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Abstract: A series of cholesterol and based hydrophobic urea and thiourea compounds were synthesized and successfully used as a
cocatalyst for L-proline catalyzed aldol reactions in the presence of water. The anticonfigured products were obtained with good yields
(up to 94%), high diastereoselectivities (up to 95:5), and high enantiomeric excesses (up to 93% ee). The successful results for catalytic
efficiency of L-proline in the presence of water reveal the importance of the hydrophobic nature of cholesterol and diosgenin parts of
thiourea on the reactivity and selectivity in the presence of water.
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1. Introduction
Direct asymmetric aldol reaction is one of the most effective strategies inspired by nature for stereoselective carbon-
carbon bond-forming reactions in synthetic organic chemistry [1-3]. Following the pioneering studies on L-proline
catalyzed direct asymmetric aldol reactions by List et al. in the early 2000s [4], much effort has been made to develop
the effective metal-free small organic molecules as organocatalytic systems for direct aldol reactions, which generally
involves structural modifications of catalysts and optimization of the reaction conditions. However, classical organocatalyst
synthesis requires a painstaking strategy and can involve challenging synthesis steps. Since only one catalyst is used in
these organocatalyst samples, reactivities and selectivity are also expected to be limited [5,6]. Most recently, there has been
considerable interest in employing self-assembled organocatalysts in catalytic asymmetric reactions [5,6]. The use of such
self-assembled organocatalytic systems has advantages over the conventional organocatalysts; such as (i) the structure of
self-assembled organocatalysts is easy for modification and optimization, (ii) it is very easy to create a large catalyst library
by changing selected suitable additives. We have successfully investigated and determined that the self-assembled proline-
thioureasupramolecular complex was an efficient organocatalyst for a direct enantioselective aldol reaction in nonpolar
solvents such as hexane [7]. Also, researchers have shown that the use of suitable additives, such as water [8-10], chiral
alcohols [11,12], thioureas [13-17], thiouronium salts [18], imidazolium salts [19], and guanidinium salts [20] has been
documented as a powerful method to accelerate the rate of reaction and improve the stereoselectivity of aldol reactions.
Due to environmental concerns, reactions using water as a solvent have recently received significant attention from a
wide range of synthetic chemists [21,22]. L-proline is known as an efficient catalyst for direct aldol reactions in generally
polar organic solvents [23,24]. Nevertheless, the high polarity of these organic solvents has continued to be a major problem
from a viewpoint of green chemistry. While L-proline was known to be an inefficient catalyst in water, Barbas and Hayashi’s
groups revealed that hydrophobic proline derivatives could effectively catalyze asymmetric aldol reactions in the presence of
water [25-28]. This concept opens a new avenue for the development of new hydrophobic water-compatible organocatalysts
[29-31]. Inspired by the introduction of a suitable hydrophobic moiety into organocatalytic systems, we recently showed
that the use of calixarene-linked thiourea as a hydrophobic cocatalyst that has good H-bonding ability in supramolecular
interactions increased the yield and selectivity of the catalytic asymmetric aldol reactions in the presence of water [15].
Cholesterol and diosgenin are known to be essential components of mammalian cellular membranes; they provide
the membranes with improved lipophilic characteristics over linear alkyl chains [32]. When one considers the natural
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amphiphilic structures of cholesterol and diosgenin molecules, it is surprising that their use as a hydrophobic part of
water-compatible organocatalysts has only received limited attention [33].

We are still keenly interested in improving the efficiency of L-proline catalyzed aldol reactions in water. Previously,
we have successfully established that calixarene-linked thiourea was an effective cocatalyst for the highly stereoselective
intermolecular aldol reaction in the presence of water [15]. The results clearly confirmed that the hydrophobic calix[4]arene
part of thiourea has a positive effect on both reactivity and stereoselectivity. Since the development of suitable cocatalysts
that form assemblies with proline, direct aldol reactions in the presence of water are still desirable; herein we turned our
attention to the synthesis of new thiourea and urea derivatives bearing cholesterol and diosgenin moieties as hydrophobic
motifs. The aim of this study was to develop a small cocatalyst library of cholesterol and diosgenin based (thio)ureas which
can self-assemble with L-proline to catalyze the asymmetric aldol reaction of cyclohexanone and aromatic aldehydes in
the presence of water.

2. Results and discussion

The synthetic route to a series of thiourea catalysts is illustrated in Scheme 1. Carbamate derivatives 4a and 4b were
synthesized according to a published procedure [33,34]. First, the reaction of cholesterol (1) and diosgenin (2) with
triphosgene gave chloroformate derivatives 3a and 3b, respectively. Then, the compounds 3a and 3b were reacted with
ethylenediamine, and the corresponding carbamate derivatives 4a and 4b were obtained. Finally, these carbamate
derivatives were converted into their thiourea derivatives 6 and 8 by treatment with phenyl isothiocyanate. A similar
synthetic route was used to prepare the urea derivatives 5 and 7. The structures of compounds 3-8 were fully identified by
using 'H and *C NMR and mass spectroscopy.

With the desired cholesterol and diosgenin (thio)urea derivatives in hand, we next studied the possibility of using
these thiourea derivatives 5-8 as new cocatalysts in the L-proline catalyzed aldol reaction in the presence of water. As a test
reaction, the aldol reaction of cyclohexanone and p-nitrobenzaldehyde was conducted in the presence of water. As shown
in Table 1, all the examined cocatalysts 5-8 showed similar levels of catalytic efficiencies, with high conversions, diastereo-
and enantioselectivities. The best result in terms of selectivity was obtained by using L-proline (10 mol %) / cholesterol-
based thiourea 6 (10 mol %), and the reaction furnished the expected product in nearly full conversion with 93% ee (entry
2, Table 1). Next, we screened the amount of water and found that our system showed high catalytic efficiency in 0.250
mL of water. We observed that an increase in the amount of water (0.5 mL) decreases the enantioselectivity of the aldol
product (entry 5, Table 1). Reducing the amount of water to 0.125 mL also reduced enantioselectivity (entry 6, Table 1).
Next, we examined the effect of additives on the enantioselectivity of the reaction. However, no enhancement in selectivity
was observed with different acidic additives (entries 7-9; Table 1). L-proline was found to not help the reaction (entry 12;
Table 1). It was also found that cholesterol-thiourea (6) was not effective when L-proline was not used (entry 11, Table 1).
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Schemel. Synthesis of urea derivatives 5-8.
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With these optimal reaction conditions in hand, we next studied the substrate scope of the aldol reaction of different
aldehydes with cyclohexanone, and the results are presented in Table 2. The results indicated that L-proline-cholesterol
based thiourea 6 host-guest complex can catalyze the aldol reaction very well in the presence of water. As seen, various
substituted aromatic aldehydes with electron-withdrawing groups can be tolerated. The reaction can provide aldol products
11ato 11lin good yields with moderate to good enantioselectivity and diastereoselectivity.

Among the substituted benzaldehydes, the best enantioselectivities were obtained with the p-nitrobenzaldehyde
and p-chlorobenzaldehyde, giving high enantioselectivities with 93% and 91% ee, respectively (entries 1 and 4, Table
2). Also, the reaction is tolerant of other p-substituted benzaldehydes, which affords the aldol product with moderate
to good enantioselectivities ranging from 83% to 90%. Besides, the reaction allowed electron-withdrawing substituents
at the o- and m- positions of the phenyl ring (entries 2, 3, 5, and 6, Table 2). Anisaldehyde, an electron-rich aromatic
aldehyde, reacted with cyclohexanone, and the corresponding antialdol product 11k was obtained in only low yields and
low enantioselectivity (36% ee) (entry 11, Table 2). We also found that cyclopentanone underwent a smooth reaction with
p-nitrobenzaldehyde to give mainly the syn-product in high yield with low enantioselectivities (entry 12, Table 2).

In conclusion, we have synthesized a series of novel cholesterol-(thio)urea and diosgenin-(thio)urea conjugates as a
cocatalyst that can self-assemble with L-proline to catalyze the direct aldol reactions of cyclohexanone with benzaldehyde
derivatives in the presence of water. Under the optimum reaction conditions, the reaction of electron-deficient aromatic
aldehydes with cyclohexanone gave anticonfigured aldol products in moderate to high ee values (up to 93% ee) in the
presence of water. The successful results for catalytic efficiency of L-proline indicate the importance of the hydrophobic

0 1. L-proline (10%), Urea (10%) O OH
Water (250 ulL), r.t, 30 min.
2. 4-Nitrobenzaldehyde (10) (0.125 mmol)
2 mmol rt, 16h
9 11a

Table 1. Effect of cholesterol and diosgenin based urea and thiourea compounds 5-8
on proline catalyzed direct aldol reaction.

Entry Co-catalyst | Additive Conv. (%)* | anti:syn® ee® (%)
1 5 - >99 81:19 93

2 6 - >99 95:5 93

3 7 - 79 89:11 90

4 8 - 94 91:9 93
5¢ 6 - 85 90:10 89
64 6 - 78 89:11 90

7 6 CICH,COOH |91 88:12 90

8 6 CH,COOH 93 89:11 71

9 6 PhCOOH 94 90:10 89
10¢ 6 - 72 89:11 71
11f 6 - <5 N.D.:s N.D.
12 - - <5 N.D. N.D.

a: Determined by '"H NMR analysis of crude reaction mixture.
b: Determined by chiral HPLC analysis.

c¢: 0.5 mL water was used.

d: 0.125 mL water was used.

e: 4.0 equiv. of ketone was used.

f: L-proline was not used.

g: N.D. = not determined.
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Q 1. L-proline (10%), Thiourea 6 (10%)
Water (250 ulL), r.t, 30 min.
2. ArCHO (0.125 mmol), 16h
2 mmol
9

Table 2. Scope of aromatic aldehydes.

Entry Aldehyde (R) Yield (%)* anti:syn ee (%)
1 4-N02Ph 94 95:5 93
2 3-N02Ph 93 84:16 90
3 2-N02Ph 65 90:10 90
4 4-CIPh 73 84:16 91
5 3-CIPh 87 90:10 88
6 2-CIPh 62 87:13 85
7 4-BrPh 75 90:10 90
8 4-FPh 90 85:15 87
9 4-CNPh 83 88:12 84
10 4—CF3Ph 86 85:15 83
11 4-MeOPh 44 85:15 36
12° 4—N02Ph 88 42:58 68

a. Yields of isolated aldol product.
b. Cyclopentanone was used.

nature of cholesterol and diosgenin parts of thiourea on both the reactivity and selectivity in the presence of water at room
temperature.

3. Materials

3.1. General

All reagents were used as received without purification. 'H NMR(400 MHz) and *C NMR(100 MHz) spectra were taken
on a Bruker Avance 400 spectrometer. TMS was used as internal standard. Precoated Merck 60 F254TLC plates were used
for thin layer chromatography (TLC). Flash column chromatography was performed using silica gel (60-mesh; Merck).
The 'H NMR, *C NMR, and HRMS spectra for compounds 5-8 and HPLC chromatograms of compounds 11a-111 can be
found under the ‘supplementary information’ given at the end of the article.

3.2. Synthesis and characterization

3.2.1. Synthesis of catalysts 5-8
Compound 4a (or compound 4b) (1.5 mmol) was dissolved in dry CH,Cl,(30 mL) in a round-bottom flask and cooled to
ice salt temperature. Then, 3,5-bis(trifluoromethyl)phenyl isocyanate (or 3,5-bis(trifluoromethyl)phenyl isothiocyanate)
(1.65 mmol) was added through a syringe and the mixture was stirred at ambient temperature for 24 h to provide a
precipitate. This precipitate was washed with n-hexane and then filtered and dried in a vacuum. The crude product was
crystallized with petroleum ether-methanol.

3.2.1.1. Compound 5; 74% yield; white solid, mp: 213-218 °C; '"H NMR (CDCl,) 6: 0.62 (s, 3H), 0.75-1.60 (m, 33H),
1.70-2.00 (m, 5H), 2.10-2.30 (m, 2H), 2.98-3.35 (m, 4H), 4.30 (m, 1H), 5.25 (broad, 1H), 6.40 (broad, 1H), 7.02 (s, 1H),
7.46 (s, 1H), 8.07 (s, 2H), 9.39 (broad, 1H); *C NMR (CDCl,) 8: 11.7, 18.6, 19.0, 20.9, 22.4, 22.6, 23.7, 24.2, 27.9, 28.0, 28.1,
31.8, 36.7, 35.7, 36.1, 36.4, 36.9, 38.4, 39.4, 39.7, 39.8, 40.7, 42.2, 50.0, 56.1, 56.6, 74.8, 114.8, 117.8, 121.9, 122.5, 124.7,
131.4, 131.8, 132.1, 132.4, 139.6, 141.4, 156.1, 157.6,LCMS (ESI*): C_H_F.N.O,, calculated value 727.4100 ([M+H]*);
experimental 728.4210 ([M+H]").
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3.2.1.2. Compound 6; 70% yield, white solid, mp: 68-70 °C; 'H NMR (CDCL,) 6: 0.69 (s, 3H), 0.80-2.10 (m, 38H),
2.20-2.40 (m, 2H) 3.15-3.55 (m, 2H), 3.60-4.00 (m, 2H), 4.20-4.60 (m, 1H), 5.11 (s, 1H), 5.25-5.40 (m, 1H), 7.43-8.17
(m, 5H); ®*C NMR (CDCIS) 611.8,18.7,19.2, 21.0, 22.6, 22.8, 23.9, 24.3, 28.0, 28.2, 31.8, 35.8, 36.2, 36.5, 36.8, 38.4, 39.5,
39.7,42.3,49.9, 56.2,56.6,75.7,118.9,120.4, 120.5, 121.1, 121.6, 122.8, 123.8, 124.0, 124.4, 125.8, 127.1, 133.2, 133.6, 134.0,
139.3, 158.1, 181.3; LCMS (ESI*): C,;H, F N,O.S, calculated value 744.3900 ([M+H]*); experimental 744.4027 ([M+H]").

3.2.1.3. Compound 7; 75% yield, white solid; mp: 165-169 °C; 'H NMR (CDCl,) 8: 0.76-0.83 (m, 6H), 0.85-2.10 (m,
30H), 2.23-2.50 (m, 2H), 3.30-3.55 (m, 4H), 4.38-4.58 (m, 2H), 5.15-5.35 (m, 2H), 5.92 (s, 1H), 7.54 (s, 1H), 7.90 (s, 2H),
8.17 (s, 1H); ®*C NMR (CDCla) 614.1,14.5,16.2,17.1,19.2,19.3, 20.8, 22.6, 28.0, 28.8, 30.3, 31.3, 31.4, 31.6, 31.8, 31.9, 36.6,
36.8, 39.7, 40.2, 41.6, 49.9, 56.4, 62.1, 66.9, 75.5, 80.8, 109.4, 118.3, 118.5, 121.8, 122.5, 124.5, 132.0, 132.3, 139.4, 140.8,
155.8, 158.0; LCMS (EST*): C,,H, F N, O, calculated value 756.3733 ([M+H]"); experimental 756.3761 ([M+H]").

3.2.1.4. Compound 8; 71% yield, white solid; mp: 75-78 °C; 'H NMR (CDCL,) &: 0.77-0.83 (m, 6H), 0.90-2.05 (m,
29H), 2.20-2.45 (m, 2H), 3.25-3.55 (m, 4H), 3.77 (broad, 1H), 4.20-4.55 (m, 2H), 5.05-5.40 (m, 2H), 7.40-8.10 (m, 5H);
BC NMR (CDCI3) 0:14.6,16.4,17.3,19.4, 20.9, 28.1, 28.9, 30.4, 31.5, 32.0, 36.8, 36.9, 38.5, 39.8, 40.4, 41.7, 50.0, 56.5, 62.1,
67.0, 80.9,109.2,118.5,119.0, 120.6, 121.1, 121.3, 121.6, 121.8, 122.6, 124.0, 124.2, 124.5, 125.9, 126.7, 133.0, 133.4, 133.7,
134.0, 134.2, 139.5, 141.0, 158.2, 181.4; LCMS (ESI*): C, H_ F N.O S calculated value 772.3504 ([M+H]*); experimental

390 1510 6 34
772.3377 ((M+H]").

3.2.2. General procedure for the synthesis of aldol products (11a-11i)
A mixture of L-proline (0.025 mmol), cholesterol based thiourea 6 (0.0125 mmol), cyclohexanone (0.75 mmol), and 0.25
mL water was stirred for 30 min at ambient temperature. Then, aldehyde (0.25 mmol) was added and the reaction mixture
was left stirring until no further conversion is seen by TLC. The reaction mixture was treated with saturated aqueous
NH,Cl solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO,,
and concentrated. The product was purified with column chromatography over silica gel using ethyl acetate-hexane as an
eluent.

3.2.2.1. (5)-2-[(R)-hydroxy(p-nitrophenyl]methyl)-cyclohexanone (11a) [35,36]. Yield: 94%, anti/syn: 95:5, ee: 93%.
HPLC: Chiralpak OD-H, iPrOH/hexane 20:80,0.5 mL/min, | = 254 nm, t (min): 29.7 (minor), 38.6 (major).

3.2.2.2. (5)-2-[(R)-hydroxy(m-nitrophenyl)methyl]-cyclohexanone(11b) [36]. Yield: 93%, anti/syn: 84:16, ee: 90%.
HPLC: Chiralpak OD-H, iPrOH/hexane 20:80,0.5 mL/min,l = 254 nm, t_(min): 22.7 (major), 27.6 (minor).

3.2.2.3. (5)-2-[(R)-hydroxy(o-nitrophenyl)methyl]-cyclohexanone (11c) [36]. Yield: 65%, anti/syn: 90:10, ee: 90%.
HPLC: Chiralpak OD-H, iPrOH/hexane 20:80,0.5 mL/min, I= 254 nm, t_(min): 24.9 (major), 26.8 (minor).

3.2.2.4. (5)-2-[(R)-hydroxy(p-chlorophenyl)methyl]-cyclohexanone (11d) [37]. Yield: 73%, anti/syn: 84:16, ee: 91%.
HPLC: Chiralpak OD-H, iPrOH/hexane 5:95,1.0 mL/min, I = 220 nm, t_(min): 22.0 (minor), 26.0(major).

3.2.2.5. (5)-2-[(R)-hydroxy(m-chlorophenyl)methyl]-cyclohexanone (11e) [38]. Yield: 87%, anti/syn: 90:10, ee: 88%.
HPLC: Chiralpak OD-H, iPrOH/hexane 4:96,1.0 mL/min, I = 220 nm, t_(min): 23.7 (major), 26.4 (minor).

3.2.2.6. (8)-2-[(R)-hydroxy(o-chlorophenyl)methyl]-cyclohexanone (11f) [38]. Yield: 62%, anti/syn: 87:13, ee: 85%.
HPLC: Chiralpak OD-H, iPrOH/hexane 5:95,1.0 mL/min, I = 220 nm, t_(min): 17.5(minor), 19.9 (major).

3.2.2.7. (8)-2-[(R)-hydroxy(p-bromophenyl)methyl]-cyclohexanone (11g) [35,36]. Yield: 75%, anti/syn: 90:10, ee:
90%. HPLC: Chiralpak OD-H, iPrOH/hexane 10:90,0.5 mL/min, I = 220 nm, t_(min): 31.4 (minor) ,36.5 (major).

3.2.2.8. (8)-2-[(R)-hydroxy(p-fluorophenyl)methyl]-cyclohexanone (11h) [37]. Yield: 90%, anti/syn: 85:15, ee: 87%.
HPLC: Chiralpak OD-H, iPrOH/hexane 5:95,0.5 mL/min, I = 254 nm, t (min): 43.5 (minor), 49.4 (major).

3.2.2.9. (5)-2-[(R)-hydroxy(p-cyanophenyl)methyl]-cyclohexanone(11i) [38]. Yield: 83%, anti/syn:88:12, ee: 84%.
HPLC: Chiralpak OD-H, iPrOH/hexane 5:95,1.0 mL/min, I = 220 nm, t_(min): 27.8 (minor), 35.6 (major).

3.2.2.10. (S)-2-[(R)-hydroxy(p-trifluoromethhylphenyl)methyl]cyclohexanone (11j) [38]. Yield: 86%, anti/syn: 85:15,
ee: 83%. HPLC: Chiralpak OD-H, iPrOH/hexane 5:95,1.0 mL/min, 1 = 254 nm, t_(min): 17.2(minor), 22.3 (major).

3.2.2.11. (5)-2-[(R)-hydroxy(p-methoxyphenyl)methyl]-cyclohexanone (11k) [35,36]. Yield: 44%, anti/syn: 85:15, ee:
36%. HPLC: Chiralpak AD-H, iPrOH/hexane 10:90,0.5 mL/min, 1 = 254 nm, t_(min): 27.9 (major), 39.9 (minor).

3.2.2.12. (R)-2-[(R)-hydroxy(p-nitrophenyl)methyl]-cyclopentanone (111) [39]. Yield: 88%, anti/syn: 42:58, ee: 68%.
HPLC: Chiralpak AD-H, iPrOH/hexane 5:95,0.5 mL/min, 1 = 210 nm, t_(min): 106.8(minor), 113.3(major).
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SUPPORTING INFORMATION
L-proline/cholesterol and diosgenin based thiourea cooperative system for the direct
asymmetric aldol reaction in the presence of water
General
All reagents were used as received without purification. 'H NMR (400 MHz) and 3C NMR
(100 MHz) spectra were taken on a Bruker Avance 400 spectrometer. TMS was used as internal
standard. For thin layer chromatography (TLC) pre-coated Merck 60 F254 TLC plates were

used. Flash column chromatography was performed using silica gel (60-mesh; Merck).
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13C NMR spectrum of compound 5
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"H NMR spectrum of compound 6
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13C NMR spectrum of compound 6
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"H NMR spectrum of compound 7
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13C NMR spectrum of compound 7
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13C NMR spectrum of compound 8
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HPLC chromatograms of compound 11a
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HPLC chromatograms of compound 11b
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HPLC chromatograms of compound 11¢
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HPLC chromatograms of compound 11d
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HPLC chromatograms of compound 11e

% Instrument 1 (offline): Data Analysis - =] X
File Method Sequence Graphics Integration Calibration Report Batch View Abort Help
s Methods e DEF_LCM

Data Ar

[5G C:\CHEM32\1\DATA
fame ([egtor] o cotiratn [/ sena L ory
0 SERKan
[ DAD1 C. Sig=210.8 Ref=360, D)
™~
- : i
o
1750
1500—3
1250
1000-]
750~
o i i
E /\ /\
oc!
12 1s 16 1 Y 2 26 E3 2 ) in
o = # Time Area Height Width AreaX Symmetry
1 14.536 72876.2 21274 0.4236 36.230 0.805
2 17.434 101766.4 2075.2 05781 50.592 1.102
3 24.245 13068.4 4223 0.485 6.437 0.903
4 26.992 134386 396.1 05298 6.681 0.911
% Instrument 1 (offline): Data Analysis - a X
File Method Sequence Graphics Integration Calibration Report Batch View Abort Help

I DEF_LCM

[ DAD1 G, 5ig=210.8 Ref=380,100 (SERKAN\208SHC D)
000
d
g
el
200
: § g
1 1o 18 2 2 2 E) E) % m
[ =
# Time Area Height Width Area% Symmetr
1 14.241 21187 91.2 0.371 11508 | 0924
2 17.032 9375 356 0.4171 5.092 0.833
3 23731 144357 4618 0.4887 78414 | 089
4 26.462 9178 278 0.5148 4.935 0939

14



HPLC chromatograms of compound 11f
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HPLC chromatograms of compound 11g
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HPLC chromatograms of compound 11h
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HPLC chromatograms of compound 11i
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HPLC chromatograms of compound 11j
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HPLC chromatograms of compound 11k

& Instrument 1 (offline): Data Analysis
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HPLC chromatogram of compound 111

& Instrument 1 (offline): Data Analysis
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3 106.845 30185 264 1.3433 6.147 087
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