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1. Introduction
Coriander (Coriandrum sativum L., family Apiceae) is an annual plant generally found in Western Asia and Mediterranean 
Europe [1]. This plant originated in North America and was then distributed and cultivated in various temperate regions 
of the world. Its leaves are used for flavoring purposes, while the dry seeds are significant due to their various culinary 
and medicinal applications. The presence of various bioactive compounds gives this planta wide range of pharmacological 
properties including antihypertensive, neuro-protective, antidepressant, antimutagenic, antiinflammatory, and antioxidant 
properties as well as anticancer activities[2].

Isoquercitrin is a flavonoid chemical compound that can be extracted from different plant species such as Mangifera 
indica (mango), Rheum nobile, Annona squamosal, Camellia sinensis (tea), and coriander (Coriandrum sativum) [3]. It 
has been reported to possesses biological activities including the prevention of thromboembolism as well as anticancer, 
antiinflammatory, and antifatigue activities [4]. Therefore, it is critically important to determine the bioactive compound 
by qualitatively identifying its retention time and quantitatively determining its absorbance. High performance liquid 
chromatography (HPLC) is among the useful techniques deployed todetermine the qualitative as well as quantitative 
properties of isoquercitrin[5]. 

There is a need to optimize the parameters necessary to obtain the desired qualitative and quantitative results for this 
bioactive compound using HPLC [6]. Although there are studies in the literature regarding liquid chromatographic methods 
for qualitative and quantitative analysis of bioactive compounds, the main drawbacks include the use of large amounts of 
toxic solvents, long analysis duration, and high analysis cost [7]. For example, Ali et al. [8] investigated the simultaneous 
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determination of irbesartan (IRB) and hydrochlorothiazide (HCTZ) using RP-HPLC in a combined pharmaceutical 
preparation. They found that the major potential drawback of the study was the long analysis time. Lu et al. [9] reported 
that benzotriazole and its derivatives, which are persistent contaminants and cosmopolitan chemicals in nature, can be 
analyzed using a simple, inexpensive, and quick extraction method known as air-assisted liquid–liquid microextraction, 
coupled with the HPLC technique. This robust hyphenation gives accurate, precise results with good linearity (r > 0.9996). 
However, the use of a relatively toxic extractant solvent was the major drawback of their study. Xiao-Wang et al. [10] also 
reported a novel technique that can be used for in vitro models to screen the bioactive ingredients of various traditional 
Chinese medicines using cell membrane chromatography. The longer analysis time was a disadvantage of their approach. 
Lian et al. [11] reported an advanced analytical technique for the elucidation of 10 types of prohibited ingredients used in 
cosmetics. The study involved the preconcentration of the analytes using supramolecular-based dispersive liquid–liquid 
microextraction prior to analysis using ultra performance liquid chromatography (UPLC) coupled with different mass-
spectrometer detectors. Their use of the solidification solvent dodecanal as the extraction solvent, vortexing, and adding 
another solvent, tetrahydrofuran, as the disperser solvent increased analysis time as well as cost.

Chromatographic methods are complex in nature, which makes it difficult to present a method that can cover all the 
required parameters necessary to predict the qualitative and quantitative nature of a bioactive compound and to optimize 
its performance efficiency. Optimization of chromatographic conditions, such as mobile phase composition(concentration 
of organic modifier), pH, and temperature, is important in order to obtain reasonable and desired qualitative as well as 
quantitative results. This method involves the optimization of pH, which offers improved selectivity due to the degree of 
ionization of the solutes, and mobile phase and stationary phase additives, which may affect the pH. It also focuses on 
optimizing the composition of the mobile phase, which is the ratio of water and organic modifier.

Recently, researchers have been developing green techniques in different fields of chromatography that are capable of 
modeling and predicting the behavior of chromatographic systems in order to achieve reasonable results within a short time. 
Although the traditional chromatographic method serves as the fundamental approach, it suffers from certain weaknesses.
In contrast, artificial-intelligence–based models have emerged as promising and reliable chemometric approaches in 
different studies. Veenaas et al. [12] reported that the QSRR method could be used for the prediction of retention time, 
which can provide an insight into the separation mechanisms. The study stated that prediction of retention time is vital 
for decreasing the time needed to identify analytes and developing methods, particularly for nontargeted analysis. The 
results showed that the descriptor selection method and geometry optimization are relatively less effective compared to the 
chromatographic similarity of the analytes in the training phase. Xiong et al. [13] reported a novel artificial neural network 
(ANN)-based model, which involves the modeling and prediction of human cancerous tissues using mass-spectrometry 
imaging (MSI). The reliability of the ANN, MSI, and spatial information provided accurate and precise results. Yuand 
Cheng [14] reported a method that can be used for quick determination of the authenticity of Chinese-based medicines 
using near-infrared (NIR) spectroscopy and least squares support vector machines (LSSVM). The results obtained from 
LSSVM were compared with those of the traditional BP-ANN and SVM, and LSSVM outperformed the other two models 
in terms of efficiency. Yi-Minget al.[15] reported that partial least squares (PLS) was frequently used for near-infrared 
spectral quantitative analysis due to its ability to overcome dimensionality as well as the collinearity of spectral data. The 
application of this model for two NIR datasets showed that the technique provides good prediction performance, and it 
outperformed the classical models. Amini et al.[16] reported that QSRR was used to determine and predict the retention 
factor of 160 different pesticides and 25 environmental organic pollutants in grape and wine. Modeling of the relationship 
between the selected molecular descriptors and retention time was achieved by linear [partial least square(PLS)] and 
nonlinear [kernel PLS(KPLS) and Levenberg–Marquardt ANN(L-M ANN)] methods. The models were further validated 
using the cross-validation method. The results showed that L-M ANN outperformed all the other linear and nonlinear 
models. Similarly, Veenaas et al. [12] reported that the QSRR method could be used for prediction of retention time (tR), 
which can provide an insight into the separation mechanisms. The study reported that the prediction oftR is vital for 
decreasing the time needed for analyte identification and method development, especially in nontargeted analysis. The 
results showed that the descriptor selection method and geometry optimization are relatively less effective than analyzing 
the chromatographic similarity of the analytes in the training phase. Korany et al. [17] studied the applications of neural 
networks for HPLC optimization response-surface models, as compared with MLR methods. The results showed that 
ANN offered significant possibilities for method development in HPLC. Furthermore, the predicted retention capacities of 
the analytes were better than those obtained using MLR. Ng Boonet al. [18] studied the prediction of gradient elution, as 
well the application of complex eluent profiles, for both gradient and isocratic eluents for the separation of analytes in ion 
chromatography (IC). The research focused more on the insightful modeling of tR and peak width for simulating isocratic, 
gradient, and multistep gradient separations in IC. A more recent study was conducted by D’Archivio [19] using ANN 
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to model the retention factors of 16 different kinds of amino acids using reversed-phase liquid chromatography through 
the application of different elution modes. The accuracy of ANN prediction was far better than predictions obtained by 
applying the same data to retention models based on the solution of the fundamental equation of gradient elution [19].

The contribution and novelty of this study is presented in various forms. First, to the best of our knowledge, to date 
no study has been conducted in the technical literature indicating the chromatographic application of these methods in 
coriander plant since the inception of AI-based techniques. Secondly, the experimental aim of the current research is to 
determine the qualitative and quantitative properties of isoquercitrin from coriander plant. These properties were further 
simulated using data-driven models, and to the best of our knowledge, this is the first study in the literature depicting the 
application of AI-based models to predict the qualitative and quantitative properties of the phytochemical compound. 
Subsequently, the study proposes three different nonlinear models (ANN, ANFIS, and SVM) and a classical linear model 
(MLR) for the prediction of tR and PA for isoquercitrin using HPLC method development.

2. Materials and methods
2.1. Materials
All chemicals used in the study are HPLC grade and were purchased from Sigma–Aldrich (Sigma-Aldrich Corp., St. Louis, 
MO, USA).
2.2. Instrumentation
An HPLC instrument (Agilent Technologies 1200 series, USA) with a diode-array detector (DAD) was utilized in this 
experimental study. The bioactive compound was analyzed on an Eclipse XDB-C18 (150mm × 4.6mm, 5µm) reversed-
phase column. The mobile phase consisted of a gradient elution system composed of deionized water (D. I) and formic 
acid (A) and methanol (B). The flow rate was set at 0.9 mL min–1with a column temperature of 35°C and an injection 
volume of 10 μL. The analytical wavelength was set at 254 nm for isoquercitrin, and the identification of isoquercitrin was 
performed by comparing the retention times of the real samples with those of pure standards. Calculations regarding the 
quantitative result were made using external standardization by measuring peak areas. The detection limit (LOD) and limit 
of quantification (LOQ) were calculated using standard deviation over slope.
2.3. Quantification of isoquercitrin
Standard solutions of isoquercitrin were prepared in methanol at different concentrations: 0, 0.5, 1, 10, 25, 50, 100, 250, 
500, 750, and 1000 ppm. The peak areas (absorbance) of the respective concentrations were used to draw the calibration 
curve.
2.4. Extraction of isoquercitrin from coriander leaves 
The coriander leaves were collected from Fresh Farm Company in Alayköy, Northern Cyprus. The leaves were then dried, 
ground, powdered, and weighed. The weighed samples were further extracted using 100 mL methanol and stirred using a 
magnetic stirrer for 2 h. The obtained extract was then evaporated using a rotary evaporator. The residue was dissolved in 
water prior to HPLC analysis.
2.5. Proposed methodology 
For any data-driven method, the knowledge of data science and analysis is crucial; for this reason, the data were collected 
from our experimental studies. This study proposes the application of four data-driven algorithms including the classical 
and most commonly used linear model, MLR, and three nonlinear models: ANN (the most widely used data-driven 
model), ANFIS (a hybrid learning algorithm), and SVM. These models were used to predict the qualitative [i.e.(tR)] 
and quantitative [i.e. (PA)] properties of isoquercitrin from coriander plant. Concentration of the standards, pH, and 
composition of mobile phase (methanol and water) were used as the corresponding input variables. The basic motivation 
for employing different data-intelligence models is the difficulty in understanding whether a specific model is superior to 
others in practice. Choosing appropriate models for a particular case can be challenging for predictors. This complexity 
can only be overcome by selecting and comparing different data-driven models, including the linear models, despite their 
weaknesses in handling highly nonlinear and complex data. Figure 1 presents a flowchart of the methods used for the 
development of the current study. The input data were collected, preprocessed, and normalized based on Eq.(1) (Figure 1). 
Normalization of the data was conducted before the model training, and this is usually performed to increase the accuracy 
and speed of the model. Predictive models such as regression and data-intelligence models are usually evaluated using 
different numerical indicators, as presented in Section (2.6) below.
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where y is the normalized data, x is the measured data, and xmax and xmin are the maximum and minimum values of the 
measured data, respectively.
2.6. Artificial neural networks (ANNs) 
Generally, ANNs are used to build models to aid in understanding the process itself, which is motivated by the configuration 
of the human brain. TheANN is made of artificial neurons that are considered robust and interconnected processing 
systems that act together in order to elucidate a certain problem[20]. Artificial neural networks are mostly applied in 
complex situations that cannot be solved using classical computational methods. The ANN model is a learning algorithm in 
which the relationships that exist between the predictor and output elements are generated by the data itself. It is important 
to note that an ANN is proficient enough to learn from wide examples [19]. The efficiency of an ANN is sufficient to resolve 
an incomplete task and then estimate the outcomes. These two considerable properties of ANNs distinguish it from other 
data-driven models and lead to its high level of applicability in diverse research areas. The overall architecture of an ANN 
is shown in Figure 2. The network is composed of various layers of neurons. In order to predict the measurable relationship 
that exists between input and output variables to a suitable degree of accuracy, it is highly recommended to have at least 
one hidden layer consisting of a number of nodes [17]. Generally, this model consists of three steps: calibration, validation, 
and verification. 
2.7. Adaptive-neuro fuzzy inference system (ANFIS)
The ANFIS is considered a general estimator that can respond to all kinds of complex problems. The ANFIS is a hybrid 
of adaptive multilayer and feed-forward networks and consists of input–output variables together with fuzzy rule, which 
is based on the Takagi–Sugeno type. Fuzzier and defuzzifier are the major parts of the fuzzy database system. Fuzzy logic 
involves the conversion of input data into fuzzy values through the application of membership functions (MFs). Nodes 
work as MFs and permit modeling of the relations between input and output. There are various types of membership 
functions, such as triangular, sigmoid, Gaussian, and trapezoidal [21]. 
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Figure 1.  Proposed flowchart of experimental data-driven methods.
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Assume the FIS contains two inputs,x and y, and one output,f; a first-order Sugeno fuzzy has the following rules.

Rule 1: if 
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A1, B1, A2, B2, parameters are membership functions for x and y, and inputs p1, q1, r1, p2, q2, r2 are outlet function 

parameters. The structure and formulation of ANFIS follows a five-layer neural network arrangement. Refer to Lu et al. 
[9] for more information about ANFIS.
2.8. Multilinear regression (MLR)
Generally, regression models predict the extent of correlation between input and output parameters as well as the 
relationship that exists between them. Linear regressions are generally fitted using a least squares approach, although other 
methods could be employed, such as minimizing the lack of fit in some of the norms or reducing the penalized version 
loss of the least square function, as in ridge regression. Primarily, linear regression is categorized into two major divisions: 
multiple and simple linear regression. A linear regression is considered simple if it is aimed at predicting the correlation 
between a single output by using a single input variable. However, if the aim is to estimate the correlation between two or 
more input variables in order to determine a single criterion variable, this model is referred to as MLR. In MLR each value 
of the input parameter is associated with a value of the output variable. Multilinear regression is the most widely utilized 
form of linear regression and has been used in various areas of study. It is worth mentioning that MLR shows a correlation 
in terms of a straight line which can best estimate all the data points involving both output and target variables [20]. The 
general form of the MLR model is shown in Eq. (4).
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where x1 ,is the value of the ith predictor, bo is the regression constant, and bi is the coefficient of the ith predictor.
2.9. Support vector machine
In 1995 Vapnik proposed the idea of learning in the context of the SVM, which provides the desired mechanism for solving 
problems that involve classification, prediction, pattern recognition, and regression. The SVM works according to the 
concept of machine learning and is a data-driven model[21]. The two major functions of SVM are statistical learning theory 
and structural risk minimization. This helps SVM offer insight that differs from ANN, as itreduces error, redundancy of 
data, and complexity and increases the general performance of the system. Support vector machine can be classified into 
linear support vector regression and nonlinear support vector regression [22]. This means that support vector regression 
(SVR) is a form of SVM based on two basic structural layers: the first layer is a kernel function weighting on the input 
variable while the second function is a weighted sum of kernel outputs [23]. In SVM the linear regression is first fitted on 
the data, and then the outputs go through a nonlinear kernel to identify the nonlinear pattern of the data. The calibration 
data is: {(xi, di)} Ni (xi is the input vector, di is the actual value, and N is sum of the data), where overall SVM function is 
given as:
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Figure 2.  The general architecture of ANN model.
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where φ(xi) indicates feature spaces, nonlinearly mapped from input vector x.
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where 
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‖𝑤𝑤‖I the weights vector norm, and C is referred to the regularized constant. The general conceptual model 

structure of SVM is illustrated in Figure 3. The parameters of the Lagrange multipliers are defined as αi and αi
*.Vector w in 

Eq. (7) can be calculated after finding the problem solution of optimization.

𝒚𝒚 = 0.05 + '0.95 × *
𝑥𝑥	 − 	𝑥𝑥./0

𝑥𝑥.12	 −	𝑥𝑥./0
34 

 
µ(x)is	A<	and	µ(y)B<then	f< = 	p<x + q<y + r< 
 
µ(x)is	AI	and	µ(y)is	BI	then	fI = 	pIx + qIy + rI 
 
𝑦𝑦 = 𝑏𝑏L + 𝑏𝑏<𝑥𝑥< + 𝑏𝑏I𝑥𝑥I +⋯𝑏𝑏/𝑥𝑥/ 
 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑤𝑤(𝑥𝑥/) + 𝑏𝑏 
 
Minimize <

I
‖𝑤𝑤‖I + 𝐶𝐶(∑ (𝜉𝜉/ + 𝜉𝜉/∗)V

/ ) 
 

Subject to: W
𝑤𝑤/𝜙𝜙(𝑥𝑥/) + 𝑏𝑏/ − 𝑑𝑑/ ≤ 𝜀𝜀 + 𝜉𝜉/∗
𝑑𝑑/ − 𝑤𝑤/𝜙𝜙(𝑥𝑥/) + 𝑏𝑏/ ≤ 𝜀𝜀 + 𝜉𝜉/∗

𝜉𝜉/, 𝜉𝜉/∗
  i=1,2,…,N 

 

𝑤𝑤∗ =\(𝛼𝛼/ − 𝛼𝛼/∗)𝜙𝜙(𝑥𝑥/)
V

/^<

 

 

𝑓𝑓(𝑥𝑥, 𝛼𝛼/, 𝛼𝛼/∗) =\(𝛼𝛼/ − 𝛼𝛼/∗)𝐾𝐾(𝑥𝑥, 𝑥𝑥/) + 𝑏𝑏
V

/^<

 

 
𝑘𝑘(𝑥𝑥<, 𝑥𝑥I) = 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝛾𝛾‖𝑥𝑥< − 𝑥𝑥I‖I) 
 

𝐷𝐷𝐷𝐷 = 1 −
∑ f(𝑌𝑌)hij,k − (𝑌𝑌)lh.,km

IV
k^<

∑ f(𝑌𝑌)hij,k − (𝑌𝑌)nnnnnhij,km
IV

k^<

 

 

𝐶𝐶𝐶𝐶 =
∑ (𝑌𝑌hij − 𝑌𝑌nhij)(𝑌𝑌lh. − 𝑌𝑌nlh.)V
/^<

o∑ (𝑌𝑌hij − 𝑌𝑌nhij)IV
/^< ∑ (𝑌𝑌lh. − 𝑌𝑌nlh.)IV

/^<

 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = t∑ (𝑌𝑌hij/ − 𝑌𝑌lh./)IV
/^<

𝑁𝑁  

 
MSE = <

V
∑ (𝑌𝑌hij/ − 𝑌𝑌lh./)IV
/^<  

 
1
2
‖𝑤𝑤‖I 

	 (7)

Therefore, the overall form of SVM informs Eq.(8).
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where k (xi, xj) is the kernel function, and b is the bias term. The radial basis function (Gaussian) is the most common 
kernel function and is expressed as: 
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where γ is the kernel parameter.
2.10. Evaluation criteria for data-driven models
Generally, for any form of data-driven approach, performance accuracy is evaluated using various criteria based on a 
comparison between the predicted and measured values. In this study, the determination coefficient (DC) as a goodness-
of-fit, correlation coefficient (CC), and two statistical errors, root mean-squared error (RMSE) and mean-squared error 
(MSE), were used for the evaluation of the models.

𝒚𝒚 = 0.05 + '0.95 × *
𝑥𝑥	 − 	𝑥𝑥./0

𝑥𝑥.12	 −	𝑥𝑥./0
34 

 
µ(x)is	A<	and	µ(y)B<then	f< = 	p<x + q<y + r< 
 
µ(x)is	AI	and	µ(y)is	BI	then	fI = 	pIx + qIy + rI 
 
𝑦𝑦 = 𝑏𝑏L + 𝑏𝑏<𝑥𝑥< + 𝑏𝑏I𝑥𝑥I +⋯𝑏𝑏/𝑥𝑥/ 
 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑤𝑤(𝑥𝑥/) + 𝑏𝑏 
 
Minimize <

I
‖𝑤𝑤‖I + 𝐶𝐶(∑ (𝜉𝜉/ + 𝜉𝜉/∗)V

/ ) 
 

Subject to: W
𝑤𝑤/𝜙𝜙(𝑥𝑥/) + 𝑏𝑏/ − 𝑑𝑑/ ≤ 𝜀𝜀 + 𝜉𝜉/∗
𝑑𝑑/ − 𝑤𝑤/𝜙𝜙(𝑥𝑥/) + 𝑏𝑏/ ≤ 𝜀𝜀 + 𝜉𝜉/∗

𝜉𝜉/, 𝜉𝜉/∗
  i=1,2,…,N 

 

𝑤𝑤∗ =\(𝛼𝛼/ − 𝛼𝛼/∗)𝜙𝜙(𝑥𝑥/)
V

/^<

 

 

𝑓𝑓(𝑥𝑥, 𝛼𝛼/, 𝛼𝛼/∗) =\(𝛼𝛼/ − 𝛼𝛼/∗)𝐾𝐾(𝑥𝑥, 𝑥𝑥/) + 𝑏𝑏
V

/^<

 

 
𝑘𝑘(𝑥𝑥<, 𝑥𝑥I) = 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝛾𝛾‖𝑥𝑥< − 𝑥𝑥I‖I) 
 

𝐷𝐷𝐷𝐷 = 1 −
∑ f(𝑌𝑌)hij,k − (𝑌𝑌)lh.,km

IV
k^<

∑ f(𝑌𝑌)hij,k − (𝑌𝑌)nnnnnhij,km
IV

k^<

 

 

𝐶𝐶𝐶𝐶 =
∑ (𝑌𝑌hij − 𝑌𝑌nhij)(𝑌𝑌lh. − 𝑌𝑌nlh.)V
/^<

o∑ (𝑌𝑌hij − 𝑌𝑌nhij)IV
/^< ∑ (𝑌𝑌lh. − 𝑌𝑌nlh.)IV

/^<

 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = t∑ (𝑌𝑌hij/ − 𝑌𝑌lh./)IV
/^<

𝑁𝑁  

 
MSE = <

V
∑ (𝑌𝑌hij/ − 𝑌𝑌lh./)IV
/^<  

 
1
2
‖𝑤𝑤‖I 

	 (10)

Figure 3. The Architecture of SVM Algorithms. 
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where N, Yobsi, Ȳ, and Ycomi a are data number, observed data, average value of the observed data, and computed values, 
respectively.
2. 11. Data set description and validation of the models
In a data-driven method, the primary objective is to fit the models to a given data set based on the employed indicators 
in order to produce a reliable prediction of the unknown data set. Considering issues such as overfitting, satisfactory 
training performance is not always in agreement with the testing performance. In the validation process, different types 
of validation approaches can be applied including cross-validation, which is called k-fold cross-validation; others are [24] 
holdout, leave one out, and so on. The major advantage of the k-fold cross-validation mechanism is that in every single 
round, the validation set and the training sets are independent [25]. As stated above, the data is further divided into 
categories; 75% for the calibration (training) and 25% for the testing (verification) stage. Considering the k-fold cross-
validation, it is important to note that other validation methods can be applied to the data set [26]. Furthermore, the data 
in the current study was collected over a period of two months, and the data set was composed of 64 instances for each 
variable.

												          
3. Results and discussion
3.1. Experimental results
The chromatogram obtained from the HPLC analysis above showed a well-resolved peak with little or no interference for 
the standard as well as the real sample. The chromatogram of the standard and the sample extract are shown in Figures 
4 and 5, respectively. Isoquercitrin was found to have an average retention time of 15. The absorbance of the leaf extract 
analyte is shown in the Figures 4 and 5 for the standard and sample extracts, respectively.

It is important to note that all samples analyzed possessed greater amounts of isoquercitrin than other bioactive 
ingredients of the coriander plant. According to Yunjeong et al., coriander is not the only source of isoquercitrin. There are 
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Figure 4. Chromatogram of Isoquercitrin standard.
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other natural sources, particularly in plants, that contain large amounts of isoquercitrin. In the abovementioned studies, 11 
different plant families together with other natural sources were examined, and interestingly, most of them contained the 
analyte in high quantities. The major sources were onions, tea, and tartary buckwheat bran [27]. The isoquercitrin content 
revealed by their research is similar to the findings of this study.
3.2. Artificial intelligence results
Data-driven approaches (ANN, ANFIS, SVM, and MLR) were analyzed in order to predict the qualitative and quantitative 
properties of isoquercitrin using the HPLC technique. Before model calibration, data were analyzed statistically, as shown 
in Table 1. Statistical analysis is generally used to understand the science of the data in order to navigate common problems 
that can lead to incorrect results and to facilitate decision-making based on raw data. 

The Spearman–Pearson correlation shows the relationship between variables and their fitness using a linear function. 
The correlation strength is independent of the sign or direction. A positive coefficient shows that, as the first variable 
increases, the second variable also increases; a negative correlation shows an inverse relationship between the parameters, 
in other words, when the first parameter increases, the second parameter decreases, and vice versa [28]. As seen in Table 2, 
there is a strong correlation between the concentration of the standard and the peak area (PA) (R=0.998501), while a lesser 
correlation was observed between concentration and tR. Table 2 also shows a positive correlation between tR and MP-B, 
pH, and PA, while there is a negative correlation between tR and concentration and MP-A.

For development of the data-driven models, MATLAB 9.3 (R2017a) was used in the ANN, SVM, and ANFIS models, 
while the deterministic linear MLR model was developed using the simulation tool in EViews 9.5 software. According 
Usman et al. [25], the proper number of nodes in the hidden layer for identification of the optimum number of hidden 
layers ranges from (2n1/2 + m) to (2n+1), where n is the number of input neurons, and m is the number of output neurons. 
Hence, 3–21 was the range of hidden neurons in the ANN model for predicting the qualitative and quantitative properties 
of the phytochemical compound by HPLC method. According to Abba et al., obtaining suitable hidden nodes is the crucial 
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Figure 5. Chromatogram of Coriandrumsativum extract.

Table 1. Statistical analysis.

Mean 251.8593 74.0625 25.9375 3.515625 16328.94 15.35734

Standard Deviation 342.4210 13.4066 13.4066 0.560593 21821.09 1.104323
Minimum 0.0000 55.0000 10.0000 2.8000 0.0000 11.9100
Maximum 1000.0000 90.0000 45.0000 4.3500 67281 17.3300
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aspect in any ANN modeling, as it helps to prevent overfitting caused by different factors. As reported in several works 
in the field of science and engineering, there is no specific standard method for determining the appropriate number of 
hidden neurons [29]. Furthermore, appropriate and optimal determination of parameters (Cε, γ) in the SVM models is 
very important in choosing the best structure for the models. In this research, optimal values were obtained by employing 
the kernel function of the grid procedure, as suggested by Pham et al. [30]. For ANFIS modeling, various types of MFs 
and epoch iterations were explored using trial and error to identify the best structure. Table 3 shows the results of the 
performance analysis for the four data-driven models.

Table 2. Spearman Pearson correlation analysis.

Parameters Concentration MP- A MP-B pH PA tR

Concentration 1
MP-A –0.39241 1
MP-B 0.392407 –1 1
pH –0.09277 0.046006 –0.04601 1
PA 0.998501 –0.38588 0.385881 –0.09454 1
tR –0.10739 –0.09525 0.095247 –0.08569 –0.08216 1

Table 3. Results of the ANN, ANFIS, SVM and MLR models.

Calibration Verification

Variables Models DC RMSE MSE CC DC RMSE MSE CC

PA ANN-M1 0.9966 0.0183 0.0003 0.9983 0.9984 0.0054 0.0003 0.9992
ANN-M2 0.9413 0.0761 0.0058 0.9702 0.9758 0.0211 0.0044 0.9878
ANN-M3 0.9978 0.0219 0.0005 0.9989 0.9991 0.0041 0.0002 0.9996

tR ANN-M1 0.8570 0.2295 0.0527 0.9257 0.8939 0.0754 0.0568 0.9454
ANN-M2 0.8639 0.2346 0.0550 0.9295 0.8476 0.0903 0.0816 0.9207
ANN-M3 0.9988 0.0045 0.0022 0.9994 0.9987 0.0063 0.0036 0.9993

PA ANFIS-M1 0.9993 0.0126 0.0002 0.9996 0.9994 0.0033 0.0001 0.9997
ANFIS-M2 0.9995 0.0103 0.0001 0.9997 0.9990 0.0006 0.0000 0.9995
ANFIS-M3 0.9990 0.0002 0.0001 0.9995 0.9998 0.0002 0.0001 0.9999

tR ANFIS-M1 0.9821 0.1626 0.0264 0.9910 0.9227 0.0643 0.0414 0.9606
ANFIS-M2 0.9669 0.1055 0.0111 0.9833 0.9516 0.0509 0.0259 0.9755
ANFIS-M3 0.9990 0.0005 0.0039 0.9995 0.9980 0.0004 0.0084 0.9990

PA SVM-M1 0.9976 0.0228 0.0005 0.9988 0.9972 0.0072 0.0005 0.9986
SVM-M2 0.9986 0.0171 0.0003 0.9993 0.9982 0.0057 0.0003 0.9991
SVM-M3 0.9986 0.0171 0.0003 0.9993 0.9983 0.0057 0.0003 0.9991

tR SVM-M1 0.9110 0.1930 0.0373 0.9545 0.9155 0.0673 0.0452 0.9568
SVM-M2 0.9508 0.1908 0.0364 0.9751 0.9173 0.0665 0.0443 0.9578
SVM-M3 0.9671 0.1927 0.0371 0.9834 0.9225 0.0644 0.0415 0.9605

PA MLR-M1 0.9987 0.0168 0.0003 0.9993 0.9981 0.0059 0.0004 0.9990
MLR-M2 0.9986 0.0171 0.0003 0.9993 0.9982 0.0057 0.0003 0.9991
MLR-M3 0.9986 0.0171 0.0003 0.9993 0.9983 0.0056 0.0003 0.9991

tR MLR-M1 0.9211 0.1933 0.0373 0.9598 0.9160 0.0670 0.0450 0.9571
MLR-M2 0.9308 0.1908 0.0364 0.9648 0.9173 0.0665 0.0443 0.9578
MLR-M3 0.9411 0.1931 0.0373 0.9701 0.9232 0.0641 0.0411 0.9608
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It is clear that the nonlinear models (ANN, SVM, and ANFIS) outperformed the traditional linear regression model 
(MLR) in the predictive comparison among the four models. Table 3 further demonstrates that all four models are capable 
of predicting the qualitative (tR) and quantitative (PA) properties of the bioactive compound. It is important to note that the 
performance efficiency of all four models, in terms of DC, CC, MSE, and RMSE, shows a satisfactory and reliable accuracy. 
This may be due to the cross-validation process conducted before model calibration, which is a very significant component 
of model evaluation [31]. Table 3 also shows that M3, with four input parameters, provided the highest prediction accuracy 
among the four data-driven methods in terms of DC, CC, MSE, and RMSE, for the prediction of PA and tR. Among these 
models,ANFIS-M3 with DC (0.9998), RMSE (0.0002), MSE (0.0001), and CC (0.9999) values in the verification phase had 
the highest levels of accuracy when compared to ANN-M3, SVM-M3, and MLR-M3 for the prediction of PA.However, for 
the prediction of tR in the verification phase,ANN-M3 outperformed the other three models(ANFIS-M3, SVM-M3, and 
MLR-M3) in DC (0.9987), RMSE (0.0063), MSE (0.0036), and CC (0.9993) values, and this result is in line with previous 
findings [31–33]. The predictive precision relating to DC showed that ANN outperformed the other three models (ANFIS, 
SVM, and MLR) and increased the prediction accuracy up to 0.07%, 8%, and 7%, respectively. The predicted results 
were displayed graphically using a scatter plot in order to demonstrate the goodness-of-fit between the experimental and 
predicted values for the two best models (ANN and ANFIS) (Figure 6). It is apparent from the scatter plots that both ANN 
and ANFIS models demonstrated good fitting agreement between the experimental and predicted values. The higher 
prediction skill of PA can be attributed to the high correlation values between variables (Table 2). 

Figure 7 shows the response time series plot for PA and tR. According to the plot, the extent of spread values between 
the experimental and predicted values proved the Table 3 data above.
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Figure 6. Scatter plots for ANN, and ANFIS, (a) Peak area (PA) and (b) Retention time (tR).
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4. Conclusion
This work examined the qualitative and quantitative properties of isoquercitrin from coriander plant using the HPLC 
method to simulate tR and PA, respectively. The analyte was determined from a leaf extract, and a considerable amount 
was found. The work further explored the application of data-driven methods including a classical linear model (MLR) 
and three AI-based models (ANFIS, ANN, and SVM),in order to simulate tR and PA of isoquercitrin from the coriander 
plant using HPLC technique. The concentration of the standard, composition of the mobile phases, and pH were used as 
input variables. The results obtained indicated that all four data-driven approaches are capable of simulating the tR and 
PA of the analyte. Furthermore, comparison of the models demonstrated that M3 offered the highest level of predictive 
accuracy, as shown in Table 3. Further comparative analysis of the results showed that ANFIS-M3 outperformed the other 
models for the prediction of PA. However, ANN outperformed the other three models (ANFIS, SVM, and MLR) and 
increased accuracy up to 0.07 %, 8 %, and 7 %, respectively, for the prediction of qualitative properties of the analyte (tR). 
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