Electromagnetic energy conservation with complex octonions

Authors: MUSTAFA EMRE KANSU, MURAT TANIŞLI, SÜLEYMAN DEMİR

Abstract: Octonions are the eight dimensional hypercomplex numbers that form a noncommutative and nonassociative division algebra. In this study, a general framework for the real, complex octonions and their algebra are provided by using the Cayley-Dickson multiplication rule between the octonionic basis elements. Maxwell's equations without sources are shown in Gauss units in dimensionless form. The local energy conservation equation, which has been previously defined in a complexified quaternionic form, is similarly rearranged for isotropic media by using the complex octonions. As a result, the terms of density and flow of electromagnetic energy are attained.

Keywords: Octonion, Maxwell's equations, electromagnetic energy, Poynting vector

Full Text: PDF