Deriving the Snel-Descartes law for a single photon

Authors: RANDY WAYNE

Abstract: The laws of reflection and refraction are typically derived using a dispersion relation that assumes that the angular frequency stays the same across a vacuum--dielectric interface and that the angular wave number increases. At the single photon level, this means that the total energy of the photon is conserved but the linear momentum is not. Here I derive the laws of reflection and refraction for a single photon using a dispersion relation that is consistent with the conservation of both total energy and linear momentum. To ensure that both conservation laws are upheld, the optical path length must be considered to be more fundamental than the geometrical path length when reckoning optical distances. As long as the medium is transparent, the optical path length traveled by a photon in a given duration of time is constant. By contrast, the geometrical path length traveled in a given duration of time is inversely proportional to the index of refraction. A photon propagating across a vacuum--dielectric interface is considered to be an indivisible package whose total energy (and angular frequency) and linear momentum (and angular wave number) remain constant, but whose velocity decreases with refractive index as a result of unspecified electromagnetic interactions.

Keywords: Conservation, energy, linear momentum, photon, reflection, refraction

Full Text: PDF