Comparison of BLUP and Bayesian methods for different sizes of training population in genomic selection

Authors: SAMET HASAN ABACI, HASAN ÖNDER

Abstract: This study aims to compare the accuracy of pedigree-based and genomic-based breeding value prediction for different training population sizes. In this study, Bayes (A, B, C, Cpi) and GBLUP methods for genomic selection and BLUP method for pedigree-based selection were used. Genomic and pedigree-based breeding values were estimated for partial milk yield (158 days) of Holstein cows (400 individuals) from a private enterprise in the USA. For this aim, populations were created for indirect breeding value estimates as training (322-360) and test (78-40) populations. In animals genotyped with a 54k SNP, the marker file was encoded as -10, 0, and 10 for AA, AB, and BB marker genotypes, respectively. Bayes and GBLUP methods were performed using GenSel 4.55 software. A total of 50,000 iterations were used, with the first 5000 excluded as the burn-in. Pedigree-based breeding values were estimated by REML using MTDFREML software employing an animal model. Correlations between partial milk yield and estimated breeding values were used to assess the predictive ability for methods. Bayes B method gave the highest accuracy for the indirect estimate of breeding value.

Keywords: Bayes, best linear unbiased prediction, breeding value, genomic selection

Full Text: PDF