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Abstract: Human action recognition is a fundamental problem which is applied in various domains, and it is widely
studied in the literature. Majority of the studies model action recognition as a closed-set problem. However, in real-
life applications it usually arises as an open-set problem where a set of actions are not available during training but
are introduced to the system during testing. In this study, we propose an open-set action recognition system, human
action recognition and novel action detection system (HARNAD), which consists of two stages and uses only 3D skeleton
information. In the first stage, HARNAD recognizes a given action and in the second stage it decides whether the
action really belongs to one of the a priori known classes or if it is a novel action. We evaluate the performance of the
system experimentally both in terms of recognition and novelty detection. We also compare the system performance with
state-of-the-art open-set recognition methods. Our experiments show that HARNAD is compatible with state-of-the-art
methods in novelty detection, while it is superior to those methods in recognition.
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1. Introduction
Human action recognition is the determination of the type of action from a given sequence of images. It is a
fundamental problem in various domains such as robotics, human–computer interaction, surveillance systems,
and video indexing. It has been widely studied in the last two decades and a great number of studies for human
action recognition has been proposed. [1–7]

In the early days of the millennium, the area attracted the attention for security reasons and surveillance
systems are thoroughly studied in those days [8, 9]. Later, with the emergence of the deep learning methods
robotics systems have advanced considerably and they have come closer to becoming a part of daily life [10].
Thus, researchers pay more attention to the human–robot interaction systems, and human action recognition
is a fundamental problem in these interaction systems.

Early studies of human action recognition mostly rely on RGB data. As the data acquisition systems
improved, 3D data have become available and recently most promising algorithms for action recognition either
directly use 3D data or use it as complementary with the 2D data. 3D data can be in the form of RGB+depth
information or it can be in the form of skeleton data which is represented by the 3D positions of body joints
[11, 12]. In this study, we are merely interested in action recognition using skeleton data. The first advantage
of using skeleton data is that it transforms the action recognition into a view invariant problem. The second
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advantage is that it reduces the time complexity of action recognition especially when compared to pixel level
processing of data via deep networks. In the last decade with the emergence of deep learning techniques, the
robotic systems advanced considerably, which resulted in a need for better interpretation of human activities.
This contributed to the increasing interest of both robotic and human–computer interaction researchers in the
action recognition systems.

Classical approaches take the problem as a closed-set problem assuming that all type of activities are
available during training. However, this is not the case for the real world problems. Most of the time, a set
of activities which are not available during training arises during testing. In this case the systems need to
distinguish the new action from a priori known activities and detect it as a novel action. Yang et al. [13]
propose an open-set solution for human action recognition using radar signals. The main idea in that study is
to create a negative dataset by generating samples using generative adversarial networks (GANs).

The task of classifying a given sample as unseen, in other words, detecting that the sample is in some
respect different from the data processed during training is referred as outlier detection or novelty detection.
Although researchers propose novelty detection studies for various domains, novelty detection is not studied
thoroughly for the human action recognition problem. Majority of the novelty detection problems handle the
problem as a one-class classification problem where the training data is used to construct a system which models
this data, and it is employed to classify test samples as normal and abnormal based on their conformance with
the constructed model.

Generative models are very suitable for the novelty detection problem and they are already used for
novelty detection in the one-class classification formulation of the problem. In this study we propose a two-
staged framework for simultaneous recognition and novelty detection. In the first stage it performs multiclass
classification by means of a generative adversarial network and in the second stage it performs novelty detection
by means of a set of deep expert detectors.

We can summarize the main contributions of this study as follows. Firstly, the proposed system solely
uses 3D skeleton information, which is fast, and effective for robotic research. Secondly, the proposed system
introduces a novelty detection system for action recognition domain, which is not thoroughly studied in the
literature. Thirdly, the proposed system proposes a simultaneous solution for action recognition and novelty
detection using GANs. As far as our research reveals, this is the first attempt to formulate the two problems
together in the action recognition domain.

We start with providing brief information about related studies from the literature in Section 2 and then
we give the details of the proposed system in Section 3. We provide our experimental studies in Section 4 and
we complete the study with concluding remarks in Section 5.

2. Related work
2.1. Human action recognition

Aggarwal and Xia [5] reviewed action recognition using 3D data. They summarize various methods for gathering
3D information for action recognition and they discuss the advantages and disadvantages of those techniques.
In this study, 3D information is in the form of skeleton data. The advantage of using skeleton data is that it is
view-invariant and also its execution time is less compared to the RGB+D data.

There are a great number of studies in the human action recognition literature, which use deep learning
architectures. Ji et al. [14] proposed modeling spatio-temporal information using 3D convolutional neural
networks instead of using complex handcrafted features for the classification task. Wang et al. [15] use
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convolutional neural networks and long short term memory units with an attention model to learn spatio-
temporal features.

In [16], the authors propose utilizing pose data and appearance data separately and combine their action
recognition results via a fully-connected layer. Instead of a 3D convolutional model, they incorporate time data
into 2D convolutional model via an image like representation.

2.2. Open-set recognition

Support vector machines (SVM) are widely used for one-class classification or novelty detection problem. In
[17, 18], the authors focus on SVM models and propose an adaptation of these models to the open-set recognition
problem such that the generalization and specialization of these models are improved.

One straightforward way of novelty detection via deep networks is the thresholding of the softmax layer.
Researchers also propose to extend the capability of deep networks for the open-set recognition problem [19, 20].
For this purpose, the authors in [19] propose using the fully connected layer before the softmax layer to decide
if a sample is from a known or an unknown category and they modify the softmax layer to include novel classes.
The authors in [20] propose detecting novel samples by thresholding and then reconstructing the classification
layer by adding new predictors for new categories.

The authors in [21] employs a voting-based mechanism to detect novel samples in the action recognition
problem using visual features and utilizes zero-shot learning for the classification of the unknown sample.

2.3. Generative adversarial networks (GANs)

GANs are proposed by Goodfellow et al. [22] for supervised learning and then it has been reformulated and
adapted to various problems. Radford et al. [23] propose deep convolutional generative adversarial networks
for learning representations from unsupervised data. Salimans et al. [24] develop techniques for improving
the performance of GANs and they employ those techniques to the semisupervised classification problem. The
loss function of GAN is not a good representative on the quality of the generated data. Arjovsky et al. [25]
propose to overcome this problem by using Wasserstein GAN loss function. Gulrajani et al. [26] introduce a new
gradient term to the Wasserstein GAN loss. Saliman et al. [24] propose using feature matching loss function
for the training of the generator. This loss function ensures that the features of the generated data matches the
statistics of the real data. For the open-set recognition problem, Yang et al. [13] propose employing GANs to
create a negative class dataset by means of synthetic data generation. For novelty detection, Sabokrou et al.
[27] propose an adversarial framework for one-class classification.

3. Human action recognition and novel action detection

In this study we propose a human action recognition and novel action detection system (HARNAD) which
resolves the human action recognition and novel action detection tasks simultaneously using an adversarial
approach. The system architecture of HARNAD is provided in Figure 1. The system first processes given data
to obtain 3D pose data and then processes this data in two stages. In the first stage, recognition is achieved by
means of a deep network which is employed as a generalist to classify each sample into one of the a priori known
classes. In the second stage, novelty detection takes place by means of a set of GANs which are employed as
specialists to determine if the classification in the previous step is correct or if the sample is from an unknown
class.
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Figure 1. Body joints recorded in each frame [28].

3.1. Human action representation
Action is represented as a set of frames. Each frame is represented by the joint coordinates as provided in
Figure 2. Each frame contains the 3D coordinate information from N body joints. Our representation scheme
which is similar to that in [16] is presented as ”Representation” in the shaded rectangle of Figure 1. In this
figure, pose information is represented in an image-like form, where the x,y,z coordinates are represented as the
dimension, and the vertical axis encodes different frames and the horizontal axis encodes body joints.
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Figure 2. System architecture of HARNAD.

3.2. Human action recognition at stage 1

At stage 1 of HARNAD, human action recognition is handled as a closed-set problem, where a given action
is classified into one of a priori known classes by means of a convolutional neural network architecture. The
architecture of the CNN is given in Figure 3. The CNN consists of two convolution layers followed by a
maxpooling layer and another convolution layer which is also followed by a maxpooling layer. The CNN is
completed by three dense layers.
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Figure 3. Architecture of CNN at stage 1 of HARNAD.
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3.3. Novel action detection at stage 2

3.3.1. Generative adversarial networks (GANs)

GANs consist of two networks. The first network is the generator, G . It has latent variables θ which given noise
data Z generates samples gθ(Z) . The goal of the generator is to find the parameters θ that provides output
gθ(Z) with a distribution Pθ which is close to X . The second network is the discriminator, D , with parameters
w , which given a sample tries to determine if the sample is from real data or from fake data generated by the
generator. Ideal discriminator assigns 1 to the sample from real distribution and 0 to the generated samples.
The idea behind the GAN training is to get G model data, X , such that it achieves a good generalization
performance for the real data, even so good that it can fool D . Meanwhile, during training, D learns how to
distinguish between real and fake data. This is formulated as a minmax problem as in Equation 1.

min
θ

max
w

E[log(Dw(X)) + log(1−Dw(gθ(Z)))] (1)

3.3.2. Novelty detection by GAN
In stage 1, we assigned each sample to an action category. However, there are novel actions that should not be
assigned to any of the a priori known categories. In order to detect novel actions, we employ expert detectors,
each of which has an expertise in an action category. Thus, for c classes, we train c number of expert detectors.
For this purpose, we employ the GAN architecture [27], which consists of a reconstruction network (R) and
a discrimination network (D ), whose architectures, as employed in this study, are given in Figures 4 and
5, respectively. These architectures are employed by eliminating the last feature, so that 24 body joints are
employed at this stage. The GANs trained at this stage are referred as the novelty GANs (Nov-GAN) and
they gain expertise in detecting only one class of action. Therefore, we train c number of Nov-GANs, one for
each action category. An action labeled as ai in stage 1 is fed to Nov − GANi in stage 2. Nov-GAN first
reconstructs the input data by the R network and provides an output for the reconstruction loss, lrec. . After
that the reconstructed data is fed to the D network to get the output of the discriminator di . A novel action
has a larger reconstruction loss and smaller discriminator output value. Using the two values, we define the
novelty detection rule for an input action at a Nov-GAN as in equation 2.

oi =

{
ci lrec < τ1 ∧ di > τ2

novel_class otherwise
(2)

τ1 is set as lmean+(lmax− lmean)/2 and τ2 is set as dmin+(dmean−dmin)/2 . In these equations, lmean

refers to the mean reconstruction loss, while lmax is the maximum reconstruction loss over all train inputs.
Similarly, dmean is the mean discriminator output and dmin is the minimum discriminator output over all train
inputs.

4. Experiments
4.1. Dataset
There is a limited number of datasets with 3D data (skeleton) such as Cornell Activity Datasets CAD-1201,
MSR Daily Activity 3D2, UTKinectAction [29], G3D [30], Human36m [31], and NTU. Most of these datasets

1CAD-120. Cornell Activity Dataset [online]. Website http://pr.cs.cornell.edu/web3/CAD-120/ [accessed 29 February 2020]
2MSR Daily Activity Dataset [online]. Website https://www.microsoft.com/en-us/download/details.aspx?id=52315 [accessed 29

February 2020]
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Figure 4. Reconstruction network at stage 2.
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Figure 5. Discrimination network at stage 2.
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(Cornell, MSR, UTK, G3D) have a limited number of samples, which makes them unpractical for deep learning
techniques. We select a subset of activities from the NTU Daily Actions Dataset [28]. A subset of actions which
Wang and Wang [32] report to be effectively classified (accuracy ≥ 0.7) while only pose data is selected. The
selected actions are pick up, sit down, stand up, wear jacket, take off jacket, wear a shoe, wear glasses, take off
glasses, put on hat/cap, take off hat/cap, cheer up, hop, and jump up. Half of the actions, that is 7 actions are
selected as seen actions and the rest of the 7 actions are left as unseen actions.

4.2. Experimental setup

In this study, we employ only the skeleton data consisting solely of 3D joints information for representation of
human actions. For a given action, the representation is obtained by extracting 3D coordinates of each 25 joints
for a group of 25 frames, as shown in the representation part of Figure 1, resulting in a representation of the
form 25× 25× 3 . In this way, the number of training samples for each action varies in the range (1100–1900).
Using those features, we construct two experimental setups.

The aim of the first setup is to evaluate the sensitivity of HARNAD to the openness of the problem. For
this purpose, we keep the number of training classes fixed, but we increase the number of testing classes by
introducing unknown classes. The number of unknown classes is set as {1,3,5,7}. The number of target classes
is set as one more than the number of training classes, that class corresponding to the novel class. In this setup,
it is assumed that %50 of test data is novel. Hence, the total number of test samples is set as 1400 (100 samples
from each known class and 700 samples equally distributed from unknown class(es)).

The aim of the second setup is to evaluate the recognition and novelty detection of HARNAD compared
to the state-of-the-art systems. For this purpose, we run HARNAD for ten folds, each time with a different
combination of known and novel action grouping. That is, at each run a random set of seven actions are selected
as known and the rest of the seven actions are left as novel classes. The number of test samples from each
known class is set as 100 and the number of unknown samples is also set as 100. Mean sensitivity and mean
specificity values are recorded.

4.3. Evaluation
The openness of an open-set recognition problem is evaluated by equation 3 [17]. For a fixed number of training
classes, increasing the number of testing classes and the number of target classes increases the openness.

Openness = 1−

√
2× |TrainingClasses|

|TestingClasses|+ |TargetClasses|
(3)

In evaluation of an open-set problem, the problem can be either considered as a binary classification
problem where the attention is on novelty detection or it can be considered as a multiclass classification problem.
For a binary classification problem, sensitivity and specificity criteria are mostly used while for the multiclass
problem, precision and recall criteria are used for evaluation. Sensitivity and recall are the same and they
measure the proportion of actual positives by equation 4, while specificity measures the proportion of actual
negatives by equation 5. Sensitivity and specificity are evaluated for each class individually and the average
value of all classes is reported as the system performance. Precision measures the proportion of true positives
over all positive labeled samples by equation 6. Using the two criteria precision and recall, f-score is evaluated
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by equation 7 which enables one to use a single metric for evaluating the classification performance.

Sensitivity =
TruePositive

TruePositive+ FalseNegative
(4)

Specificity =
TrueNegative

TrueNegative+ FalsePositive
(5)

Precision =
TruePositive

TruePositive+ FalsePositive
(6)

Fscore =
2× Precision×Recall

Precision+Recall
(7)

4.4. Results
Action recognition accuracy of HARNAD is compared with the state-of-the-art open-set recognition methods.
For this purpose, the most widely used open-set recognition methods, isolation forest [33], one-class SVM
(OCSVM) [34], and CNN with thresholding of SoftMax, are employed. Initially the CNN in the first stage as
given in Figure 3 is employed and image features are extracted from the ′dense′1 layer. Initially, those features
are provided to the isolation forest. Then, those features are provided to the one-class SVM classifier. And
as a third baseline, output of ′dense′4 is fed to a SoftMax layer and the most probable classifications with
probability < 0.80 are labeled as unknown class. In this setup, the sensitivity of HARNAD to the openness
parameter is evaluated in terms of the recognition accuracy and it is compared with the state-of-the-art methods.
The obtained results are provided graphically in Figure 6. In this figure, the sensitivity of methods as openness
increases are provided. Known samples are kept the same at all levels of openness and openness is increased by
adding more unknown classes (1, 3, 5, 7, respectively) during testing. It is observed that the performance of
HARNAD outperforms the other methods as the openness increases. This difference in performances is mainly
caused by novel samples; hence, it can be concluded that HARNAD detects novel samples better than other
methods.
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Figure 6. Openness vs. sensitivity.
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In the second experimental setup, open-set action recognition performance of HARNAD is compared
with The state-of-the-art open-set recognition methods, isolation forests [33], one-class SVM [34], and CNN
classification by thresholding the output of SoftMax layer, which are commonly used in the anomaly detection
problems. In this setup, the percentage of the number of novel samples to the number of known samples, p , is
set as {0.1, 0.5, 1} . The results are given in Table. In this table, all the performance criteria are given for the
three values of p . As p increases, the amount of novel samples increases; for p = 1 the number of novel samples
and the number of known samples are the same. It is observed that as the number of novel samples increases,
all the criteria indicate a decrease in the performance for all systems. HARNAD is more robust to this change
and it is able to get the best performance over all methods for p = 1 .

Table . Comparison of HARNAD with the state-of-the-art methods.
p Iso-For. [33] OCSVM [34] CNN HARNAD

Se
ns

.

(R
ec

.) 0.1 0.68 0.69 0.71 0.74
0.5 0.70 0.66 0.68 0.73
1 0.70 0.67 0.69 0.73

Sp
ec

. 0.1 0.96 0.96 0.96 0.96
0.5 0.93 0.93 0.93 0.94
1 0.92 0.93 0.93 0.94

Pr
ec

. 0.74 0.75 0.69 0.69 0.73
0.5 0.43 0.52 0.48 0.48
1 0.38 0.36 0.40 0.44

F-
sc

or
e 0.1 0.71 0.72 0.70 0.75

0.5 0.53 0.58 0.56 0.58
1 0.49 0.47 0.51 0.55

5. Conclusion
We propose a two-stage architecture for open-set action recognition problem which uses 3D coordinates of joints
for action representation. The first stage of the architecture consists of a CNN and the second stage consists
of a set of expert GANs each of which has expertise in a certain class. The system first classifies a given
sample as one of known classes in the first stage. Then, in the second stage the corresponding expert GAN
determines whether the sample really belongs to the assigned class or it is a novel sample. We compare the
recognition and novelty detection performance of HARNAD with state-of-the-art methods via two experimental
setups. Empirical study reveals that HARNAD is better than the other methods both in novelty detection and
recognition and its advantage over the other methods is more clearly observed as the number of novel samples
increases.

As a future work, we are planning to integrate a zero-shot learning method to the proposed system so
that the system can assign class labels to the detected novel samples as well.
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