100 °C, the crystallinity of PPDO decreased and became  53.96%. The 
crystallinity was one of the main factors that affect the tensile properties of the PPDO. It can be observed that the change 
in crystallinity was similar to the change in tensile strength. This was consistent with the analysis of the changes in tensile 
strength that were previously discussed. 

Figure 8. WAXD of PPDO in the range of 10~35° (2-theta) after isothermal annealing 
at various Ta for 2 h.

Figure 9. Changes in the degree of crystallinity of PPDO after isothermal annealing at 
various Ta for 2 h.
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Figure 10 shows the full width at half maximum (FWHM) of the X-ray diffraction peak at 21.90°(2θ) after isothermal 
annealing at various Ta for 2 h. Using Eq. (3), the changes of FWHM could be used to roughly represent changes incrystal 
size [13]. The smaller the FWHM is, the larger the grain size is. Also, the average thickness of the crystal grains in the 
direction perpendicular to the crystal plane was larger. It could be seen that untreated PPDO had the largest FWHM, 
which indicated that the grain size of the PPDO was still small at this time. During the isothermal annealing, the FWHM 
dropped sharply. The FWHM of annealed PPDO (50 °C) decreased from 0.394 to 0.360., and the FWHM reached a 
minimum at 90 °C of 0.332. It proved that with an increase in Ta, the size of PPDO grains continued to increase and that 
the crystallization process was more and more perfect. This was consistent with the DSC analysis.
3.6. Degradation properties of PPDO
Figure 11 shows the morphology of the samples periodically observed by the scanning electron microscope. When the 
degradation progressed to the 2nd week, the entire surface remained essentially intact without too many defects. As shown 
in Figure 11a, very few cracks gradually appeared on the surface of the sample. In the 4th week, the surface of the sample 
changed significantly, as can be seen in Figure 11b. The number of cracks distributed on the surface increased, and the crack 
size became larger (1–3 μm). Meanwhile, the degraded fragment monomer was exposed on the surface of the substrate in 
the form of small white particles. This was due to the continuous degradation of the sample under the continuous attack 
of water molecules [12]. In the 5th week, the cracks developed greatly (4–6 μm), as can be seen in Figure 11c, and the 
degraded fragments on the surface of the samples also increased obviously. With the progress of degradation, the number 
of surface defects gradually increased, and the degree of corrosion also gradually deepened.

When the samples were compared among themselves, it was observed that in the 2nd week, there were obvious cracks 
on the surface, as can be seen in Figure 11a, while the surface of the annealed PPDO was flat as shown in Figure 11d. In the 
4th week, when the widest cracks of two sets of samples in Figures 11b and 11e were compared, it was seen that untreated 
PPDO was larger. Meanwhile, finer cracks were distributed around the widest crack of untreated PPDO, and there was a 
tendency to further expand. The area around the largest crack of the annealed PPDO retained its original appearance as 
a whole. In the 5th week, comparing Figures 11c and 11f, we can see that the crack size of untreated PPDO was already 
significantly larger than that of annealed PPDO and that the size of the fine cracks distributed around the largest crack 
of the untreated PPDO also became larger. Through the analysis of the surface morphology, it can be found that the 
surface erosion of untreated PPDO was more serious than that of annealed PPDO. Compared with untreated PPDO, the 
degradation rate of annealed PPDO was delayed about a week.

The degradation properties in vitro of untreated PPDO and isothermal annealed PPDO (90 ℃, 2 h) were preliminarily 
evaluated by mass loss, water absorption, and intrinsic viscosity. The degradation performance data of PPDO are given 

Figure 10. Changes in FWHM of X-ray diffraction peak (21.90°) after isothermal 
annealing at various Ta for 2 h.
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in Table 3. Compared with the untreated PPDO (η = 2.43), the intrinsic viscosity of annealed PPDO (η = 2.26) decreased 
slightly. The heat treatment process did not cause severe thermal degradation of PPDO. However, the annealed PPDO 
had a slightly higher intrinsic viscosity during the degradation process. When the degradation reached the 2nd week, the 
intrinsic viscosity of untreated PPDO decreased by 45.68%, and the intrinsic viscosity of annealed PPDO decreased by 
34.51%.

Eqs. (4) and (5) were used to calculate the mass loss and water absorption after the degradation of PPDO. When 
the degradation reached the 5th week, PPDO bars were not able to maintain the stability of the shape. It was not easy 
to collect due to the fragmentation of PPDO. Therefore, the degradation data were only recorded until the 4th week. 
The degradation form of PPDO was mainly hydrolytic degradation. It could be seen in Table 3 that during the whole 
degradation experiment in vitro, the mass loss and water absorption of untreated PPDO were slightly higher than those 
of annealed PPDO. 

As most of the amorphous region hydrolyzed, the hydrolysis medium would diffuse into the crystalline region. If the 
low molecular weight substances formed by degradation in the crystal zone cannot diffuse into the hydrolysis medium on 

Figure 11. SEM micrographs of PPDO bars after degradation: ( a) untreated PPDO for 2 weeks, (b) untreated PPDO for 4 weeks, 
(c) untreated PPDO for 5 weeks, (d) annealed PPDO for 2 weeks, (e) annealed PPDO for 4 weeks (f) annealed PPDO for 5 weeks.

Table 3. Degradation properties of untreated PPDO and annealed PPDO (90 (°C),2 
h). Values are expressed as mean, n = 4.

Time
(weeks) Samples 0 2 4

Weight retention
(%)

Untreated PPDO 100 98.02 92.99
Annealed PPDO 100 98.29 93.41

Water absorption
(%)

Untreated PPDO 0 6.56 11.99
Annealed PPDO 0 6.31 11.00

Intrinsic viscosity
(dL/g)

Untreated PPDO 2.43 1.32 0.56
Annealed PPDO 2.26 1.48 0.59
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time, such low molecular weight substances will accumulate in the mesophase and might be catalytically degraded locally 
because of their acid properties [35]. This would result in bond cleavage in this region and might accelerate degradation 
at a faster rate of hydrolysis [36,37]. However, the increase in crystallinity did not lead to the accelerated degradation of 
PPDO. In summary, all consistent data demonstrated that isothermal annealing retarded the degradation of PPDO to 
some extent.

4. Conclusion
In this work, PPDO was compression-molded into bars, and the PPDO bars were subjected to isothermal annealing 
at various Ta for different ta. The synthesized PPDO underwent a process of melting, quenching, and annealing. The 
isothermal annealing provided sufficient temperature and time for the molecular chains to rearrange. During the 
annealing, the amorphous regions became locally ordered, and the arrangement of the molecular chains in the crystal 
became compact and regular, reducing the proportion of the amorphous phase. The PPDO (90 ℃, 2 h) reached maximum 
crystallinity (57.21%) and maximum tensile strength (41.1 MPa). The tensile strength was improved by 79.48% compared 
to untreated PPDO. The change of DSC double melting peak and recrystallization can indicate that the annealing process 
changed the internal structure. The XRD showed there was no crystal phase transition. With an increase in Ta, the FWHM 
decreased, the size of grains and crystallinity increased. Interestingly, the heat treatment process did not cause serious 
thermal degradation of PPDO. It was observed that isothermal annealing treatment delayed degradation for about a week. 
Consequently, PPDO can improve mechanical properties and delay degradation by annealing at 90 °C for 2 h. These 
properties make PPDO good candidates for use in medicine, such as bone or tissue fixation devices and drug delivery 
systems. The annealed PPDO has great potential for general materials in place of nonenvironmentally friendly materials, 
such as films, molded products, laminates, etc.

Acknowledgments
This work was supported by grants from the National Natural Science Foundation of China (No. 81974153).

Conflict of interest
The authors declare that they have no conflict of interest.

References

1.	 Acik G. Bio-based poly(ε-caprolactone) from soybean-oil derived polyol via ring-opening polymerization. Journal of Polymers and the 
Environment 2019; 28 (2): 668-675. doi: 10.1007/s10924-019-01597-7

2.	 Acik G. Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polymer Letters 2020; 
14 (3): 272-280. doi: 10.3144/expresspolymlett.2020.23

3.	 Acik G, Karatavuk AO. Synthesis, properties and biodegradability of cross-linked amphiphilic Poly (vinyl acrylate)-Poly(tert-butyl 
acrylate)s by photo-initiated radical polymerization. European Polymer Journal 2020; 127: 6. doi: 10.1016/j.eurpolymj.2020.109602

4.	 Bai W, Zhang ZP, Li Q, Chen DL, Chen HC et al. Miscibility, morphology, and thermal properties of poly(para-dioxanone)/poly(D, 
L-lactide) blends. Polymer International 2009; 58 (2): 183-189. doi: 10.1002/pi.2512

5.	 Raquez JM, Coulembier O, Duda A, Narayan R, Dubois P. Recent advances in the synthesis and applications of poly(1,4-dioxan-2-one)
based copolymers. Polimery 2009; 54 (3): 165-178. doi: 10.14314/polimery.2009.165

6.	 Panchal SS, Vasava DV. Biodegradable polymeric materials: synthetic approach. ACS Omega 2020; 5 (9): 4370-4379. doi: 10.1021/
acsomega.9b04422

7.	 Marquez Y, Franco L, Turon P, Martinez JC, Puiggali J. Study of non-isothermal crystallization of polydioxanone and analysis of 
morphological changes occurring during heating and cooling processes. Polymers 2016; 8 (10): 18. doi: 10.3390/polym8100351

8.	 Yang KK, Wang XL, Wang YZ. Poly(p-dioxanone) and its copolymers. Journal of Macromolecular Science-Polymer Reviews 2002; C42 
(3): 373-398. doi: 10.1081/MC-120006453

9.	 Pezzin APT, Van Ekenstein GOR, Duek EAR. Melt behaviour, crystallinity and morphology of poly(p-dioxanone). Polymer 2001; 42 (19): 
8303-8306. doi: 10.1016/S0032-3861(01)00273-7

10.	 Yang KK, Wang XL, Wang YZ, Huang HX. Effects of molecular weights of bioabsorbable poly(p-dioxanone) on its crystallization 
behaviors. Journal of Applied Polymer Science 2006; 100 (3): 2331-2335. doi: 10.1002/app.23003



LIU et al. / Turk J Chem

1443

11.	 Haase T, Klopfleisch R, Krost A, Sauter T, Kratz K et al. In vivo biocompatibility study of degradable homo-versus multiblock copolymers 
and their (micro)structure compared to an established biomaterial. Clinical Hemorheology and Microcirculation 2020. doi: 10.3233/CH-
190748

12.	 Zhu YF, Huang XM, Cao J, Hu JQ, Bai Y et al. Animal experimental study of the fully biodegradable atrial septal defect (ASD) occluder. 
Journal of Biomedicine and Biotechnology 2012. doi: 10.1155/2012/735989

13.	 Zhao N, Wang L, Huang D, Zhang T, Zhang L et al. Effect of isothermal annealing on degree of crystallinity and mechanical properties of 
poly(l-lactide-co-glycolide). Crystal Research and Technology 2010; 45 (3): 275-280. doi: 10.1002/crat.200900617

14.	 Zhao N, Ma Z, Li Q, Chen D, Xiong C. Effect of nucleation of tricalcium phosphate and isothermal annealing on the crystallization of 
poly(l-lactide-co-glycolide). Journal of Polymers and the Environment 2012; 21 (1): 259-265.  doi: 10.1007/s10924-012-0522-6

15.	 Camarero-Espinosa S, Boday DJ, Weder C, Foster EJ. Cellulose nanocrystal driven crystallization of Poly(D,L-lactide) and improvement 
of the thermomechanical properties. Journal of Applied Polymer Science 2015; 132 (10): 11. doi: 10.1002/app.41607

16.	 Perez-Camargo RK, Fernandez-d’Arlas B, Cavallo D, Debuissy T, Pollet E et al. Tailoring the structure, morphology, and crystallization 
of isodimorphic poly(butylene succinate-ran-butylene adipate) random copolymers by changing composition and thermal history. 
Macromolecules 2017; 50 (2): 597-608. doi: 10.1021/acs.macromol.6b02457

17.	 Zheng Y, Zhou J, Bao YZ, Shan GR, Pan PJ. Polymorphic crystal transition and lamellae structural evolution of poly(p-dioxanone) induced 
by annealing and stretching. Journal of Physical Chemistry B 2019; 123 (17): 3822-3831. doi: 10.1021/acs.jpcb.8b12111

18.	 Zhao F, Xue W, Wang FJ, Yu CL, Xu HY et al. A new approach to improve the local compressive properties of PPDO self-expandable stent. 
Journal of the Mechanical Behavior of Biomedical Materials 2017; 68: 318-326. doi: 10.1016/j.jmbbm.2017.02.015 

19.	 Li XY, Zhou Q, Wen ZB, Hui Y, Yang KK et al. Influence of catalysts used in synthesis of poly(p-dioxanone) on its thermal degradation 
behaviors. Polymer Degradation and Stability 2015; 121 (2015): 253-260. doi: 10.1016/j.polymdegradstab.2015.09.016

20.	 Nishida H, Yamashita M, Endo T. Analysis of the initial process in pyrolysis of poly(p-dioxanone). Polymer Degradation and Stability 
2002; 78 (1): 129-135. doi: 10.1016/S0141-3910(02)00126-X

21.	 Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Thermal decomposition of poly(1,4-dioxan-2-one). Polymer Degradation and 
Stability 2000; 70 (3): 485-496. doi: 10.1016/S0141-3910(00)00145-2

22.	 Luyt AS, Gasmi S. Influence of TiO2 Nanoparticles on the crystallization behaviour and tensile properties of biodegradable PLA and PCL 
nanocomposites. Journal of Polymers and the Environment 2018; 26 (6): 2410-2423. doi: 10.1007/s10924-017-1142-y

23.	 Lojkowski M, Walheim S, Jokubauskas P, Schimmel T, Swieszkowski W. Tuning the wettability of a thin polymer film by gradually changing 
the geometry of nanoscale pore edges. Langmuir 2019; 35 (17): 5987-5996. doi: 10.1021/acs.langmuir.9b00467

24.	 Hu J, Wang JP, Gowd EB, Yuan Y, Zhang TP et al. Small- and wide-angle X-ray scattering study on alpha-to-alpha transition of Poly(L-
lactide acid) crystals. Polymer 2019; 167 (2019): 122-129.  doi: 10.1016/j.polymer.2019.01.088

25.	 Bai W, Li Q, Jiang LY, Zhang ZP, Zhang SL et al. Poly(para-dioxanone)/poly(D,L-lactide) blends compatibilized with poly(D,L-lactide-co-
para-dioxanone). Journal of Applied Polymer Science 2011; 120 (1): 544-551. doi: 10.1002/app.33197

26.	 Wang B, Ma C, Xiong ZC, Bai W, Xiong CD et al. Amino acid endcapped poly(p-dioxanone): synthesis and crystallization. Journal of 
Polymer Research 2013; 20 (4): 9. doi: 10.1007/s10965-013-0116-6

27.	 Bai Y, Wang PQ, Bai W, Zhang LF, Li Q et al. Miscibility, thermal and mechanical properties of poly(para-dioxanone)/poly(lactic-co-
glycolic acid) blends. Journal of Polymers and the Environment 2015; 23 (3): 367-373. doi: 10.1007/s10924-014-0686-3

28.	 Bai W, Chen DL, Li Q, Chen HC, Zhang SL et al. In vitro hydrolytic degradation of poly(para-dioxanone) with high molecular weight. 
Journal of Polymer Research 2009; 16 (5): 471-480.  doi: 10.1007/s10965-008-9250-y

29.	 Andjelic S, Jamiolkowski D, McDivitt J, Fischer J, Zhou J. Spherulitic growth rates and morphology of absorbable poly(p-dioxanone) 
homopolymer and its copolymer by hot-stage optical microscopy. Journal of Polymer Science 2001; 39 (24): 3073-3089. doi: 10.1002/
polb.10065

30.	 Sabino MA, Feijoo JL, Muller AJ. Crystallisation and morphology of poly(p-dioxanone). Macromolecular Chemistry and Physics 2000; 
201 (18): 2687-2698. doi:10.1002/1521-3935(20001201)201:18<2687::AID-MACP2687>3.0.CO;2-#

31.	 Tsuji H, Ikada Y. Properties and morphologies of poly(L-lactide): 1. Annealing   condition effects on properties and morphologies of 
poly(L-lactide). Polymer 1995; 36 (14): 2709-2716. doi: 10.1016/0032-3861(95)93647-5

32.	 Zeng JB, Srinivansan M, Li SL, Narayan R, Wang YZ. Nonisothermal and isothermal cold crystallization behaviors of biodegradable 
poly(p-dioxanone). Industrial & Engineering Chemistry Research 2011; 50 (8): 4471-4477. doi: 10.1021/ie102299y

33.	 Loo SCJ, Ooi CP, Wee SHE, Boey YCF. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) 
(PLGA). Biomaterials 2005; 26 (16): 2827-2833. doi: 10.1016/j.biomaterials.2004.08.031



LIU et al. / Turk J Chem

1444

34.	 Yang KK, Wang XL, Wang YZ, Wu B, Jin YD et al. Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). 
European Polymer Journal 2003; 39 (8): 1567-1574.  doi: 10.1016/S0014-3057(03)00052-1

35.	 Brito Y, Sabino MA, Ronca G, Müller AJ. Changes in crystalline morphology, thermal, and mechanical properties with hydrolytic 
degradation of immiscible biodegradable PPDX/PCL blends. Journal of Applied Polymer Science 2008; 110 (6): 3848-3858. doi: 10.1002/
app.28883

36.	 Sabino MA, Albuerne J, Muller AJ, Brisson J, Prud’homme RE. Influence of in vitro hydrolytic degradation on the morphology and 
crystallization behavior of poly(p-dioxanone). Biomacromolecules 2004; 5 (2): 358-370. doi: 10.1021/bm034367i

37.	 Bai W, Zhang LF, Li Q, Chen DL, Xiong CD. In vitro hydrolytic degradation of poly(para-dioxanone)/poly(D,L-lactide) blends. Materials 
Chemistry and Physics 2010; 122 (1): 79-86. doi: 10.1016/j.matchemphys.2010.02.064


